Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Are Herbal-peptides Effective as Adjunctive Therapy in Coronavirus Disease COVID-19?

Author(s): Elahe Aleebrahim-Dehkordi, Faezeh Soveyzi, Shirin Saberianpour and Mahmoud Rafieian-Kopaei*

Volume 15, Issue 1, 2023

Published on: 20 October, 2022

Page: [29 - 34] Pages: 6

DOI: 10.2174/2589977514666220826155013

Price: $65

Abstract

Background: Plant antiviral peptides (AVP) are macromolecules that can inhibit the pathogenesis of viruses by affecting their pathogenic mechanism, but most of these peptides can bind to cell membranes, inhibit viral receptors, and prevent viruses. Recently, due to the coronavirus pandemic, the availability of appropriate drugs with low side effects is needed. In this article, the importance of plant peptides in viral inhibition, especially viral inhibition of the coronavirus family, will be discussed.

Methods: By searching the databases of PubMed, Scopus, Web of Science, the latest articles on plant peptides effective on the COVID-19 virus were collected and reviewed.

Results: Some proteins can act against the COVID-19 virus by blocking sensitive receptors in COVID-19, such as angiotensin-converting enzyme 2 (ACE2). The 23bp sequence of the ACE2 alpha receptor chain can be considered as a target for therapeutic peptides. Protease and RNAP inhibitors and other important receptors that are active against COVID-19 should also be considered.

Conclusion: Herbal medicines with AVP, especially those with a long history of antiviral effects, might be a good choice in complement therapy against the COVID-19 virus.

Keywords: Herbal-peptides, Adjunctive therapy, Antiviral peptides, ACE2 receptor function, COVID-19

[1]
Boas LCPV, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76(18): 3525-42.
[http://dx.doi.org/10.1007/s00018-019-03138-w] [PMID: 31101936]
[2]
Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res 2019; 11(7): 3919-31.
[PMID: 31396309]
[3]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[4]
Aleebrahim-Dehkordi E, Reyhanian A, Hasanpour-Dehkordi A. Clinical manifestation and the risk of exposure to SARS-CoV-2 (COVID-19). Int J Prev Med 2020; 11(1): 86.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_145_20] [PMID: 33042483]
[5]
Rolta R, Salaria D, Kumar V, et al. Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: In silico approach. Curr Pharmacol Rep 2021; 15: 1-15.
[http://dx.doi.org/10.1007/s40495-021-00259-4] [PMID: 34306988]
[6]
Waheed AA, Freed EO. Lipids and membrane microdomains in HIV-1 replication. Virus Res 2009; 143: 162-76.
[http://dx.doi.org/10.1016/j.virusres.2009.04.007]
[7]
Craik DJ, Du J. Cyclotides as drug design scaffolds. Curr Opin Chem Biol 2017; 38: 8-16.
[http://dx.doi.org/10.1016/j.cbpa.2017.01.018] [PMID: 28249194]
[8]
Ngai PH, Ng TB. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol 2005; 83(2): 212-20.
[http://dx.doi.org/10.1139/o05-037] [PMID: 15864329]
[9]
Jack HW, Tzi BN. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 2005; 26: 1120-6.
[http://dx.doi.org/10.1016/j.peptides.2005.01.003]
[10]
Filho CI, Cortez DAG, Ueda-Nakamura T, et al. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 2008; 15: 202-8.
[http://dx.doi.org/10.1016/j.phymed.2007.07.059]
[11]
Shi AM, Guo R, Wang Q, Zhou JR. Screening and Molecular Modeling Evaluation of Food Peptides to Inhibit Key Targets of COVID-19 Virus. Biomolecules 2021; 11(2): 330.
[http://dx.doi.org/10.3390/biom11020330] [PMID: 33671652]
[12]
Salas CE, Badillo-Corona JA,. Ramírez-Sotelo G, Oliver-Salvador C. Biologically active and antimicrobial peptides from plants. BioMed Res Int 2015; 2015: 102129.
[http://dx.doi.org/10.1155/2015/102129] [PMID: 25815307]
[13]
Huang F, Li Y, Leung EL-H, et al. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol Res 2020; 158: 104929.
[http://dx.doi.org/10.1016/j.phrs.2020.104929]
[14]
Da Silva Antonio A, Wiedemann LMS, Veiga-Junior VF. Natural products’ role against COVID-19. RSC Advances 2020; 10(39): 23379-93.
[http://dx.doi.org/10.1039/D0RA03774E]
[15]
Borenstein R, Hanson BA, Markosyan RM, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep 2020; 10(1): 4746.
[http://dx.doi.org/10.1038/s41598-020-61700-0] [PMID: 32179788]
[16]
Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses 2020; 144: 109957.
[http://dx.doi.org/10.1016/j.mehy.2020.109957] [PMID: 32531538]
[17]
Sala A, Ardizzoni A, Ciociola T, et al. Antiviral activity of synthetic peptides derived from physiological proteins. Intervirology 2018; 61(4): 166-73.
[http://dx.doi.org/10.1159/000494354] [PMID: 30654366]
[18]
Agarwal G, Gabrani R. Antiviral eptides: identification and validation. Int J Pept Res Ther 2020; 18: 1-20.
[http://dx.doi.org/10.1007/s10989-020-10072-0] [PMID: 32427225]
[19]
Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health 2018; 11(1): 9-17.
[http://dx.doi.org/10.1016/j.jiph.2017.08.009] [PMID: 28864360]
[20]
Ireland DC, Wang CKL, Wilson JA, Gustafson KR, Craik DJ. Cyclotides as natural anti-HIV agents. Biopolymers 2008; 90(1): 51-60.
[http://dx.doi.org/10.1002/bip.20886] [PMID: 18008336]
[21]
Daly NL, Clark RJ, Plan MR, Craik DJ. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem J 2006; 393(Pt 3): 619-26.
[http://dx.doi.org/10.1042/BJ20051371] [PMID: 16207177]
[22]
Serna-Arbeláez MS,. Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural products with inhibitory activity against human immunodeficiency virus type 1. Adv Virol 2021; 2021: 5552088.
[http://dx.doi.org/10.1155/2021/5552088] [PMID: 34194504]
[23]
Barbeta BL, Marshall AT, Gillon AD, Craik DJ, Anderson MA. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci USA 2008; 105(4): 1221-5.
[http://dx.doi.org/10.1073/pnas.0710338104] [PMID: 18202177]
[24]
Wang CKL, Colgrave ML, Gustafson KR, Ireland DC, Goransson U, Craik DJ. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J Nat Prod 2008; 71(1): 47-52.
[http://dx.doi.org/10.1021/np070393g] [PMID: 18081258]
[25]
Swanson MD, Winter HC, Goldstein IJ, Markovitz DM. A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 2010; 285(12): 8646-55.
[http://dx.doi.org/10.1074/jbc.M109.034926] [PMID: 20080975]
[26]
Ding J, Bao J, Zhu D, Zhang Y, Wang DC. Crystal structures of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure. J Struct Biol 2010; 171(3): 309-17.
[http://dx.doi.org/10.1016/j.jsb.2010.05.009] [PMID: 20546901]
[27]
Xu HL, Li CY, He XM, et al. Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1). J Mol Model 2012; 18(1): 27-37.
[http://dx.doi.org/10.1007/s00894-011-1022-7] [PMID: 21445708]
[28]
Wong JH, Ng TB. Limenin, a defensin-like peptide with multiple exploitable activities from shelf beans. J Pept Sci 2006; 12(5): 341-6.
[http://dx.doi.org/10.1002/psc.732] [PMID: 16285021]
[29]
Petrera E, Coto CE. Effect of meliacine, a plant derived antiviral, on tumor necrosis factor alpha. Fitoterapia 2003; 74(1-2): 77-83.
[http://dx.doi.org/10.1016/S0367-326X(02)00294-0] [PMID: 12628398]
[30]
Liu MZ, Yang Y, Zhang SX, et al. A cyclotide against influenza A H1N1 virus from Viola yedoensis Yao Xue Xue Bao 2014; 49(6): 905-12.
[PMID: 25212039]
[31]
Henriques ST, Huang YH, Rosengren KJ, et al. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 2011; 286(27): 24231-41.
[http://dx.doi.org/10.1074/jbc.M111.253393] [PMID: 21576247]
[32]
Daly NL, Koltay A, Gustafson KR, Boyd MR, Casas-Finet JR, Craik DJ. Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. J Mol Biol 1999; 285(1): 333-45.
[http://dx.doi.org/10.1006/jmbi.1998.2276] [PMID: 9878410]
[33]
Luo X, Wu W, Feng L, Treves H, Ren M. Short peptides make a big difference: the role of botany-derived amps in disease control and protection of human health. Int J Mol Sci 2021; 22(21): 11363.
[http://dx.doi.org/10.3390/ijms222111363] [PMID: 34768793]
[34]
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceuticals 2021; 14(8): 774.
[http://dx.doi.org/10.3390/ph14080774] [PMID: 34451871]
[35]
Mori T, O’Keefe BR, Sowder RC II, et al. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 2005; 280(10): 9345-53.
[http://dx.doi.org/10.1074/jbc.M411122200] [PMID: 15613479]
[36]
Araújo MG, Magalhães GM, Garcia LC, Vieira ÉC, Carvalho-Leite MLR, Guedes ACM. Update on human papillomavirus - Part II: complementary diagnosis, treatment and prophylaxis. An Bras Dermatol 2021; 96(2): 125-38.
[http://dx.doi.org/10.1016/j.abd.2020.11.005] [PMID: 33637397]
[37]
Derby N, Lal M, Aravantinou M, et al. Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and HPV infections in vivo. Nat Commun 2018; 9(1): 3881.
[http://dx.doi.org/10.1038/s41467-018-06349-0] [PMID: 30250170]
[38]
Gustafson KR, Sowder RC II, Henderson LE, et al. Circulins A and B. Novel Human Immunodeficiency Virus (HIV)-inhibitory macrocyclic peptides from the tropical tree chassalia parvifolia. J Am Chem Soc 1994; 116(20): 9337-8.
[http://dx.doi.org/10.1021/ja00099a064]
[39]
Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K. High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J Biol Chem 2011; 286(22): 19446-58.
[http://dx.doi.org/10.1074/jbc.M110.216655] [PMID: 21460211]
[40]
Gordts SC, Renders M, Férir G, et al. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J Antimicrob Chemother 2015; 70(6): 1674-85.
[http://dx.doi.org/10.1093/jac/dkv034] [PMID: 25700718]
[41]
Witvrouw M, Fikkert V, Hantson A, et al. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J Virol 2005; 79(12): 7777-84.
[http://dx.doi.org/10.1128/JVI.79.12.7777-7784.2005] [PMID: 15919930]
[42]
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry 2014; 79(13): 1635-52.
[http://dx.doi.org/10.1134/S0006297914130124] [PMID: 25749169]
[43]
Zuend FC, Nomellini JF, Smit J, Horwitz MS. Generation of a dual-target, safe, inexpensive microbicide that protects against HIV-1 and HSV-2 disease. Sci Rep 2018; 8(1): 2786.
[http://dx.doi.org/10.1038/s41598-018-21134-1]
[44]
Panya A, Sawasdee N, Songprakhon P, et al. A synthetic bioactive peptide derived from the asian medicinal plant acacia catechu binds to dengue virus and inhibits cell entry. Viruses 2020; 12(11): 1267.
[http://dx.doi.org/10.3390/v12111267] [PMID: 33172110]
[45]
Panya A, Yongpitakwattana P, Budchart P, et al. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia Catechu. Chem Biol Drug Des 2019; 93(2): 100-9.
[http://dx.doi.org/10.1111/cbdd.13400] [PMID: 30225997]
[46]
Monteiro JMC, Oliveira MD, Dias RS, et al. The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 2018; 514(15): 79-87.
[http://dx.doi.org/10.1016/j.virol.2017.11.009] [PMID: 29153860]
[47]
Gao Y, Cui T, Lam Y. Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease. Bioorg Med Chem 2010; 18(3): 1331-6.
[http://dx.doi.org/10.1016/j.bmc.2009.12.026] [PMID: 20042339]
[48]
Nguyen PQT, Ooi JSG, Nguyen NTK, et al. Antiviral Cystine Knot α-Amylase Inhibitors from Alstonia scholaris. J Biol Chem 2015; 290(52): 31138-50.
[http://dx.doi.org/10.1074/jbc.M115.654855] [PMID: 26546678]
[49]
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296: 100438.
[http://dx.doi.org/10.1016/j.jbc.2021.100438] [PMID: 33610552]
[50]
Ooi LSM, Ho WS, Ngai KLK, et al. Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. J Biosci 2010; 35(1): 95-103.
[http://dx.doi.org/10.1007/s12038-010-0012-8] [PMID: 20413914]
[51]
Maximiano MR, Franco OL. Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides 2021; 140: 170531.
[http://dx.doi.org/10.1016/j.peptides.2021.170531] [PMID: 33746031]
[52]
Covés-Datson EM, Dyall J, DeWald LE, et al. Inhibition of Ebola Virus by a Molecularly Engineered Banana Lectin. PLoS Negl Trop Dis 2019; 13(7): e0007595.
[http://dx.doi.org/10.1371/journal.pntd.0007595] [PMID: 31356611]
[53]
Lin P, Ng TB. Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds. J Agric Food Chem 2008; 56(22): 10481-6.
[http://dx.doi.org/10.1021/jf8016332] [PMID: 18942841]
[54]
Adebo OA. African sorghum-based fermented foods: past, current and future prospects. Nutrients 2020; 12(4): 1111.
[http://dx.doi.org/10.3390/nu12041111] [PMID: 32316319]
[55]
Ye XY, Ng TB. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci 2002; 70(10): 1129-38.
[http://dx.doi.org/10.1016/S0024-3205(01)01473-4] [PMID: 11848297]
[56]
Wong JH, Ng TB. Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides 2005; 26(11): 2086-92.
[http://dx.doi.org/10.1016/j.peptides.2005.03.004] [PMID: 16269344]
[57]
Wang HX, Ng TB. An antifungal peptide from baby lima bean. Appl Microbiol Biotechnol 2006; 73(3): 576-81.
[http://dx.doi.org/10.1007/s00253-006-0504-5] [PMID: 16850300]
[58]
Wang HX, Ng TB. An antifungal peptide from the coconut. Peptides 2005; 26(12): 2392-6.
[http://dx.doi.org/10.1016/j.peptides.2005.05.009] [PMID: 16308082]
[59]
Wong JH, Ng TB. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int J Biochem Cell Biol 2005; 37(8): 1626-32.
[http://dx.doi.org/10.1016/j.biocel.2005.02.022] [PMID: 15896669]
[60]
Meuleman P, Albecka A, Belouzard S, et al. Griffithsin has antiviral activity against hepatitis C virus. Antimicrob Agents Chemother 2011; 55(11): 5159-67.
[http://dx.doi.org/10.1128/AAC.00633-11] [PMID: 21896910]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy