Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Oncopreventive and Oncotherapeutic Potential of Licorice Chalcone Compounds: Molecular Insights

Author(s): Yushu Wang, Wenxin Xia, Mengxin Tao and Xueyan Fu*

Volume 23, Issue 6, 2023

Published on: 06 October, 2022

Page: [662 - 699] Pages: 38

DOI: 10.2174/1389557522666220827161943

Price: $65

Abstract

Background: Licorice is an important traditional Chinese medicine commonly used in clinical practice and contains more than 300 flavonoids. Chalcone is one of the main types of flavonoids with a wide range of biological functions and pharmacological activities. In the anticancer research, chalcone compounds have shown excellent performance.

Objective: This review aims to summarize the biosynthetic pathway and pharmacokinetics of chalcone from licorice and provide evidence for the anticancer effects of chalcone and the underlying mechanisms involved.

Methods: For this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http:// www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/), and the Web of Science Database (http:// apps.webofknowledge.com/).

Results: To date, about 56 chalcones have been isolated and identified from licorice, 14 of which have antitumor effects. These chalcones have a wide range of biological activities and can inhibit the viability, proliferation, and migration of cancer cells by blocking the cancer cell cycle, thus inducing apoptosis and autophagy. However, the molecular mechanism of the anticancer effects of chalcone is not fully understood.

Conclusion: In this paper, the molecular mechanism of chalcone regulating different types of cancer is reviewed in detail from the biosynthetic pathway. This comprehensive review article summarizes the biosynthetic pathway and pharmacokinetics of chalcone from the traditional Chinese medicine licorice and provides evidence for the potential anticancer effects of chalcone and the respective mechanisms of action. This paper also provides a basis for structural modification, biosynthesis, and new drug development of chalcone compounds in Glycyrrhiza uralensis.

Keywords: licorice, chalcones, biosynthesis, phytochemistry, pharmacology, antitumor

Graphical Abstract

[1]
Cao, W.; Chen, H-D.; Yu, Y-W.; Li, N.; Chen, W-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl.), 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[2]
Begnini, K.R.; Moura de Leon, P.M.; Thurow, H.; Schultze, E.; Campos, V.F.; Martins Rodrigues, F.; Borsuk, S.; Dellagostin, O.A.; Savegnago, L.; Roesch-Ely, M.; Moura, S.; Padilha, F.F.; Collares, T.; Pêgas Henriques, J.A.; Seixas, F.K. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. Evid. Based Complement. Alternat. Med., 2014, 2014, 639856.
[http://dx.doi.org/10.1155/2014/639856] [PMID: 25530785]
[3]
Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol., 2017, 9, 31-45.
[http://dx.doi.org/10.2147/JEP.S70568] [PMID: 28435333]
[4]
Rahmani, A.H.; Alzohairy, M.A.; Khan, M.A.; Aly, S.M. Therapeutic implications of black seed and its constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid. Based Complement. Alternat. Med., 2014, 2014, 724658.
[http://dx.doi.org/10.1155/2014/724658] [PMID: 24959190]
[5]
Rejhová, A. Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.039] [PMID: 29289883]
[6]
Pistollato, F.; Calderón Iglesias, R.; Ruiz, R.; Aparicio, S.; Crespo, J.; Dzul Lopez, L.; Giampieri, F.; Battino, M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett., 2017, 411, 191-200.
[http://dx.doi.org/10.1016/j.canlet.2017.09.050] [PMID: 29017913]
[7]
Chin, Y-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J., 2006, 8(2), E239-E253.
[http://dx.doi.org/10.1007/BF02854894] [PMID: 16796374]
[8]
Lee, E-R.; Kang, G-H.; Cho, S-G. Effect of flavonoids on human health: Old subjects but new challenges. Recent Pat. Biotechnol., 2007, 1(2), 139-150.
[http://dx.doi.org/10.2174/187220807780809445] [PMID: 19075837]
[9]
Wang, K.L.; Hsia, S.M.; Chan, C.J.; Chang, F.Y.; Huang, C.Y.; Bau, D.T.; Wang, P.S. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets, 2013, 17(4), 337-349.
[http://dx.doi.org/10.1517/14728222.2013.756869] [PMID: 23327692]
[10]
Tsai, J.P.; Hsiao, P.C.; Yang, S.F.; Hsieh, S.C.; Bau, D.T.; Ling, C.L.; Pai, C.L.; Hsieh, Y.H. Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NF-κB mediated urokinase plasminogen activator expression. PLoS One, 2014, 9(1), e86537.
[http://dx.doi.org/10.1371/journal.pone.0086537] [PMID: 24466137]
[11]
Hong, S.H.; Cha, H.J.; Hwang-Bo, H.; Kim, M.Y.; Kim, S.Y.; Ji, S.Y.; Cheong, J.; Park, C.; Lee, H.; Kim, G.Y.; Moon, S.K.; Yun, S.J.; Chang, Y.C.; Kim, W.J.; Choi, Y.H. Anti-proliferative and pro-apoptotic effects of licochalcone A through ROS-mediated cell cycle arrest and apoptosis in human bladder cancer cells. Int. J. Mol. Sci., 2019, 20(15), 3820.
[http://dx.doi.org/10.3390/ijms20153820] [PMID: 31387245]
[12]
Lin, R.C.; Yang, S.F.; Chiou, H.L.; Hsieh, S.C.; Wen, S.H.; Lu, K.H.; Hsieh, Y.H. Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo. Cells, 2019, 8(11), 14-41.
[http://dx.doi.org/10.3390/cells8111441] [PMID: 31739642]
[13]
Hong, P.; Liu, Q.W.; Xie, Y.; Zhang, Q.H.; Liao, L.; He, Q.Y.; Li, B.; Xu, W.W. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis., 2020, 11(7), 524.
[http://dx.doi.org/10.1038/s41419-020-2730-7] [PMID: 32655130]
[14]
Salem, M.M.; Werbovetz, K.A. SM, M. Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. J. Nat. Prod., 2006, 69(1), 43-49.
[http://dx.doi.org/10.1021/np0502600] [PMID: 16441066]
[15]
Zhang, B.; Lai, Y.; Li, Y.; Shu, N.; Wang, Z.; Wang, Y.; Li, Y.; Chen, Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol., 2018, 821, 57-67.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.053] [PMID: 29277717]
[16]
Wu, Y.; Chen, X.; Ge, X.; Xia, H.; Wang, Y.; Su, S.; Li, W.; Yang, T.; Wei, M.; Zhang, H.; Gou, L.; Li, J.; Jiang, X.; Yang, J. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. J. Mol. Med. (Berl.), 2016, 94(2), 195-206.
[http://dx.doi.org/10.1007/s00109-015-1338-3] [PMID: 26383911]
[17]
Gaur, R.; Gupta, V.K.; Singh, P.; Pal, A.; Darokar, M.P.; Bhakuni, R.S. Drug resistance reversal potential of isoliquiritigenin and liquiritigenin isolated from Glycyrrhiza glabra against methicillin-resistant Staphylococcus aureus (MRSA). Phytother. Res., 2016, 30(10), 1708-1715.
[http://dx.doi.org/10.1002/ptr.5677] [PMID: 27388327]
[18]
Adianti, M.; Aoki, C.; Komoto, M.; Deng, L.; Shoji, I.; Wahyuni, T.S.; Lusida, M.I. Soetjipto; Fuchino, H.; Kawahara, N.; Hotta, H. Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol. Immunol., 2014, 58(3), 180-187.
[http://dx.doi.org/10.1111/1348-0421.12127] [PMID: 24397541]
[19]
Vaya, J.; Belinky, P.A.; Aviram, M. Antioxidant constituents from licorice roots: Isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic. Biol. Med., 1997, 23(2), 302-313.
[http://dx.doi.org/10.1016/S0891-5849(97)00089-0] [PMID: 9199893]
[20]
Kuang, Y.; Lin, Y.; Li, K.; Song, W.; Ji, S.; Qiao, X.; Zhang, Q.; Ye, M. Screening of hepatoprotective compounds from licorice against carbon tetrachloride and acetaminophen induced HepG2 cells injury. Phytomedicine, 2017, 34, 59-66.
[http://dx.doi.org/10.1016/j.phymed.2017.08.005] [PMID: 28899510]
[21]
Li, J.; Kang, S.W.; Kim, J.L.; Sung, H.Y.; Kwun, I.S.; Kang, Y.H. Isoliquiritigenin entails blockade of TGF-beta1-SMAD signaling for retarding high glucose-induced mesangial matrix accumulation. J. Agric. Food Chem., 2010, 58(5), 3205-3212.
[http://dx.doi.org/10.1021/jf9040723] [PMID: 20146476]
[22]
Qiao, X.; Song, W.; Ji, S.; Wang, Q.; Guo, D.A.; Ye, M. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J. Chromatogr. A, 2015, 1402, 36-45.
[http://dx.doi.org/10.1016/j.chroma.2015.05.006] [PMID: 26008595]
[23]
Fu, Y.; Chen, J.; Li, Y-J.; Zheng, Y-F.; Li, P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem., 2013, 141(2), 1063-1071.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.089] [PMID: 23790887]
[24]
Shen, F.; Tang, X.; Wang, Y.; Yang, Z.; Shi, X.; Wang, C.; Zhang, Q.; An, Y.; Cheng, W.; Jin, K.; Liu, M.; Guo, N.; Yu, L. Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone A. Appl. Microbiol. Biotechnol., 2015, 99(1), 359-373.
[http://dx.doi.org/10.1007/s00253-014-6076-x] [PMID: 25256617]
[25]
Chen, X.; Liu, Z.; Meng, R.; Shi, C.; Guo, N. Antioxidative and anticancer properties of Licochalcone A from licorice. J. Ethnopharmacol., 2017, 198, 331-337.
[http://dx.doi.org/10.1016/j.jep.2017.01.028] [PMID: 28111219]
[26]
Yamamoto, H.; Senda, M.; Inoue, K. Flavanone 8-dimethylallyltransferase in Sophora flavescens cell suspension cultures. Phytochemistry, 2000, 54(7), 649-655.
[http://dx.doi.org/10.1016/S0031-9422(00)00198-9] [PMID: 10975499]
[27]
Zhou, Y.; Ho, W.S. Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncol. Rep., 2014, 31(1), 298-304.
[http://dx.doi.org/10.3892/or.2013.2849] [PMID: 24247527]
[28]
Kajiyama, K; Demizu, S; Hiraga, Y Two prenylated retrochalcones from Glycyrrhiza inflataPergamon., 1992, (31), 3229-3232. http://dx.doi.org/10.1016/0031-9422(92)83481-D
[29]
Kwak, A.W.; Choi, J.S.; Lee, M.H.; Oh, H.N.; Cho, S.S.; Yoon, G.; Liu, K.; Chae, J.I.; Shim, J.H. Retrochalcone echinatin triggers apoptosis of esophageal squamous cell carcinoma via ROS- and ER stress-mediated signaling pathways. Molecules, 2019, 24(22), 4055.
[http://dx.doi.org/10.3390/molecules24224055] [PMID: 31717502]
[30]
Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.016] [PMID: 21123068]
[31]
Ke, Z.; Su, Z.; Zhang, X.; Cao, Z.; Ding, Y.; Cao, L.; Ding, G.; Wang, Z.; Liu, H.; Xiao, W. Discovery of a potent angiotensin converting enzyme inhibitor via virtual screening. Bioorg. Med. Chem. Lett., 2017, 27(16), 3688-3692.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.016] [PMID: 28712707]
[32]
Hu, G.; Huang, Q-Y.; Zhang, T. Studies of flavonoids from Glycyrrhizae Radix et Rhizoma. Chin. Tradit. Herbal Drugs, 2019, 50, 5187-5192.
[33]
Cheng, M.; Ding, L.; Kan, H.; Zhang, H.; Jiang, B.; Sun, Y.; Cao, S.; Li, W.; Koike, K.; Qiu, F. Isolation, structural elucidation and in vitro hepatoprotective activity of flavonoids from Glycyrrhiza uralensis. J. Nat. Med., 2019, 73(4), 847-854.
[http://dx.doi.org/10.1007/s11418-019-01329-0] [PMID: 31218551]
[34]
Kaur, P.; Kaur, S.; Kumar, N.; Singh, B.; Kumar, S. Evaluation of antigenotoxic activity of isoliquiritin apioside from Glycyrrhiza glabra L. Toxicol. In Vitro, 2009, 23(4), 680-686.
[http://dx.doi.org/10.1016/j.tiv.2009.01.019] [PMID: 19490840]
[35]
Zhao, Y.; Liu, S.; Zhang, C.; Liu, D.; Zhang, T. Chemical composition analysis of Glycyrrhiza glycyrrhiza based on HPLC-Q-TOF-MS. Chin. Tradit. Herbal Drugs, 2016, 47, 2061-2068.
[36]
Bao, F.; Bai, H.; Peng, J. Study on compounds and antibacterial activity of cultivated Glycyrrhiza uralensis Fisch. Zhongguo Xiandai Zhongyao, 2019, 21, 577-582.
[37]
Kim, S-J.; Kim, C.G.; Yun, S-R.; Kim, J-K.; Jun, J-G. Synthesis of licochalcone analogues with increased anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2014, 24(1), 181-185.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.044] [PMID: 24316124]
[38]
Li, N.; Liu, F.; Ni, H.; Meng, D.; Zhang, J.; Jia, X. Isolation and identification on chemical constituents of residue of Glycyrrhiza inflata Batal. J. Shenyang Pharm. Univ., 2011, 28, 368-370.
[39]
Song, W.; Qiao, X.; Chen, K.; Wang, Y.; Ji, S.; Feng, J.; Li, K.; Lin, Y.; Ye, M. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal. Chem., 2017, 89(5), 3146-3153.
[http://dx.doi.org/10.1021/acs.analchem.6b04919] [PMID: 28192986]
[40]
Kwon, S.J.; Park, S.Y.; Kwon, G.T.; Lee, K.W.; Kang, Y.H.; Choi, M.S.; Yun, J.W.; Jeon, J.H.; Jun, J.G.; Park, J.H. Licochalcone E present in licorice suppresses lung metastasis in the 4T1 mammary orthotopic cancer model. Cancer Prev. Res. (Phila.), 2013, 6(6), 603-613.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0012] [PMID: 23625311]
[41]
Park, H.G.; Bak, E.J.; Woo, G-H.; Kim, J.M.; Quan, Z.; Kim, J.M.; Yoon, H.K.; Cheon, S.H.; Yoon, G.; Yoo, Y.J.; Na, Y.; Cha, J.H. Licochalcone E has an antidiabetic effect. J. Nutr. Biochem., 2012, 23(7), 759-767.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.021] [PMID: 21840191]
[42]
Han, J.; Wang, D.; Li, D.; Chen, X.; Wang, B.; Wang, F.; Liu, X.; Shang, J.; Zheng, Q. Licochalcone E protects against carbon tetrachloride induced liver toxicity by activating peroxisome proliferator-activated receptor gamma. Mol. Med. Rep., 2017, 16(4), 5269-5276.
[http://dx.doi.org/10.3892/mmr.2017.7268] [PMID: 28849019]
[43]
Liu, D.; Huo, X.; Gao, L.; Zhang, J.; Ni, H.; Cao, L. NF-κB and Nrf2 pathways contribute to the protective effect of Licochalcone A on dextran sulphate sodium-induced ulcerative colitis in mice. Biomed. Pharmacother., 2018, 102, 922-929.
[http://dx.doi.org/10.1016/j.biopha.2018.03.130] [PMID: 29710547]
[44]
Li, W.; Asada, Y.; Yoshikawa, T. Flavonoid constituents from Glycyrrhiza glabra hairy root cultures. Phytochemistry, 2000, 55(5), 447-456.
[http://dx.doi.org/10.1016/S0031-9422(00)00337-X] [PMID: 11140606]
[45]
Cai, L.N.; Zhang, R.Y.; Wang, B.; Qiao, L.; Huang, L.R.; Zhang, Z.L. Studies on the chemical constituents of Glycyrrhiza pallidiflora Maxim. Yao Xue Xue Bao, 1992, 27(10), 748-751.
[PMID: 1293921]
[46]
Chin, Y-W.; Jung, H-A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem., 2007, 55(12), 4691-4697.
[http://dx.doi.org/10.1021/jf0703553] [PMID: 17516657]
[47]
Li, G.; Nikolic, D.; van Breemen, R.B. Identification and chemical standardization of licorice raw materials and dietary supplements using UHPLC-MS/MS. J. Agric. Food Chem., 2016, 64(42), 8062-8070.
[http://dx.doi.org/10.1021/acs.jafc.6b02954] [PMID: 27696846]
[48]
Szliszka, E.; Jaworska, D.; Ksek, M.; Czuba, Z.P.; Król, W. Targeting death receptor TRAIL-R2 by chalcones for TRAIL-induced apoptosis in cancer cells. Int. J. Mol. Sci., 2012, 13(11), 15343-15359.
[http://dx.doi.org/10.3390/ijms131115343] [PMID: 23203129]
[49]
Dzoyem, J.P.; Nkuete, A.H.L.; Ngameni, B.; Eloff, J.N. Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from Polygonum and Dorstenia species. Arch. Pharm. Res., 2017, 40(10), 1129-1134.
[http://dx.doi.org/10.1007/s12272-015-0612-9] [PMID: 26048035]
[50]
Wang, H-M.; Liu, T-X.; Wang, T-Y.; Wang, G.; Liu, Y.G.; Liu, S.G.; Tang, Y.D.; Cai, X.H. Isobavachalcone inhibits post-entry stages of the porcine reproductive and respiratory syndrome virus life cycle. Arch. Virol., 2018, 163(5), 1263-1270.
[http://dx.doi.org/10.1007/s00705-018-3755-4] [PMID: 29411137]
[51]
Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res., 2002, 16(6), 539-544.
[http://dx.doi.org/10.1002/ptr.972] [PMID: 12237811]
[52]
Li, W.; Li, S.; Higai, K.; Sasaki, T.; Asada, Y.; Ohshima, S.; Koike, K. Evaluation of licorice flavonoids as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(21), 5836-5839.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.102] [PMID: 24047800]
[53]
Kuete, V.; Ngameni, B.; Mbaveng, A.T.; Ngadjui, B.; Meyer, J.J.M.; Lall, N. Evaluation of flavonoids from Dorstenia barteri for their antimycobacterial, antigonorrheal and anti-reverse transcriptase activities. Acta Trop., 2010, 116(1), 100-104.
[http://dx.doi.org/10.1016/j.actatropica.2010.06.005] [PMID: 20599632]
[54]
Lin, Y.; Kuang, Y.; Li, K.; Wang, S.; Song, W.; Qiao, X.; Sabir, G.; Ye, M. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorg. Med. Chem., 2017, 25(14), 3706-3713.
[http://dx.doi.org/10.1016/j.bmc.2017.05.009] [PMID: 28522265]
[55]
Kuroda, M.; Mimaki, Y.; Honda, S.; Tanaka, H.; Yokota, S.; Mae, T. Phenolics from Glycyrrhiza glabra roots and their PPAR-gamma ligand-binding activity. Bioorg. Med. Chem., 2010, 18(2), 962-970.
[http://dx.doi.org/10.1016/j.bmc.2009.11.027] [PMID: 20022509]
[56]
Lee, H.N.; Cho, H.J.; Lim, D.Y.; Kang, Y-H.; Lee, K.W.; Park, J.H. Mechanisms by which licochalcone e exhibits potent anti-inflammatory properties: Studies with phorbol ester-treated mouse skin and lipopolysaccharide-stimulated murine macrophages. Int. J. Mol. Sci., 2013, 14(6), 10926-10943.
[http://dx.doi.org/10.3390/ijms140610926] [PMID: 23708096]
[57]
Liu, X.; Li, Q.; Lv, C.; Du, Y.; Xu, H.; Wang, D.; Li, M.; Li, B.; Li, J.; Bi, K. Combination of the advantages of chromatographic methods based on active components for the quality evaluation of licorice. J. Sep. Sci., 2015, 38(24), 4180-4186.
[http://dx.doi.org/10.1002/jssc.201500770] [PMID: 26472171]
[58]
Asada, Y.; Li, W.; Yoshikawa, T. Isoprenylated flavonoids from hairy root cultures of Glycyrrhiza glabra. Phytochemistry, 1998, 47, 389-392.
[http://dx.doi.org/10.1016/S0031-9422(97)00591-8]
[59]
Kuete, V.; Ngameni, B.; Wiench, B.; Krusche, B.; Horwedel, C.; Ngadjui, B.T.; Efferth, T. Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: Gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med., 2011, 77(18), 1984-1989.
[http://dx.doi.org/10.1055/s-0031-1280023] [PMID: 21800276]
[60]
Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.X.; Ngadjui, B.T.; Abegaz, B.M.; Meyer, J.J.; Lall, N.; Beng, V.P. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol., 2008, 116(3), 483-489.
[http://dx.doi.org/10.1016/j.jep.2007.12.017] [PMID: 18280679]
[61]
Kuramoto, K.; Suzuki, S.; Sakaki, H.; Takeda, H.; Sanomachi, T.; Seino, S.; Narita, Y.; Kayama, T.; Kitanaka, C.; Okada, M. Licochalcone A specifically induces cell death in glioma stem cells via mitochondrial dysfunction. FEBS Open Bio, 2017, 7(6), 835-844.
[http://dx.doi.org/10.1002/2211-5463.12226] [PMID: 28593138]
[62]
Li, K.; Ji, S.; Song, W.; Kuang, Y.; Lin, Y.; Tang, S.; Cui, Z.; Qiao, X.; Yu, S.; Ye, M. Glycybridins A-K, bioactive phenolic compounds from Glycyrrhiza glabra. J. Nat. Prod., 2017, 80(2), 334-346.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00783] [PMID: 28140583]
[63]
Fukai, T.; Cai, B-s.; Maruno, K.; Miyakawa, Y.; Konishi, M.; Nomura, T. An isoprenylated flavanone from Glycyrrhiza glabra and rec-assay of licorice phenols. Phytochemistry, 1998, 49, 2005-2013.
[http://dx.doi.org/10.1016/S0031-9422(98)00389-6]
[64]
Samman, N. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7, 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[65]
Wang, Q.; Miao, W.; Xiang, C.; Guo, D.; Ye, M. Study on chemical constituents of Glycyrrhiza uralensis. Chin. Tradit. Herbal Drugs, 2012, 43, 1886-1890.
[66]
Ryu, J-S. A journey towards natural licochalcone E: From isolation to asymmetric total synthesis. Arch. Pharm. Res., 2011, 34(8), 1219-1222.
[http://dx.doi.org/10.1007/s12272-011-0800-1] [PMID: 21910041]
[67]
Kitagawa, I.; Chen, W.; Taniyama, T. Quantitative determination of constituents in various licorice roots by means of high performance liquid chromatography. J. Pharm. Soc. Jpn., 1998, 118, 519-528.
[68]
He, F.; Bi, H-C.; Xie, Z-Y.; Zuo, Z.; Li, J.K.; Li, X.; Zhao, L.Z.; Chen, X.; Huang, M. Rapid determination of six metabolites from multiple cytochrome P450 probe substrates in human liver microsome by liquid chromatography/mass spectrometry: Application to high-throughput inhibition screening of terpenoids. Rapid Commun. Mass Spectrom., 2007, 21(5), 635-643.
[http://dx.doi.org/10.1002/rcm.2881] [PMID: 17279482]
[69]
Chang, G.H.; Bo, Y.Y.; Cui, J.; Xu, L.L.; Zhao, Z.H.; Wang, W.Q.; Hou, J.L. Zhongguo Zhongyao Zazhi [Main chemical constituents in aerial parts of Glycyrrhiza uralensis by UPLC-Q-Exactive Orbitrap-MS], 2021, 46(6), 1449-1459.
[PMID: 33787143]
[70]
Jiang, Z.; Wang, Y.; Zheng, Y.; Yang, J.; Zhang, L. Ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry and chemometric analysis of licorice based on the simultaneous determination of saponins and flavonoids. J. Sep. Sci., 2016, 39(15), 2928-2940.
[http://dx.doi.org/10.1002/jssc.201600246] [PMID: 27273927]
[71]
Zhao, Y.; Yang, X.; Zhao, X.; Zhong, Y. Research progress on regulation of plant flavonoids biosynthesis Sci. Technol. FoodInd., 2021, 1-15.
[72]
Fang, C.; Wan, X.; Jiang, C. Research progress in biosynthesis of flavonoids. Anhui Nongye Daxue Xuebao, 2005, 32, 94-100.
[73]
Ma, R-F.; Liu, Q-Z.; Xiao, Y.; Zhang, L.; Li, Q.; Yin, J.; Chen, W.S. The phenylalanine ammonia-lyase gene family in Isatis indigotica Fort.: Molecular cloning, characterization, and expression analysis. Chin. J. Nat. Med., 2016, 14(11), 801-812.
[http://dx.doi.org/10.1016/S1875-5364(16)30097-8] [PMID: 27914524]
[74]
Li, C.L.; Bai, Y.C.; Chen, H.; Zhao, H.X.; Shao, J.R.; Wu, Q. Cloning, characterization and functional analysis of a phenylalanine ammonia-lyase gene (FtPAL) from Fagopyrum tataricum gaertn. Plant Mol. Biol., 2012, 30, 1172-1182.
[http://dx.doi.org/10.1007/s11105-012-0431-9]
[75]
Khakdan, F.; Alizadeh, H.; Ranjbar, M. Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiol. Biochem., 2018, 130, 464-472.
[http://dx.doi.org/10.1016/j.plaphy.2018.07.026] [PMID: 30077922]
[76]
Kováčik, J.; Klejdus, B.; Bačkor, M.; Repčák, M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci., 2006, 172, 393-399.
[http://dx.doi.org/10.1016/j.plantsci.2006.10.001]
[77]
Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7(7), 1085-1097.
[http://dx.doi.org/10.2307/3870059] [PMID: 12242399]
[78]
Austin, M.B.; Noel, J.P. Chalcone Synthase Superfamily of Type III Polyketide Synthases ChemInform., 2003, 34, 79-110.
[79]
Reimold, U.; Kröger, M.; Kreuzaler, F.; Hahlbrock, K. Coding and 3′ non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J., 1983, 2(10), 1801-1805.
[http://dx.doi.org/10.1002/j.1460-2075.1983.tb01661.x] [PMID: 16453477]
[80]
[81]
Hao, A-n. Bioinformatics analysis of chalcone synthase in Sorghum bicolor. Jiangsu. J. Agric. Sci., 2016, 32, 1232-1236.
[82]
Shan, L.; Wang, Y.; Wang, M.; Wang, Z. Cloning and expression analysis of CHS genes involved in the biosynthesis of flavonoids in soybean. Xibei Zhiwu Xuebao, 2012, 32, 2164-2168.
[83]
Kang, Y. The expression of chalcone synthase gene and the analysis of the accumulation of safflor yellow in Carthamus tinctorius L. Chengdu Med. Univ; Available from, 2014. https://kreader.cnki.net/Kreader/CatalogViewPage.aspx?dbCode=CMFD&filename=1015560597.nh&tablename=CMFD201501&compose=&first=1&uid=WEEvREcwSlJHSldSdmVpbisvQWlDWDhVWjg4K1VjSXlnL1IyNlVhMWowbz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!
[84]
Zhong, D.; Fang, Y.; Guo, Z. Cloning and sequence analysis of chalone synthase gene from Cassia tora. Biotechnol Bulletin., 2013, 29, 99-104.
[85]
Moustafa, E; Wong, E Purification and properties of chalcone-flavanone isomerase from soya bean seed. Pergamon., 1967, 6, 625-632.
[86]
Mehdy, M.C.; Lamb, C.J. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J., 1987, 6(6), 1527-1533.
[http://dx.doi.org/10.1002/j.1460-2075.1987.tb02396.x] [PMID: 16453768]
[87]
Shimada, N.; Aoki, T.; Sato, S.; Nakamura, Y.; Tabata, S.; Ayabe, S. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol., 2003, 131(3), 941-951.
[http://dx.doi.org/10.1104/pp.004820] [PMID: 12644647]
[88]
Gensheimer, M.; Mushegian, A. Chalcone isomerase family and fold: No longer unique to plants. Protein Sci., 2004, 13(2), 540-544.
[http://dx.doi.org/10.1110/ps.03395404] [PMID: 14718655]
[89]
Fu, H.; Zhang, Y.; Wang, X.; Han, Y.; Peng, X.; Efferth, T.; Fu, Y. Synthesis and anti-tumor activity of novel aminomethylated derivatives of isoliquiritigenin. Molecules, 2014, 19(11), 17715-17726.
[http://dx.doi.org/10.3390/molecules191117715] [PMID: 25365296]
[90]
Gao, Q.; Ma, J. Preparation and pharmacokinetics of isoliquiritigenin polylactic acid nanoparticles in rats. Herald Med., 2020, 39, 85-89.
[91]
Lee, Y.K.; Chin, Y-W.; Bae, J-K.; Seo, J.S.; Choi, Y.H. Pharmacokinetics of isoliquiritigenin and its metabolites in rats: Low bioavailability is primarily due to the hepatic and intestinal metabolism. Planta Med., 2013, 79(17), 1656-1665.
[http://dx.doi.org/10.1055/s-0033-1350924] [PMID: 24108436]
[92]
Yushan, R.; Ying, Y.; Yujun, T.; Jingchun, Y.; Dongguang, L.; Lihong, P.; Pingping, W.; Lili, Z.; Fanhui, Z.; Zhong, L.; Guimin, Z.; Jie, L. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3β/TNF-α pathway. Eur. J. Pharmacol., 2018, 838, 11-22.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.033] [PMID: 30171855]
[93]
Qiao, H.; Zhang, X.; Wang, T.; Liang, L.; Chang, W.; Xia, H. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration. Pharm. Biol., 2014, 52(2), 228-236.
[http://dx.doi.org/10.3109/13880209.2013.832334] [PMID: 24102672]
[94]
Han, B.; Chen, W.; Zheng, Q.; Wang, X.; Yan, H.; Li, L.; Aisa, H. Determination of isoliquiritigenin and its distribution in mice by synchronous fluorescence spectrometry. Anal. Sci., 2011, 27(11), 1115-1119.
[http://dx.doi.org/10.2116/analsci.27.1115] [PMID: 22076338]
[95]
Liu, J.; Wang, Q.; Adu-Frimpong, M.; Wei, Q.; Xie, Y.; Zhang, K.; Wei, C.; Weng, W.; Ji, H.; Toreniyazov, E.; Xu, X.; Yu, J. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes. Int. J. Pharm., 2019, 563, 53-62.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.034] [PMID: 30890449]
[96]
Zhang, K.; Wang, Q.; Yang, Q.; Wei, Q.; Man, N.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system. AAPS PharmSciTech, 2019, 20(5), 218.
[http://dx.doi.org/10.1208/s12249-019-1421-0] [PMID: 31187334]
[97]
Qiao, F.; Zhao, Y.; Mai, Y.; Guo, J.; Dong, L.; Zhang, W.; Yang, J. Isoliquiritigenin nanosuspension enhances cytostatic effects in A549 lung cancer cells. Planta Med., 2020, 86(8), 538-547.
[http://dx.doi.org/10.1055/a-1134-3378] [PMID: 32294789]
[98]
Sun, X.; Zhang, J.; Wang, Z.; Liu, B.; Zhu, S.; Zhu, L.; Peng, B. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics, 2019, 9(18), 5183-5199.
[http://dx.doi.org/10.7150/thno.33376] [PMID: 31410209]
[99]
Gao, F.; Zhang, J.; Fu, C.; Xie, X.; Peng, F.; You, J.; Tang, H.; Wang, Z.; Li, P.; Chen, J. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int. J. Nanomedicine, 2017, 12, 4147-4162.
[http://dx.doi.org/10.2147/IJN.S134148] [PMID: 28615942]
[100]
Lee, N.H.; Park, S.H.; Park, S.N. Preparation and characterization of novel pseudo ceramide-based nanostructured lipid carriers for transdermal delivery of apigenin. J. Drug Deliv. Sci. Technol., 2018, 48, 245-252.
[http://dx.doi.org/10.1016/j.jddst.2018.09.019]
[101]
Xie, Y-J.; Wang, Q-L.; Adu-Frimpong, M.; Liu, J.; Zhang, K.Y.; Xu, X.M.; Yu, J.N. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Dev. Ind. Pharm., 2019, 45(8), 1224-1232.
[http://dx.doi.org/10.1080/03639045.2019.1574812] [PMID: 30681382]
[102]
Wang, G.; Yu, Y.; Wang, Y.Z.; Yin, P.H.; Xu, K.; Zhang, H. The effects and mechanisms of isoliquiritigenin loaded nanoliposomes regulated AMPK/mTOR mediated glycolysis in colorectal cancer. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1231-1249.
[http://dx.doi.org/10.1080/21691401.2020.1825092] [PMID: 32985258]
[103]
Kong, B.J.; Kim, A.; Park, S.N. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr. Polym., 2016, 147, 473-481.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.021] [PMID: 27178954]
[104]
Shibata, S. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi, 2000, 120(10), 849-862.
[http://dx.doi.org/10.1248/yakushi1947.120.10_849] [PMID: 11082698]
[105]
Zeng, G.; Shen, H.; Yang, Y.; Cai, X.; Xun, W. Licochalcone A as a potent antitumor agent suppresses growth of human oral cancer SCC-25 cells in vitro via caspase-3 dependent pathways. Tumour Biol., 2014, 35(7), 6549-6555.
[http://dx.doi.org/10.1007/s13277-014-1877-1] [PMID: 24691971]
[106]
Cui, Y.; Ao, M.; Li, W.; Hu, J.; Yu, L. Anti-inflammatory activity of licochalcone A isolated from Glycyrrhiza inflata. Z. Naturforsch. C J. Biosci., 2008, 63(5-6), 361-365.
[http://dx.doi.org/10.1515/znc-2008-5-609] [PMID: 18669021]
[107]
Lin, Y.; Kuang, Y.; Li, K.; Wang, S.; Ji, S.; Chen, K.; Song, W.; Qiao, X.; Ye, M. Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorg. Med. Chem., 2017, 25(20), 5522-5530.
[http://dx.doi.org/10.1016/j.bmc.2017.08.018] [PMID: 28835349]
[108]
Tsukiyama, R.; Katsura, H.; Tokuriki, N.; Kobayashi, M. Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother., 2002, 46(5), 1226-1230.
[http://dx.doi.org/10.1128/AAC.46.5.1226-1230.2002] [PMID: 11959549]
[109]
Haraguchi, H.; Ishikawa, H.; Mizutani, K.; Tamura, Y.; Kinoshita, T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem., 1998, 6(3), 339-347.
[http://dx.doi.org/10.1016/S0968-0896(97)10034-7] [PMID: 9568287]
[110]
Weng, Q.; Chen, L.; Ye, L. Determination of licochalcone A in rat plasma by UPLC–MS/MS and its pharmacokinetics. Acta Chromatogr., 2019, 31, 262-265.
[http://dx.doi.org/10.1556/1326.2018.00491]
[111]
Wei, C; Wang, Q; Weng, W The characterisation, pharmacokinetic and tissue distribution studies of TPGS modified myricetrin mixed micelles in rats.Taylor & Francis, 2019, (36), 278-290.
[112]
Weng, W.; Wang, Q.; Wei, C.; Man, N.; Zhang, K.; Wei, Q.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int. J. Pharm., 2019, 572, 118735.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118735] [PMID: 31705971]
[113]
Kim, K.H.; Yoon, G.; Cho, J.J.; Cho, J.H.; Cho, Y.S.; Chae, J.I.; Shim, J.H. Licochalcone A induces apoptosis in malignant pleural mesothelioma through downregulation of Sp1 and subsequent activation of mitochondria-related apoptotic pathway. Int. J. Oncol., 2015, 46(3), 1385-1392.
[http://dx.doi.org/10.3892/ijo.2015.2839] [PMID: 25586190]
[114]
Dong, Y.; Zhao, M.; Zhao, T.; Feng, M.; Chen, H.; Zhuang, M.; Lin, L. Bioactive profiles, antioxidant activities, nitrite scavenging capacities and protective effects on H2O2-injured PC12 cells of Glycyrrhiza glabra L. leaf and root extracts. Molecules, 2014, 19(7), 9101-9113.
[http://dx.doi.org/10.3390/molecules19079101] [PMID: 24983860]
[115]
Zhang, M.; Shen, Y. Advances in studies on Glycyrrhizae Radix et Rhizoma and its active components in anti-inflammation and mechanism. Drugs & Clinic., 2011, 26, 261-268.
[116]
ElSohly, H.N.; Joshi, A.S.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Antifungal chalcones from Maclura tinctoria. Planta Med., 2001, 67(1), 87-89.
[http://dx.doi.org/10.1055/s-2001-10621] [PMID: 11270732]
[117]
Fan, Z.Z.; Zhao, W.H.; Guo, J.; Cheng, R.F.; Zhao, J.Y.; Yang, W.D.; Wang, Y.H.; Li, W.; Peng, X.D. Antidepressant activities of flavonoids from Glycyrrhiza uralensis and its neurogenesis protective effect in rats. Yao Xue Xue Bao, 2012, 47(12), 1612-1617.
[PMID: 23460966]
[118]
Cheng, R.; Hua, B.; Jing, J. Modulation of the apoptotic protein expression in hippocampus is associated with the antidepressant effects of licorice flavonoids from Glycyrrhiza uralensis in rats. Pharm. Clin. Chin. Mater. Med., 2014, 30, 69-72.
[119]
Feng, Y.; Hu, B.; Zhou, J. Licorice flavonoids on diabetic rats blood glucose, blood lipid levels and the effect of antioxidant capacity. Shandong Yiyao, 2016, 56, 23-25.
[120]
Zhang, M.; Shen, Y. Advances in studies on cardioprotection of glycyrrhizic acid compound and flavonoids. Drugs Clinic., 2012, 27, 429-434.
[121]
Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis, 2014, 35(11), 2544-2554.
[http://dx.doi.org/10.1093/carcin/bgu187] [PMID: 25194164]
[122]
Wang, Z.; Wang, N.; Liu, P.; Chen, Q.; Situ, H.; Xie, T.; Zhang, J.; Peng, C.; Lin, Y.; Chen, J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 2014, 5(16), 7013-7026.
[http://dx.doi.org/10.18632/oncotarget.2192] [PMID: 25026296]
[123]
Zheng, H.; Li, Y.; Wang, Y.; Zhao, H.; Zhang, J.; Chai, H.; Tang, T.; Yue, J.; Guo, A.M.; Yang, J. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol. Appl. Pharmacol., 2014, 280(1), 10-20.
[http://dx.doi.org/10.1016/j.taap.2014.07.018] [PMID: 25094029]
[124]
Peng, F.; Tang, H.; Liu, P.; Shen, J.; Guan, X.; Xie, X.; Gao, J.; Xiong, L.; Jia, L.; Chen, J.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 9022.
[http://dx.doi.org/10.1038/s41598-017-08422-y] [PMID: 28827662]
[125]
Li, Y.; Zhao, H.; Wang, Y.; Zheng, H.; Yu, W.; Chai, H.; Zhang, J.; Falck, J.R.; Guo, A.M.; Yue, J.; Peng, R.; Yang, J. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicol. Appl. Pharmacol., 2013, 272(1), 37-48.
[http://dx.doi.org/10.1016/j.taap.2013.05.031] [PMID: 23747687]
[126]
Wang, N.; Wang, Z.; Wang, Y.; Xie, X.; Shen, J.; Peng, C.; You, J.; Peng, F.; Tang, H.; Guan, X.; Chen, J. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget, 2015, 6(12), 9854-9876.
[http://dx.doi.org/10.18632/oncotarget.3396] [PMID: 25918249]
[127]
Lin, P.H.; Chiang, Y.F.; Shieh, T.M.; Chen, H.Y.; Shih, C.K.; Wang, T.H.; Wang, K.L.; Huang, T.C.; Hong, Y.H.; Li, S.C.; Hsia, S.M. Dietary compound isoliquiritigenin, an antioxidant from licorice, suppresses triple-negative breast tumor growth via apoptotic death program activation in cell and xenograft animal models. Antioxidants, 2020, 9(3), 228.
[http://dx.doi.org/10.3390/antiox9030228] [PMID: 32164337]
[128]
Ye, L.; Gho, W.M.; Chan, F.L.; Chen, S.; Leung, L.K. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase. Int. J. Cancer, 2009, 124(5), 1028-1036.
[http://dx.doi.org/10.1002/ijc.24046] [PMID: 19065667]
[129]
Huang, W.C.; Su, H.H.; Fang, L.W.; Wu, S.J.; Liou, C.J.; Licochalcone, A. Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer. Cells, 2019, 8(3), 8.
[http://dx.doi.org/10.1016/j.cell.2019.02.049] [PMID: 30841634]
[130]
Xue, L.; Zhang, W.J.; Fan, Q.X.; Wang, L.X. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol. Lett., 2018, 15(2), 1869-1873.
[PMID: 29399197]
[131]
Kang, T.H.; Seo, J.H.; Oh, H.; Yoon, G.; Chae, J.I.; Shim, J.H.; Licochalcone, A. Licochalcone A suppresses specificity protein 1 as a novel target in human breast cancer cells. J. Cell. Biochem., 2017, 118(12), 4652-4663.
[http://dx.doi.org/10.1002/jcb.26131] [PMID: 28498645]
[132]
Gao, S.; Sun, D.; Wang, G.; Zhang, J.; Jiang, Y.; Li, G.; Zhang, K.; Wang, L.; Huang, J.; Chen, L. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorg. Chem., 2016, 69, 121-128.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.005] [PMID: 27814565]
[133]
Shi, J.; Chen, Y.; Chen, W.; Tang, C.; Zhang, H.; Chen, Y.; Yang, X.; Xu, Z.; Wei, J.; Chen, J. Isobavachalcone sensitizes cells to E2-induced paclitaxel resistance by down-regulating CD44 expression in ER+ breast cancer cells. J. Cell. Mol. Med., 2018, 22(11), 5220-5230.
[http://dx.doi.org/10.1111/jcmm.13719] [PMID: 30179299]
[134]
Huang, F.; Wang, J.; Xu, Y.; Zhang, Y.; Xu, N.; Yin, L. Discovery of novel isoliquiritigenin analogue ISL-17 as a potential anti-gastric cancer agent. Biosci. Rep., 2020, 40(6), 40.
[http://dx.doi.org/10.1042/BSR20201199] [PMID: 32515470]
[135]
Lee, H.H.; Lee, S.; Shin, Y.S.; Cho, M.; Kang, H.; Cho, H. Anti-cancer effect of quercetin in xenograft models with EBV-associated human gastric carcinoma. Molecules, 2016, 21(10), 1286.
[http://dx.doi.org/10.3390/molecules21101286] [PMID: 27681719]
[136]
Zhang, X.R.; Wang, S.Y.; Sun, W.; Wei, C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep., 2018, 18(3), 3429-3436.
[http://dx.doi.org/10.3892/mmr.2018.9318] [PMID: 30066879]
[137]
Xiao, X.Y.; Hao, M.; Yang, X.Y.; Ba, Q.; Li, M.; Ni, S.J.; Wang, L.S.; Du, X. Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett., 2011, 302(1), 69-75.
[http://dx.doi.org/10.1016/j.canlet.2010.12.016] [PMID: 21216524]
[138]
Hao, W.; Yuan, X.; Yu, L.; Gao, C.; Sun, X.; Wang, D.; Zheng, Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci. Rep., 2015, 5, 10336.
[http://dx.doi.org/10.1038/srep10336] [PMID: 25981581]
[139]
Lin, X.; Tian, L.; Wang, L.; Li, W.; Xu, Q.; Xiao, X. Antitumor effects and the underlying mechanism of licochalcone A combined with 5-fluorouracil in gastric cancer cells. Oncol. Lett., 2017, 13(3), 1695-1701.
[http://dx.doi.org/10.3892/ol.2017.5614] [PMID: 28454311]
[140]
Reis-Dennis, S. Review of rethinking health care ethics by stephen scher and kasia kozlowska: Palgrave macmillan, available open access:, https://link.springer.com/content/pdf/10.1007/978-981-13-0830-7.pdfMonash Bioeth. Rev., 2020, 38(1), 83-86.
[http://dx.doi.org/10.1007/s40592-020-00107-z]] [PMID: 32306202]
[141]
Jin, X.; Shi, Y.I. Isobavachalcone induces the apoptosis of gastric cancer cells via inhibition of the Akt and Erk pathways. Exp. Ther. Med., 2016, 11(2), 403-408.
[http://dx.doi.org/10.3892/etm.2015.2904] [PMID: 26893622]
[142]
Jin, H.; Seo, G.S.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells. Eur. J. Pharmacol., 2018, 841, 90-97.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.015] [PMID: 30339814]
[143]
Lee, C.K.; Son, S.H.; Park, K.K.; Park, J.H.Y.; Lim, S.S.; Chung, W.Y. Isoliquiritigenin inhibits tumor growth and protects the kidney and liver against chemotherapy-induced toxicity in a mouse xenograft model of colon carcinoma. J. Pharmacol. Sci., 2008, 106(3), 444-451.
[http://dx.doi.org/10.1254/jphs.FP0071498] [PMID: 18360095]
[144]
Yoshida, T.; Horinaka, M.; Takara, M.; Tsuchihashi, M.; Mukai, N.; Wakada, M.; Sakai, T. Combination of isoliquiritigenin and tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in colon cancer HT29 cells. Environ. Health Prev. Med., 2008, 13(5), 281-287.
[http://dx.doi.org/10.1007/s12199-008-0041-1] [PMID: 19568915]
[145]
Takahashi, T.; Takasuka, N.; Iigo, M.; Baba, M.; Nishino, H.; Tsuda, H.; Okuyama, T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci., 2004, 95(5), 448-453.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03230.x] [PMID: 15132774]
[146]
Sechet, E.; Telford, E.; Bonamy, C.; Sansonetti, P.J.; Sperandio, B. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β-defensin-3. Proc. Natl. Acad. Sci. USA, 2018, 115(42), E9869-E9878.
[http://dx.doi.org/10.1073/pnas.1805298115] [PMID: 30275324]
[147]
Lee, C.K.; Son, S.H.; Park, K.K.; Park, J.H.; Lim, S.S.; Kim, S.H.; Chung, W.Y. Licochalcone A inhibits the growth of colon carcinoma and attenuates cisplatin-induced toxicity without a loss of chemotherapeutic efficacy in mice. Basic Clin. Pharmacol. Toxicol., 2008, 103(1), 48-54.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00238.x] [PMID: 18484961]
[148]
Liu, X.; Xing, Y.; Li, M.; Zhang, Z.; Wang, J.; Ri, M.; Jin, C.; Xu, G.; Piao, L.; Jin, H.; Zuo, H.; Ma, J.; Jin, X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. J. Ethnopharmacol., 2021, 273, 113989.
[http://dx.doi.org/10.1016/j.jep.2021.113989] [PMID: 33677006]
[149]
Zhang, J.; Chen, W.; Zou, N. Molecular mechanism of Licochalcone A regulating proliferation and apoptosis of human colon cancer cells. Chin. J. Immunol., 2019, 35, 549-554.
[150]
Li, Y.; Qin, X.; Li, P.; Zhang, H.; Lin, T.; Miao, Z.; Ma, S. Isobavachalcone isolated from Psoralea corylifolia inhibits cell proliferation and induces apoptosis via inhibiting the AKT/GSK-3β/β-catenin pathway in colorectal cancer cells. Drug Des. Devel. Ther., 2019, 13, 1449-1460.
[http://dx.doi.org/10.2147/DDDT.S192681] [PMID: 31118579]
[151]
Cao, Z.X.; Wen, Y.; He, J.L.; Huang, S.Z.; Gao, F.; Guo, C.J.; Liu, Q.Q.; Zheng, S.W.; Gong, D.Y.; Li, Y.Z.; Zhang, R.Q.; Chen, J.P.; Peng, C. Isoliquiritigenin, an orally available natural FLT3 inhibitor from licorice, exhibits selective anti-acute myeloid leukemia efficacy in vitro and in vivo. Mol. Pharmacol., 2019, 96(5), 589-599.
[http://dx.doi.org/10.1124/mol.119.116129] [PMID: 31462456]
[152]
Lee, J.E.; Hong, E.J.; Nam, H.Y.; Hwang, M.; Kim, J.H.; Han, B.G.; Jeon, J.P. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines. Biochem. Biophys. Res. Commun., 2012, 427(2), 392-397.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.070] [PMID: 22995316]
[153]
Park, S-J.; Song, H-Y.; Youn, H-S. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages. Mol. Cells, 2009, 28(4), 365-368.
[http://dx.doi.org/10.1007/s10059-009-0130-z] [PMID: 19809799]
[154]
Yang, L.; Song, L.; Zhao, S.; Ma, C.; Wu, D.; Wu, Y.L. Isobavachalcone reveals novel characteristics of methuosis-like cell death in leukemia cells. Chem. Biol. Interact., 2019, 304, 131-138.
[http://dx.doi.org/10.1016/j.cbi.2019.03.011] [PMID: 30890322]
[155]
Wu, D.; Wang, W.; Chen, W.; Lian, F.; Lang, L.; Huang, Y.; Xu, Y.; Zhang, N.; Chen, Y.; Liu, M.; Nussinov, R.; Cheng, F.; Lu, W.; Huang, J. Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells. Haematologica, 2018, 103(9), 1472-1483.
[http://dx.doi.org/10.3324/haematol.2018.188185] [PMID: 29880605]
[156]
Gao, Y.; Lv, X.; Yang, H.; Peng, L.; Ci, X. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF- B and NLRP3 pathways in carrageenan-induced pleurisy. Food Funct., 2020, 11(3), 2522-2534.
[http://dx.doi.org/10.1039/C9FO01984G] [PMID: 32141447]
[157]
Zhang, W.; Wang, G.; Zhou, S. Protective effects of isoliquiritigenin on LPS-induced acute lung injury by activating PPAR-γ. Inflammation, 2018, 41(4), 1290-1296.
[http://dx.doi.org/10.1007/s10753-018-0777-8] [PMID: 29654430]
[158]
Liu, Q.; Lv, H.; Wen, Z.; Ci, X.; Peng, L. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-κB pathway in macrophages and in acute lung injury. Front. Immunol., 2017, 8, 1518.
[http://dx.doi.org/10.3389/fimmu.2017.01518] [PMID: 29163554]
[159]
Jung, S.K.; Lee, M.H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.; Chi, Y.I.; Kundu, J.K.; Lee, N.H.; Lee, C.C.; Cho, Y.Y.; Bode, A.M.; Lee, K.W.; Dong, Z. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem., 2014, 289(52), 35839-35848.
[http://dx.doi.org/10.1074/jbc.M114.585513] [PMID: 25368326]
[160]
Liu, B.; Yang, J.; Wen, Q.; Li, Y. Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: Role of cGMP/PKG pathway. Eur. J. Pharmacol., 2008, 587(1-3), 257-266.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.015] [PMID: 18462716]
[161]
Yuan, L.W.; Jiang, X.M.; Xu, Y.L.; Huang, M.Y.; Chen, Y.C.; Yu, W.B.; Su, M.X.; Ye, Z.H.; Chen, X.; Wang, Y.; Lu, J.J. Licochalcone A inhibits interferon-gamma-induced programmed death-ligand 1 in lung cancer cells. Phytomedicine, 2021, 80, 153394.
[http://dx.doi.org/10.1016/j.phymed.2020.153394] [PMID: 33130472]
[162]
Chen, G.; Ma, Y.; Jiang, Z.; Feng, Y.; Han, Y.; Tang, Y.; Zhang, J.; Ni, H.; Li, X.; Li, N. Lico A causes ER stress and apoptosis via Up-regulating miR-144-3p in human lung cancer cell line H292. Front. Pharmacol., 2018, 9, 837.
[http://dx.doi.org/10.3389/fphar.2018.00837] [PMID: 30108506]
[163]
Qiu, C.; Zhang, T.; Zhang, W.; Zhou, L.; Yu, B.; Wang, W.; Yang, Z.; Liu, Z.; Zou, P.; Liang, G. Licochalcone A inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress. Int. J. Mol. Sci., 2017, 18(8), 1761.
[http://dx.doi.org/10.3390/ijms18081761] [PMID: 28805696]
[164]
Tang, Z.H.; Chen, X.; Wang, Z.Y.; Chai, K.; Wang, Y.F.; Xu, X.H.; Wang, X.W.; Lu, J.H.; Wang, Y.T.; Chen, X.P.; Lu, J.J. Induction of C/EBP homologous protein-mediated apoptosis and autophagy by licochalcone A in non-small cell lung cancer cells. Sci. Rep., 2016, 6, 26241.
[http://dx.doi.org/10.1038/srep26241] [PMID: 27184816]
[165]
Huang, H.C.; Tsai, L.L.; Tsai, J.P.; Hsieh, S.C.; Yang, S.F.; Hsueh, J.T.; Hsieh, Y.H. Licochalcone A inhibits the migration and invasion of human lung cancer cells via inactivation of the Akt signaling pathway with downregulation of MMP-1/-3 expression. Tumour Biol., 2014, 35(12), 12139-12149.
[http://dx.doi.org/10.1007/s13277-014-2519-3] [PMID: 25149157]
[166]
Oh, H.N.; Lee, M.H.; Kim, E.; Kwak, A.W.; Seo, J.H.; Yoon, G.; Cho, S.S.; Choi, J.S.; Lee, S.M.; Seo, K.S.; Chae, J.I.; Shim, J.H. Dual inhibition of EGFR and MET by Echinatin retards cell growth and induces apoptosis of lung cancer cells sensitive or resistant to gefitinib. Phytother. Res., 2020, 34(2), 388-400.
[http://dx.doi.org/10.1002/ptr.6530] [PMID: 31698509]
[167]
Oh, H.N.; Lee, M.H.; Kim, E.; Kwak, A.W.; Yoon, G.; Cho, S.S.; Liu, K.; Chae, J.I.; Shim, J.H. Licochalcone D induces ROS-dependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules, 2020, 10(2), 297.
[http://dx.doi.org/10.3390/biom10020297] [PMID: 32070026]
[168]
Xiang, S.; Chen, H.; Luo, X.; An, B.; Wu, W.; Cao, S.; Ruan, S.; Wang, Z.; Weng, L.; Zhu, H.; Liu, Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 184.
[http://dx.doi.org/10.1186/s13046-018-0844-x] [PMID: 30081934]
[169]
Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell. Longev., 2012, 2012, 534934.
[http://dx.doi.org/10.1155/2012/534934] [PMID: 23304254]
[170]
Lv, J.; Fu, Y.; Cao, Y.; Jiang, S.; Yang, Y.; Song, G.; Yun, C.; Gao, R. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation. Exp. Dermatol., 2020, 29(2), 149-157.
[http://dx.doi.org/10.1111/exd.14066] [PMID: 31785162]
[171]
Zhang, Y.; Gao, M.; Chen, L.; Zhou, L.; Bian, S.; Lv, Y. Licochalcone A restrains microphthalmia-associated transcription factor expression and growth by activating autophagy in melanoma cells via miR-142-3p/Rheb/mTOR pathway. Phytother. Res., 2020, 34(2), 349-358.
[http://dx.doi.org/10.1002/ptr.6525] [PMID: 31793097]
[172]
Kang, T.H.; Yoon, G.; Kang, I.A.; Oh, H.N.; Chae, J.I.; Shim, J.H. Natural compound licochalcone B induced extrinsic and intrinsic apoptosis in human skin melanoma (A375) and squamous cell carcinoma (A431) cells. Phytother. Res., 2017, 31(12), 1858-1867.
[http://dx.doi.org/10.1002/ptr.5928] [PMID: 29027311]
[173]
Huang, Y.; Liu, C.; Zeng, W.C.; Xu, G.Y.; Wu, J.M.; Li, Z.W.; Huang, X.Y.; Lin, R.J.; Shi, X. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci. Rep., 2020, 40(1), 40.
[http://dx.doi.org/10.1042/BSR20192727] [PMID: 31840737]
[174]
Sun, C.; Wang, Z.H.; Liu, X.X.; Yang, L.N.; Wang, Y.; Liu, Y.; Mao, A.H.; Liu, Y.Y.; Zhou, X.; Di, C.X.; Gan, L.; Zhang, H. Disturbance of redox status enhances radiosensitivity of hepatocellular carcinoma. Am. J. Cancer Res., 2015, 5(4), 1368-1381.
[PMID: 26101703]
[175]
Wang, J.R.; Luo, Y.H.; Piao, X.J.; Zhang, Y.; Feng, Y.C.; Li, J.Q.; Xu, W.T.; Zhang, Y.; Zhang, T.; Wang, S.N.; Xue, H.; Wang, W.Z.; Cao, L.K.; Jin, C.H. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-κB pathways in human hepatocellular carcinoma cells. Drug Dev. Res., 2019, 80(4), 461-470.
[http://dx.doi.org/10.1002/ddr.21518] [PMID: 30698296]
[176]
Hsu, Y.L.; Kuo, P.L.; Lin, L.T.; Lin, C.C. Isoliquiritigenin inhibits cell proliferation and induces apoptosis in human hepatoma cells. Planta Med., 2005, 71(2), 130-134.
[http://dx.doi.org/10.1055/s-2005-837779] [PMID: 15729620]
[177]
Choi, A.Y.; Choi, J.H.; Hwang, K.Y.; Jeong, Y.J.; Choe, W.; Yoon, K.S.; Ha, J.; Kim, S.S.; Youn, J.H.; Yeo, E.J.; Kang, I. Licochalcone A induces apoptosis through endoplasmic reticulum stress via a phospholipase Cγ;1-, Ca(2+)-, and reactive oxygen species-dependent pathway in HepG2 human hepatocellular carcinoma cells. Apoptosis, 2014, 19(4), 682-697.
[http://dx.doi.org/10.1007/s10495-013-0955-y] [PMID: 24337903]
[178]
Wu, M.H.; Chiu, Y.F.; Wu, W.J.; Wu, P.L.; Lin, C.Y.; Lin, C.L.; Hsieh, Y.H.; Liu, C.J. Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. Environ. Toxicol., 2018, 33(12), 1237-1244.
[http://dx.doi.org/10.1002/tox.22630] [PMID: 30187994]
[179]
Sadek, K.; Abouzed, T.; Nasr, S.; Shoukry, M.; Licochalcone, B. Licochalcone B ameliorates liver cancer via targeting of apoptotic genes, DNA repair systems, and cell cycle control. Iran. J. Pharm. Res., 2020, 19(4), 372-386.
[PMID: 33841550]
[180]
Li, B.; Xu, N.; Wan, Z.; Ma, L.; Li, H.; Cai, W.; Chen, X.; Huang, Z.; He, Z. Isobavachalcone exerts anti proliferative and pro apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway. Oncol. Rep., 2019, 41(6), 3355-3366.
[http://dx.doi.org/10.3892/or.2019.7090] [PMID: 30942462]
[181]
Chen, C.; Huang, S.; Chen, C.L.; Su, S.B.; Fang, D.D. Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition. Molecules, 2019, 24(20), 3725.
[http://dx.doi.org/10.3390/molecules24203725] [PMID: 31623144]
[182]
Chen, H.Y.; Huang, T.C.; Shieh, T.M.; Wu, C.H.; Lin, L.C.; Hsia, S.M. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int. J. Mol. Sci., 2017, 18(10), 2025.
[http://dx.doi.org/10.3390/ijms18102025] [PMID: 28934130]
[183]
Li, N.; Yang, L.; Deng, X.; Sun, Y. Effects of isoliquiritigenin on ovarian cancer cells. OncoTargets Ther., 2018, 11, 1633-1642.
[http://dx.doi.org/10.2147/OTT.S149295] [PMID: 29606882]
[184]
Jung, J.I.; Lim, S.S.; Choi, H.J.; Cho, H.J.; Shin, H.K.; Kim, E.J.; Chung, W.Y.; Park, K.K.; Park, J.H. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem., 2006, 17(10), 689-696.
[http://dx.doi.org/10.1016/j.jnutbio.2005.11.006] [PMID: 16517140]
[185]
Fu, Y.; Hsieh, T.C.; Guo, J.; Kunicki, J.; Lee, M.Y.; Darzynkiewicz, Z.; Wu, J.M. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun., 2004, 322(1), 263-270.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.094] [PMID: 15313200]
[186]
Park, S.Y.; Kim, E.J.; Choi, H.J.; Seon, M.R.; Lim, S.S.; Kang, Y.H.; Choi, M.S.; Lee, K.W.; Yoon Park, J.H. Anti-carcinogenic effects of non-polar components containing licochalcone A in roasted licorice root. Nutr. Res. Pract., 2014, 8(3), 257-266.
[http://dx.doi.org/10.4162/nrp.2014.8.3.257] [PMID: 24944769]
[187]
Li, K.; Zheng, Q.; Chen, X.; Wang, Y.; Wang, D.; Wang, J. Isobavachalcone induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in human prostate cancer PC-3 cells. Oxid. Med. Cell. Longev., 2018, 2018, 1915828.
[http://dx.doi.org/10.1155/2018/1915828] [PMID: 30410640]
[188]
Jing, H.; Zhou, X.; Dong, X.; Cao, J.; Zhu, H.; Lou, J.; Hu, Y.; He, Q.; Yang, B. Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett., 2010, 294(2), 167-177.
[http://dx.doi.org/10.1016/j.canlet.2010.01.035] [PMID: 20167420]
[189]
Li, C.; Zhou, X.; Sun, C.; Liu, X.; Shi, X.; Wu, S. Isoliquiritigenin inhibits the proliferation, apoptosis and migration of osteosarcoma cells. Oncol. Rep., 2019, 41(4), 2502-2510.
[http://dx.doi.org/10.3892/or.2019.6998] [PMID: 30720124]
[190]
Chen, J.; Liu, C.; Yang, Q.Q.; Ma, R.B.; Ke, Y.; Dong, F.; Wu, X.E. Isoliquiritigenin suppresses osteosarcoma U2OS cell proliferation and invasion by regulating the PI3K/Akt signalling pathway. Chemotherapy, 2018, 63(3), 155-161.
[http://dx.doi.org/10.1159/000490151] [PMID: 29936511]
[191]
Shen, T.S.; Hsu, Y.K.; Huang, Y.F.; Chen, H.Y.; Hsieh, C.P.; Chen, C.L.; Licochalcone, A. Licochalcone A suppresses the proliferation of osteosarcoma cells through autophagy and ATM-Chk2 activation. Molecules, 2019, 24(13), 24.
[http://dx.doi.org/10.3390/molecules24132435] [PMID: 31269698]
[192]
Hsia, S.M.; Yu, C.C.; Shih, Y.H.; Yuanchien Chen, M.; Wang, T.H.; Huang, Y.T.; Shieh, T.M. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase arrest and apoptosis in oral squamous cell carcinoma. Head Neck, 2016, 38(Suppl. 1), E360-E371.
[http://dx.doi.org/10.1002/hed.24001] [PMID: 25580586]
[193]
Kim, J.S.; Park, M.R.; Lee, S.Y.; Kim, D.K.; Moon, S.M.; Kim, C.S.; Cho, S.S.; Yoon, G. Im, H.J.; You, J.S.; Oh, J.S.; Kim, S.G. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway. Oncol. Rep., 2014, 31(2), 755-762.
[http://dx.doi.org/10.3892/or.2013.2929] [PMID: 24337492]
[194]
Cho, J.J.; Chae, J.I.; Yoon, G.; Kim, K.H.; Cho, J.H.; Cho, S.S.; Cho, Y.S.; Shim, J.H. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. Int. J. Oncol., 2014, 45(2), 667-674.
[http://dx.doi.org/10.3892/ijo.2014.2461] [PMID: 24858379]
[195]
Chuang, C.Y.; Tang, C.M.; Ho, H.Y.; Hsin, C.H.; Weng, C.J.; Yang, S.F.; Chen, P.N.; Lin, C.W. Licochalcone A induces apoptotic cell death via JNK/p38 activation in human nasopharyngeal carcinoma cells. Environ. Toxicol., 2019, 34(7), 853-860.
[http://dx.doi.org/10.1002/tox.22753] [PMID: 30983163]
[196]
Song, M.; Yoon, G.; Choi, J.S.; Kim, E.; Liu, X.; Oh, H.N.; Chae, J.I.; Lee, M.H.; Shim, J.H. Janus kinase 2 inhibition by Licochalcone B suppresses esophageal squamous cell carcinoma growth. Phytother. Res., 2020, 34(8), 2032-2043.
[http://dx.doi.org/10.1002/ptr.6661] [PMID: 32144852]
[197]
Kwak, A.W.; Choi, J.S.; Liu, K.; Lee, M.H.; Jeon, Y.J.; Cho, S.S.; Yoon, G.; Oh, H.N.; Chae, J.I.; Shim, J.H. Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J. Chemother., 2020, 32(3), 132-143.
[http://dx.doi.org/10.1080/1120009X.2020.1721175] [PMID: 32009586]
[198]
Seo, J.H.; Choi, H.W.; Oh, H.N.; Lee, M.H.; Kim, E.; Yoon, G.; Cho, S.S.; Park, S.M.; Cho, Y.S.; Chae, J.I.; Shim, J.H. Licochalcone D directly targets JAK2 to induced apoptosis in human oral squamous cell carcinoma. J. Cell. Physiol., 2019, 234(2), 1780-1793.
[http://dx.doi.org/10.1002/jcp.27050] [PMID: 30070696]
[199]
Si, L.; Yang, X.; Yan, X.; Wang, Y.; Zheng, Q. Isoliquiritigenin induces apoptosis of human bladder cancer T24 cells via a cyclin-dependent kinase-independent mechanism. Oncol. Lett., 2017, 14(1), 241-249.
[http://dx.doi.org/10.3892/ol.2017.6159] [PMID: 28693160]
[200]
Yuan, X.; Li, D.; Zhao, H.; Jiang, J.; Wang, P.; Ma, X.; Sun, X.; Zheng, Q. Licochalcone A-induced human bladder cancer T24 cells apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. BioMed Res. Int., 2013, 2013, 474272.
[http://dx.doi.org/10.1155/2013/474272] [PMID: 23936805]
[201]
Yang, X.; Jiang, J.; Yang, X.; Han, J.; Zheng, Q. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels. Mol. Med. Rep., 2016, 14(1), 911-919.
[http://dx.doi.org/10.3892/mmr.2016.5334] [PMID: 27221781]
[202]
Yuan, X.; Li, T.; Xiao, E.; Zhao, H.; Li, Y.; Fu, S.; Gan, L.; Wang, Z.; Zheng, Q.; Wang, Z. Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis. Food Chem. Toxicol., 2014, 65, 242-251.
[http://dx.doi.org/10.1016/j.fct.2013.12.030] [PMID: 24384411]
[203]
Wang, P.; Yuan, X.; Wang, Y.; Zhao, H.; Sun, X.; Zheng, Q. Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol. Med. Rep., 2015, 12(5), 7623-7628.
[http://dx.doi.org/10.3892/mmr.2015.4346] [PMID: 26397392]
[204]
Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal., 2019, 3(1), NS20180201.
[http://dx.doi.org/10.1042/NS20180201] [PMID: 32269833]
[205]
Zhao, S.; Chang, H.; Ma, P.; Gao, G.; Jin, C.; Zhao, X.; Zhou, W.; Jin, B. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12577-12582.
[PMID: 26722447]
[206]
Yang, H.H.; Zhang, C.; Lai, S.H.; Zeng, C.C.; Liu, Y.J.; Wang, X.Z. Isoliquiritigenin induces cytotoxicity in PC-12 cells in vitro. Appl. Biochem. Biotechnol., 2017, 183(4), 1173-1190.
[http://dx.doi.org/10.1007/s12010-017-2491-7] [PMID: 28488118]
[207]
Lu, W.J.; Wu, G.J.; Chen, R.J.; Chang, C.C.; Lien, L.M.; Chiu, C.C.; Tseng, M.F.; Huang, L.T.; Lin, K.H. Licochalcone A attenuates glioma cell growth in vitro and in vivo through cell cycle arrest. Food Funct., 2018, 9(8), 4500-4507.
[http://dx.doi.org/10.1039/C8FO00728D] [PMID: 30083664]
[208]
Yuan, X.; Zhang, B.; Gan, L.; Wang, Z.H.; Yu, B.C.; Liu, L.L.; Zheng, Q.S.; Wang, Z.P. Involvement of the mitochondrion-dependent and the endoplasmic reticulum stress-signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed. Environ. Sci., 2013, 26(4), 268-276.
[PMID: 23534467]
[209]
Hsu, Y.L.; Chia, C.C.; Chen, P.J.; Huang, S.E.; Huang, S.C.; Kuo, P.L. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol. Nutr. Food Res., 2009, 53(7), 826-835.
[http://dx.doi.org/10.1002/mnfr.200800288] [PMID: 19536869]
[210]
Tsai, J.P.; Lee, C.H.; Ying, T.H.; Lin, C.L.; Lin, C.L.; Hsueh, J.T.; Hsieh, Y.H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget, 2015, 6(30), 28851-28866.
[http://dx.doi.org/10.18632/oncotarget.4767] [PMID: 26311737]
[211]
Orlikova, B.; Schnekenburger, M.; Zloh, M.; Golais, F.; Diederich, M.; Tasdemir, D. Natural chalcones as dual inhibitors of HDACs and NF-κ. B. Oncol. Rep., 2012, 28(3), 797-805.
[http://dx.doi.org/10.3892/or.2012.1870] [PMID: 22710558]
[212]
Kim, A.; Ma, J.Y. Isoliquiritin apioside suppresses in vitro invasiveness and angiogenesis of cancer cells and endothelial cells. Front. Pharmacol., 2018, 9, 1455.
[http://dx.doi.org/10.3389/fphar.2018.01455] [PMID: 30618749]
[213]
Ngameni, B.; Touaibia, M.; Patnam, R.; Belkaid, A.; Sonna, P.; Ngadjui, B.T.; Annabi, B.; Roy, R. Inhibition of MMP-2 secretion from brain tumor cells suggests chemopreventive properties of a furanocoumarin glycoside and of chalcones isolated from the twigs of Dorstenia turbinata. Phytochemistry, 2006, 67(23), 2573-2579.
[http://dx.doi.org/10.1016/j.phytochem.2006.09.017] [PMID: 17070879]
[214]
Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W-Y.; Park, J.H.Y. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J. Med. Food, 2009, 12(1), 8-14.
[http://dx.doi.org/10.1089/jmf.2008.0039] [PMID: 19298190]
[215]
Benada, J.; Macurek, L. Targeting the checkpoint to kill cancer cells. Biomolecules, 2015, 5(3), 1912-1937.
[http://dx.doi.org/10.3390/biom5031912] [PMID: 26295265]
[216]
Liu, L.; Zhang, X.; Chen, J.; Qin, X.; Shen, H. Isoliquiritigenin inhibits cell proliferation and down-regulate survivin expression in human pancreatic cancer SW1990 cells. Acta. Univ. Med. Nanjing., 2015, 35, 1383-1414.
[217]
Wang, Y.; Ma, W.; Zheng, W. Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol. Clin. Oncol., 2013, 1(2), 215-219.
[http://dx.doi.org/10.3892/mco.2012.36] [PMID: 24649149]
[218]
Park, J-H.; Lim, H.J.; Lee, K-S.; Lee, S.; Kwak, H.J.; Cha, J.H.; Park, H.Y. Anti-proliferative effect of licochalcone A on vascular smooth muscle cells. Biol. Pharm. Bull., 2008, 31(11), 1996-2000.
[http://dx.doi.org/10.1248/bpb.31.1996] [PMID: 18981562]
[219]
Shi, Y.; Wu, W.Z.; Huo, A.; Zhou, W.; Jin, X.H. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcinoma cells. Oncol. Lett., 2017, 14(3), 2852-2858.
[http://dx.doi.org/10.3892/ol.2017.6517] [PMID: 28928824]
[220]
Yu, D.; Liu, X.; Zhang, G.; Ming, Z.; Wang, T. Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-κB signaling pathways. Front. Pharmacol., 2018, 9, 1001.
[http://dx.doi.org/10.3389/fphar.2018.01001] [PMID: 30294270]
[221]
Shen, H.; Zeng, G.; Tang, G.; Cai, X.; Bi, L.; Huang, C.; Yang, Y. Antimetastatic effects of licochalcone A on oral cancer via regulating metastasis-associated proteases. Tumour Biol., 2014, 35(8), 7467-7474.
[http://dx.doi.org/10.1007/s13277-014-1985-y] [PMID: 24789273]
[222]
Owen, K.L.; Brockwell, N.K.; Parker, B.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression cancers., 2019, 11(12), 2002.
[http://dx.doi.org/10.3390/cancers11122002]
[223]
Zhao, H.; Zhang, X.; Chen, X.; Li, Y.; Ke, Z.; Tang, T.; Chai, H.; Guo, A.M.; Chen, H.; Yang, J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol. Appl. Pharmacol., 2014, 279(3), 311-321.
[http://dx.doi.org/10.1016/j.taap.2014.07.001] [PMID: 25026504]
[224]
Lee, C.S.; Kwak, S.W.; Kim, Y.J.; Lee, S.A.; Park, E.S.; Myung, S.C.; Kim, W.; Lee, M.S.; Lee, J.J. Guanylate cyclase activator YC-1 potentiates apoptotic effect of licochalcone A on human epithelial ovarian carcinoma cells via activation of death receptor and mitochondrial pathways. Eur. J. Pharmacol., 2012, 683(1-3), 54-62.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.024] [PMID: 22465181]
[225]
Chen, Q.; Chen, C.; Hou, S. Research progress of flavonoids inducing tumor cell apoptosis in vitro and its mechanism. J. Jilin Med. Univ., 2016, 37, 228-232.
[226]
Kalra, N.; Roy, P.; Prasad, S.; Shukla, Y. Retracted: Resveratrol induces apoptosis involving mitochondrial pathways in mouse skin tumorigenesis. Life Sci., 2008, 82(7-8), 348-358.
[http://dx.doi.org/10.1016/j.lfs.2007.11.006] [PMID: 18201729]
[227]
Nag, S.; Zhang, X.; Srivenugopal, K.S.; Wang, M-H.; Wang, W.; Zhang, R. Targeting MDM2-p53 interaction for cancer therapy: Are we there yet? Curr. Med. Chem., 2014, 21(5), 553-574.
[http://dx.doi.org/10.2174/09298673113206660325] [PMID: 24180275]
[228]
Ma, J.; Fu, N.Y.; Pang, D.B.; Wu, W.Y.; Xu, A.L. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med., 2001, 67(8), 754-757.
[http://dx.doi.org/10.1055/s-2001-18361] [PMID: 11731922]
[229]
Zhou, G.S.; Song, L.J.; Yang, B. Isoliquiritigenin inhibits proliferation and induces apoptosis of U87 human glioma cells in vitro. Mol. Med. Rep., 2013, 7(2), 531-536.
[http://dx.doi.org/10.3892/mmr.2012.1218] [PMID: 23229626]
[230]
Dang, Y.; Lin, Y.; Sun, H.; Sun, J.; Li, C.; Li, Z. Isoliquiritigenin can inhibit migration and invasion of human glioma stem cells by down-regulating matrix metalloproteinases. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2018, 47(2), 181-186.
[PMID: 30226314]
[231]
Mirossay, L.; Varinská, L.; Mojžiš, J. Antiangiogenic effect of flavonoids and chalcones: An update. Int. J. Mol. Sci., 2017, 19(1), 19.
[http://dx.doi.org/10.3390/ijms19010027] [PMID: 29271940]
[232]
Liu, J.; Wei, J.; Yao, Y.; Zheng, Q. Anti-tumor angiogenesis of four different active ingredients from Glycyrrhiza., 2010, 10, 27-31.
[233]
Zhou, J-X.; Wink, M. Reversal of multidrug resistance in human colon cancer and human leukemia cells by three plant extracts and their major secondary metabolites. Medicines (Basel), 2018, 5(4), 5.
[http://dx.doi.org/10.3390/medicines5040123] [PMID: 30428619]
[234]
Chen, X.; Wu, Y.; Jiang, Y.; Zhou, Y.; Wang, Y.; Yao, Y.; Yi, C.; Gou, L.; Yang, J. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J. Mol. Med. (Berl.), 2012, 90(11), 1311-1319.
[http://dx.doi.org/10.1007/s00109-012-0910-3] [PMID: 22648519]
[235]
Yuan, X.; Zhang, B.; Chen, N.; Chen, X.Y.; Liu, L.L.; Zheng, Q.S.; Wang, Z.P. Isoliquiritigenin treatment induces apoptosis by increasing intracellular ROS levels in HeLa cells. J. Asian Nat. Prod. Res., 2012, 14(8), 789-798.
[http://dx.doi.org/10.1080/10286020.2012.694873] [PMID: 22694287]
[236]
Zhao, H.; Yuan, X.; Li, D.; Chen, H.; Jiang, J.; Wang, Z.; Sun, X.; Zheng, Q. Isoliquiritigen enhances the antitumour activity and decreases the genotoxic effect of cyclophosphamide. Molecules, 2013, 18(8), 8786-8798.
[http://dx.doi.org/10.3390/molecules18088786] [PMID: 23887720]
[237]
Lin, M.; Wu, D.; Huang, Y. Natural compounds ursolic acid and isoliquiritigenin target GRP78 to enhance human gastric cancer cell chemosensitivity by 5-fluorouracil. FASEB J., 2016, 30, 1193-1194.
[238]
Youns, M.; Fu, Y.J.; Zu, Y.G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sültmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 382(3), 221-234.
[http://dx.doi.org/10.1007/s00210-010-0541-6] [PMID: 20668838]
[239]
Yamazaki, S.; Morita, T.; Endo, H.; Hamamoto, T.; Baba, M.; Joichi, Y.; Kaneko, S.; Okada, Y.; Okuyama, T.; Nishino, H.; Tokue, A. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett., 2002, 183(1), 23-30.
[http://dx.doi.org/10.1016/S0304-3835(02)00113-1] [PMID: 12049811]
[240]
Yang, N.; Patil, S.; Zhuge, J.; Wen, M.C.; Bolleddula, J.; Doddaga, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res., 2013, 27(9), 1381-1391.
[http://dx.doi.org/10.1002/ptr.4862] [PMID: 23165939]
[241]
Hu, F.W.; Yu, C.C.; Hsieh, P.L.; Liao, Y.W.; Lu, M.Y.; Chu, P.M. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget, 2017, 8(55), 93912-93923.
[http://dx.doi.org/10.18632/oncotarget.21338] [PMID: 29212198]
[242]
Patricia Moreno-Londoño, A.; Bello-Alvarez, C.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem. Toxicol., 2017, 109(Pt 1), 143-154.
[http://dx.doi.org/10.1016/j.fct.2017.08.047] [PMID: 28870684]
[243]
Gómez-Sierra, T.; Medina-Campos, O.N.; Solano, J.D.; Ibarra-Rubio, M.E.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment induces endoplasmic reticulum stress-mediated hormesis and attenuates cisplatin-induced oxidative stress and damage in LLC-PK1 cells. Molecules, 2020, 25(19), 4442.
[http://dx.doi.org/10.3390/molecules25194442] [PMID: 32992605]
[244]
Yamamoto, S.; Aizu, E.; Jiang, H.; Nakadate, T.; Kiyoto, I.; Wang, J.C.; Kato, R. The potent anti-tumor-promoting agent isoliquiritigenin. Carcinogenesis, 1991, 12(2), 317-323.
[http://dx.doi.org/10.1093/carcin/12.2.317] [PMID: 1899810]
[245]
Zheng, H.; Wang, X.Q.; Luo, Y. Inhibitive effects of isoliquiritigenin combined with Flutamide on proliferation of human prostate cancer cells in vitro. Chin. J. Andro., 2007, 21, 29-31.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy