Abstract
The cell cycle has the capacity to safeguard the cell’s DNA from damage. Thus, cell cycle arrest can allow tumor cells to investigate their own DNA repair processes. Cancer cells become extremely reliant on G1-phase cyclin-dependent kinases due to mutated oncogenes and deactivated tumor suppressors, producing replication stress and DNA damage during the S phase and destroying checkpoints that facilitate progression through the S/G2/M phase. DNA damage checkpoints activate DNA repair pathways to prevent cell proliferation, which occurs when the genome is damaged. However, research on how cells recommence division after a DNA lesion-induced arrest is insufficient which is merely the result of cancer cells’ susceptibility to cell cycle arrest. For example, defects in the G1 arrest checkpoint may cause a cancer cell to proliferate more aggressively, and attempts to fix these complications may cause the cell to grow more slowly and eventually die. Defects in the G2-M arrest checkpoint may enable a damaged cell to enter mitosis and suffer apoptosis, and attempts to boost the effectiveness of chemotherapy may increase its cytotoxicity. Alternatively, attempts to promote G2-M arrest have also been linked to increased apoptosis in the laboratory. Furthermore, variables, such as hyperthermia, contact inhibition, nucleotide shortage, mitotic spindle damage, and resting phase effects, and DNA replication inhibitors add together to halt the cell cycle. In this review, we look at how nucleotide excision repair, MMR, and other variables, such as DNA replication inhibitors, hyperthermia, and contact inhibition, contribute to the outlined processes and functional capacities that cause cell cycle arrest.
Keywords: NER, MMR, CDKs, DNA replication inhibitors, hyperthermia, contact inhibition.
Graphical Abstract
[http://dx.doi.org/10.1242/jcs.02459] [PMID: 15944395]
[http://dx.doi.org/10.1093/nar/gkv1136] [PMID: 26519467];
(b) Kunkel, T.A. Celebrating DNA’s repair crew. Cell, 2015, 163(6), 1301-1303.
[http://dx.doi.org/10.1016/j.cell.2015.11.028] [PMID: 26638062]
[http://dx.doi.org/10.1038/nature05327] [PMID: 17136094]
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[http://dx.doi.org/10.1177/154411130201300603] [PMID: 12499239]
[http://dx.doi.org/10.1038/ng1296-482] [PMID: 8944033];
(b) Kastan, M.B.; Zhan, Q.; el-Deiry, W.S.; Carrier, F.; Jacks, T.; Walsh, W.V.; Plunkett, B.S.; Vogelstein, B.; Fornace, A.J. Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 1992, 71(4), 587-597.
[http://dx.doi.org/10.1016/0092-8674(92)90593-2] [PMID: 1423616]
[http://dx.doi.org/10.1146/annurev-med-081313-121208] [PMID: 25423595];
(b) Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411(6835), 366-374.
[http://dx.doi.org/10.1038/35077232] [PMID: 11357144];
(c) O’Connor, M.J. Targeting the DNA damage response in cancer. Mol. Cell, 2015, 60(4), 547-560.
[http://dx.doi.org/10.1016/j.molcel.2015.10.040] [PMID: 26590714]
[http://dx.doi.org/10.1101/cshperspect.a012740] [PMID: 24097900];
(b) Malkova, A.; Haber, J.E. Mutations arising during repair of chromosome breaks. Annu. Rev. Genet., 2012, 46, 455-473.
[http://dx.doi.org/10.1146/annurev-genet-110711-155547] [PMID: 23146099];
(c) Reardon, J.T.; Sancar, A. Nucleotide excision repair. Prog. Nucleic Acid Res. Mol. Biol., 2005, 79, 183-235.
[http://dx.doi.org/10.1016/S0079-6603(04)79004-2] [PMID: 16096029];
(d) Reyes, G.X.; Schmidt, T.T.; Kolodner, R.D.; Hombauer, H. New insights into the mechanism of DNA mismatch repair. Chromosoma, 2015, 124(4), 443-462.
[http://dx.doi.org/10.1007/s00412-015-0514-0] [PMID: 25862369];
(e) Sale, J.E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a012708.
[http://dx.doi.org/10.1101/cshperspect.a012708] [PMID: 23457261]
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[http://dx.doi.org/10.15252/embj.2021108599] [PMID: 35037284]
[http://dx.doi.org/10.1038/nature13194] [PMID: 24695225];
(b) Gad, H.; Koolmeister, T.; Jemth, A.S.; Eshtad, S.; Jacques, S.A.; Ström, C.E.; Svensson, L.M.; Schultz, N.; Lundbäck, T.; Einarsdottir, B.O.; Saleh, A.; Göktürk, C.; Baranczewski, P.; Svensson, R.; Berntsson, R.P.; Gustafsson, R.; Strömberg, K.; Sanjiv, K.; Jacques-Cordonnier, M.C.; Desroses, M.; Gustavsson, A.L.; Olofsson, R.; Johansson, F.; Homan, E.J.; Loseva, O.; Bräutigam, L.; Johansson, L.; Höglund, A.; Hagenkort, A.; Pham, T.; Altun, M.; Gaugaz, F.Z.; Vikingsson, S.; Evers, B.; Henriksson, M.; Vallin, K.S.; Wallner, O.A.; Hammarström, L.G.; Wiita, E.; Almlöf, I.; Kalderén, C.; Axelsson, H.; Djureinovic, T.; Puigvert, J.C.; Häggblad, M.; Jeppsson, F.; Martens, U.; Lundin, C.; Lundgren, B.; Granelli, I.; Jensen, A.J.; Artursson, P.; Nilsson, J.A.; Stenmark, P.; Scobie, M.; Berglund, U.W.; Helleday, T. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508(7495), 215-221.
[http://dx.doi.org/10.1038/nature13181] [PMID: 24695224]
[http://dx.doi.org/10.1046/j.1471-6712.2002.00069.x] [PMID: 12000664];
Gisolfi, C.V.; Mora, M.T.; Mora, F.; Teruel, F.M.; Gisolfi, L. The Hot Brain: Survival, Temperature, and the Human Body; MIT Press, 2000.
[http://dx.doi.org/10.1152/ajpregu.00109.2011] [PMID: 21900642];
(b) Byrne, C.; Lim, C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Br. J. Sports Med., 2007, 41(3), 126-133.
[http://dx.doi.org/10.1136/bjsm.2006.026344] [PMID: 17178778]
[PMID: 18461221]
[http://dx.doi.org/10.1007/s10875-009-9332-6] [PMID: 19802690]
[http://dx.doi.org/10.1017/CBO9780511852091]
[http://dx.doi.org/10.1515/9783110495850]
[http://dx.doi.org/10.1016/S0141-0229(03)00160-1]
[http://dx.doi.org/10.1016/0197-2456(95)00078-X] [PMID: 8889346];
(b) Luchetti, F.; Canonico, B.; Della Felice, M.; Burattini, S.; Battistelli, M.; Papa, S.; Falcieri, E. Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol. Histopathol., 2003, 18(4), 1041-1052.
[http://dx.doi.org/10.14670/hh-18.1041] [PMID: 12973673];
(c) Lepock, J.R. Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int. J. Hyperthermia, 2004, 20(2), 115-130.
[http://dx.doi.org/10.1080/02656730310001637334] [PMID: 15195506];
(d) Vertrees, R.A.; Das, G.C.; Coscio, A.M.; Xie, J.; Zwischenberger, J.B.; Boor, P.J. A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol. Carcinog., 2005, 44(2), 111-121.
[http://dx.doi.org/10.1002/mc.20124] [PMID: 16114053];
(e) Roti Roti, J.L. Cellular responses to hyperthermia (40-46 degrees C): Cell killing and molecular events. Int. J. Hyperthermia, 2008, 24(1), 3-15.
[http://dx.doi.org/10.1080/02656730701769841] [PMID: 18214765]
[http://dx.doi.org/10.2165/00007256-200232140-00001] [PMID: 12427049]
[http://dx.doi.org/10.1038/2131102a0] [PMID: 6029791]
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9];
(b) McClatchey, A.I.; Yap, A.S. Contact inhibition (of proliferation) redux. Curr. Opin. Cell Biol., 2012, 24(5), 685-694.
[http://dx.doi.org/10.1016/j.ceb.2012.06.009] [PMID: 22835462]
[http://dx.doi.org/10.1016/j.cell.2017.01.002] [PMID: 28187286]
[http://dx.doi.org/10.1016/j.trecan.2020.10.006] [PMID: 33203608];
(b) Lin, L.; Cheng, X.; Yin, D. Aberrant DNA methylation in esophageal squamous cell carcinoma: Biological and clinical implications. Front. Oncol., 2020, 10, 549850.
[http://dx.doi.org/10.3389/fonc.2020.549850] [PMID: 33194605];
(c) Patel, S.M.; Dash, R.C.; Hadden, M.K. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Expert Opin. Investig. Drugs, 2021, 30(1), 13-24.
[http://dx.doi.org/10.1080/13543784.2021.1850692] [PMID: 33179552]
[http://dx.doi.org/10.1093/jxb/eraa551] [PMID: 33206978];
(b) Klintman, J.; Appleby, N.; Stamatopoulos, B.; Ridout, K.; Eyre, T.A.; Robbe, P.; Pascua, L.L.; Knight, S.J.L.; Dreau, H.; Cabes, M.; Popitsch, N.; Ehinger, M.; Martín-Subero, J.I.; Campo, E.; Månsson, R.; Rossi, D.; Taylor, J.C.; Vavoulis, D.V.; Schuh, A. Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood, 2021, 137(20), 2800-2816.
[http://dx.doi.org/10.1182/blood.2020005650] [PMID: 33206936]
[http://dx.doi.org/10.3390/ijms21228635] [PMID: 33207781]
[http://dx.doi.org/10.3390/biom10111472] [PMID: 33113933]
[http://dx.doi.org/10.1016/j.mrgentox.2020.503277] [PMID: 33198926];
(b) Pariset, E.; Malkani, S.; Cekanaviciute, E.; Costes, S. V. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int. J. Radiat. Biol., 2021, 97(sup1), S132-S150.
[http://dx.doi.org/10.1080/09553002.2020.1820598];
(c) Wu, R.; Högberg, J.; Adner, M.; Ramos-Ramírez, P.; Stenius, U.; Zheng, H. Crystalline silica particles cause rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells. Part. Fibre Toxicol., 2020, 17(1), 39.
[http://dx.doi.org/10.1186/s12989-020-00370-2] [PMID: 32778128];
(d) Dussert, F.; Arthaud, P.A.; Arnal, M.E.; Dalzon, B.; Torres, A.; Douki, T.; Herlin, N.; Rabilloud, T.; Carriere, M. Toxicity to RAW264.7 macrophages of silica nanoparticles and the E551 food additive, in combination with genotoxic agents. Nanomaterials (Basel), 2020, 10(7), E1418.
[http://dx.doi.org/10.3390/nano10071418] [PMID: 32708108]
[http://dx.doi.org/10.1159/000505937] [PMID: 33173459]
[http://dx.doi.org/10.1038/s41388-020-01556-w] [PMID: 33199825];
(b) Tirman, S.; Cybulla, E.; Quinet, A.; Meroni, A.; Vindigni, A. PRIMPOL ready, set, reprime! Crit. Rev. Biochem. Mol. Biol., 2021, 56(1), 17-30.
[http://dx.doi.org/10.1080/10409238.2020.1841089] [PMID: 33179522]
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[http://dx.doi.org/10.1093/abbs/gmz076] [PMID: 31294447]
[http://dx.doi.org/10.1016/j.mrrev.2003.11.001] [PMID: 15341901]
[http://dx.doi.org/10.1016/j.mrfmmm.2003.06.002] [PMID: 14637258]
[http://dx.doi.org/10.3109/10715762.2011.653969]
[http://dx.doi.org/10.1016/j.dnarep.2018.08.024] [PMID: 30177436]
[http://dx.doi.org/10.1021/acs.accounts.5b00056] [PMID: 26032357]
[http://dx.doi.org/10.1038/nrm.2017.56] [PMID: 28655905];
(b) Nakano, T.; Xu, X.; Salem, A.M.H.; Shoulkamy, M.I.; Ide, H. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance. Free Radic. Biol. Med., 2017, 107, 136-145.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.041] [PMID: 27894771]
[http://dx.doi.org/10.3390/ijms20153749] [PMID: 31370253]
[http://dx.doi.org/10.1016/j.mrfmmm.2010.11.003] [PMID: 21130102]
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.010] [PMID: 21185841]
[http://dx.doi.org/10.3390/genes11010099] [PMID: 31952359]
[http://dx.doi.org/10.1016/j.dnarep.2020.102912] [PMID: 33087278];
(b) Sassa, A.; Odagiri, M. Understanding the sequence and structural context effects in oxidative DNA damage repair. DNA Repair (Amst.), 2020, 93, 102906.
[http://dx.doi.org/10.1016/j.dnarep.2020.102906] [PMID: 33087272];
(c) Szewczuk, M.; Boguszewska, K.; Kaźmierczak-Barańska, J.; Karwowski, B.T. The role of AMPK in metabolism and its influence on DNA damage repair. Mol. Biol. Rep., 2020, 47(11), 9075-9086.
[http://dx.doi.org/10.1007/s11033-020-05900-x] [PMID: 33070285]
[http://dx.doi.org/10.1016/j.semcdb.2020.10.009] [PMID: 33229217]
[http://dx.doi.org/10.1016/j.semcancer.2020.10.016] [PMID: 33161141]
[http://dx.doi.org/10.1002/onco.13601] [PMID: 33215787]
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2892] [PMID: 33199489]
[http://dx.doi.org/10.3389/fonc.2020.581217] [PMID: 33224881];
(b) Yoshioka, K.I.; Matsuno, Y. Genomic destabilization and its associated mutagenesis increase with senescence-associated phenotype expression. Cancer Sci., 2021, 112(2), 515-522.
[http://dx.doi.org/10.1111/cas.14746] [PMID: 33222327];
(c) Rzeszutek, I.; Betlej, G. The role of small noncoding RNA in DNA double-strand break repair. Int. J. Mol. Sci., 2020, 21(21), E8039.
[http://dx.doi.org/10.3390/ijms21218039] [PMID: 33126669]
[http://dx.doi.org/10.1186/s12915-020-00771-x];
(b) Marzio, A.; Puccini, J.; Kwon, Y.; Maverakis, N. K.; Arbini, A.; Sung, P.; Bar-Sagi, D.; Pagano, M.J.M. The F-box domain-dependent activity of EMI1 regulates PARPi sensitivity in triple-negative breast cancers. Mol. Cell, 2019, 73(2), 224-237.
[http://dx.doi.org/10.1016/j.molcel.2018.11.003]
[http://dx.doi.org/10.1016/j.dnarep.2019.102768] [PMID: 32018112]
[http://dx.doi.org/10.1016/j.dnarep.2015.09.003] [PMID: 26388429];
(b) Brevik, A.; Karlsen, A.; Azqueta, A.; Tirado, A.E.; Blomhoff, R.; Collins, A. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors. Cell Biochem. Funct., 2011, 29(1), 36-42.
[http://dx.doi.org/10.1002/cbf.1715] [PMID: 21264888]
[http://dx.doi.org/10.1038/sj.cr.7290375] [PMID: 15353127]
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05278.x] [PMID: 1318195]
[PMID: 11731442]
[http://dx.doi.org/10.1074/jbc.M704645200] [PMID: 17928296]
[http://dx.doi.org/10.1021/bi026377u] [PMID: 12641457]
[http://dx.doi.org/10.1073/pnas.0803001105] [PMID: 18723675]
[http://dx.doi.org/10.4161/cc.8.3.7496] [PMID: 19176996]
[http://dx.doi.org/10.1074/jbc.C400242200] [PMID: 15197179];
(b) Araya, R.; Hirai, I.; Meyerkord, C.L.; Wang, H.G. Loss of RPA1 induces Chk2 phosphorylation through a caffeine-sensitive pathway. FEBS Lett., 2005, 579(1), 157-161.
[http://dx.doi.org/10.1016/j.febslet.2004.11.066] [PMID: 15620706]
[http://dx.doi.org/10.1038/sj.cdd.4402115] [PMID: 17347667]
[http://dx.doi.org/10.1093/carcin/21.3.453] [PMID: 10688865];
(b) McKay, B.C.; Becerril, C.; Spronck, J.C.; Ljungman, M. Ultraviolet light-induced apoptosis is associated with S-phase in primary human fibroblasts. DNA Repair (Amst.), 2002, 1(10), 811-820.
[http://dx.doi.org/10.1016/S1568-7864(02)00109-X] [PMID: 12531028];
(c) Dunkern, T.R.; Kaina, B. Cell proliferation and DNA breaks are involved in ultraviolet light-induced apoptosis in nucleotide excision repair-deficient Chinese hamster cells. Mol. Biol. Cell, 2002, 13(1), 348-361.
[http://dx.doi.org/10.1091/mbc.01-05-0225] [PMID: 11809844];
(d) Stout, G.J.; Oosten, Mv.; Acherrat, F.Z.; Wit, J.; Vermeij, W.P.; Mullenders, L.H.; Gruijl, F.R.; Backendorf, C. Selective DNA damage responses in murine Xpa-/-, Xpc-/- and Csb-/- keratinocyte cultures. DNA Repair (Amst.), 2005, 4(11), 1337-1344.
[http://dx.doi.org/10.1016/j.dnarep.2005.07.012] [PMID: 16182614]
[http://dx.doi.org/10.1016/j.dnarep.2009.10.007] [PMID: 19910266]
[http://dx.doi.org/10.1002/stem.1177] [PMID: 22821732]
[http://dx.doi.org/10.1016/j.yexcr.2014.07.004] [PMID: 25017099]
[http://dx.doi.org/10.1073/pnas.70.12.3541] [PMID: 4148702]
[http://dx.doi.org/10.1016/j.dnarep.2020.102923] [PMID: 33087264];
(b) Huang, Y.; Li, G.M. DNA mismatch repair in the chromatin context: Mechanisms and therapeutic potential. DNA Repair (Amst.), 2020, 93, 102918.
[http://dx.doi.org/10.1016/j.dnarep.2020.102918] [PMID: 33087261]
[http://dx.doi.org/10.1146/annurev.bi.65.070196.000533] [PMID: 8811176];
(b) Lynch, H.T.; de la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet., 1999, 36(11), 801-818.
[PMID: 10544223]
(b) Stojic, L.; Brun, R.; Jiricny, J. Mismatch repair and DNA damage signalling. DNA Repair (Amst.), 2004, 3(8-9), 1091-1101.
[http://dx.doi.org/10.1016/j.dnarep.2004.06.006] [PMID: 15279797]
[http://dx.doi.org/10.1038/71698] [PMID: 10615114]
[http://dx.doi.org/10.1534/genetics.118.300923] [PMID: 29654124];
(b) Chakraborty, U.; Alani, E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res., 2016, 16(6), fow071.
[http://dx.doi.org/10.1093/femsyr/fow071] [PMID: 27573382]
[http://dx.doi.org/10.12659/MSM.918751] [PMID: 32167078]
[http://dx.doi.org/10.1073/pnas.1701753114] [PMID: 28265089]
[http://dx.doi.org/10.1016/j.semcancer.2019.02.005] [PMID: 30922960]
[http://dx.doi.org/10.3892/or.18.6.1403] [PMID: 17982623]
[http://dx.doi.org/10.1038/ncb1212] [PMID: 15665856];
(b) Leung-Pineda, V.; Ryan, C.E.; Piwnica-Worms, H. Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol. Cell. Biol., 2006, 26(20), 7529-7538.
[http://dx.doi.org/10.1128/MCB.00447-06] [PMID: 17015476]
[http://dx.doi.org/10.1038/ng1052] [PMID: 12447371]
[http://dx.doi.org/10.1074/jbc.M701451200] [PMID: 17804421];
(b) Gong, J.G.; Costanzo, A.; Yang, H-Q.; Melino, G.; Kaelin, W.G., Jr; Levrero, M.; Wang, J.Y. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature, 1999, 399(6738), 806-809.
[http://dx.doi.org/10.1038/21690] [PMID: 10391249];
(c) Yoshioka, K.; Yoshioka, Y.; Hsieh, P. ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol. Cell, 2006, 22(4), 501-510.
[http://dx.doi.org/10.1016/j.molcel.2006.04.023] [PMID: 16713580]
[http://dx.doi.org/10.1093/nar/gkaa965] [PMID: 33166399]
[http://dx.doi.org/10.1016/j.chemosphere.2019.125614] [PMID: 31883478];
(b) Xiong, J.; Zhang, J.; Li, H. Identification of G2 and S phase-expressed-1 as a potential biomarker in patients with prostate cancer. Cancer Manag. Res., 2020, 12, 9259-9269.
[http://dx.doi.org/10.2147/CMAR.S272795] [PMID: 33061616]
[http://dx.doi.org/10.1007/s00401-020-02243-6] [PMID: 33216206]
[http://dx.doi.org/10.1016/j.cell.2005.04.032] [PMID: 16009130]
[http://dx.doi.org/10.1016/j.dnarep.2004.03.006] [PMID: 15279786]
[http://dx.doi.org/10.1016/S1470-2045(03)01321-4] [PMID: 14700606]
[http://dx.doi.org/10.1016/j.ceb.2007.02.009] [PMID: 17303408];
(b) Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[http://dx.doi.org/10.1074/jbc.M005437200] [PMID: 10913154]
[http://dx.doi.org/10.1016/j.semcancer.2006.03.002] [PMID: 16697662]
[http://dx.doi.org/10.1007/s00018-003-3304-4] [PMID: 15095006];
(b) Ohki, R.; Nemoto, J.; Murasawa, H.; Oda, E.; Inazawa, J.; Tanaka, N.; Taniguchi, T. Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J. Biol. Chem., 2000, 275(30), 22627-22630.
[http://dx.doi.org/10.1074/jbc.C000235200] [PMID: 10930422];
(c) Sugimoto, M.; Gromley, A.; Sherr, C.J. Hzf, a p53-responsive gene, regulates maintenance of the G2 phase checkpoint induced by DNA damage. Mol. Cell. Biol., 2006, 26(2), 502-512.
[http://dx.doi.org/10.1128/MCB.26.2.502-512.2006] [PMID: 16382142];
(d) Zhu, J.; Chen, X. MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G(2)-. M. Mol. Cell. Biol., 2000, 20(15), 5602-5618.
[http://dx.doi.org/10.1128/MCB.20.15.5602-5618.2000] [PMID: 10891498]
[http://dx.doi.org/10.1038/373630a0] [PMID: 7854422];
(b) Li, X.; Nicklas, R.B. Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J. Cell Sci., 1997, 110(Pt 5), 537-545.
[http://dx.doi.org/10.1242/jcs.110.5.537] [PMID: 9092936]
[http://dx.doi.org/10.1016/S0959-437X(99)80010-0] [PMID: 10072359];
(b) Dawson, I.A.; Roth, S.; Artavanis-Tsakonas, S. The drosophila cell cycle gene fizzy is required for normal degradation of cyclins a and b during mitosis and has homology to the CDC20 gene of saccharomyces cerevisiae. J. Cell Biol., 1995, 129(3), 725-737.
[http://dx.doi.org/10.1083/jcb.129.3.725] [PMID: 7730407]
[http://dx.doi.org/10.1042/BCJ20200705] [PMID: 33346336]
[http://dx.doi.org/10.1002/bit.260380712] [PMID: 18600804]
[http://dx.doi.org/10.1023/A:1007919921991] [PMID: 22358520]
[http://dx.doi.org/10.1016/0165-1161(84)90020-7] [PMID: 6493255]
[http://dx.doi.org/10.1007/s12576-014-0328-5] [PMID: 25034108]
[http://dx.doi.org/10.3109/02656736.2016.1157216] [PMID: 27086587];
(b) Mantso, T.; Goussetis, G.; Franco, R.; Botaitis, S.; Pappa, A.; Panayiotidis, M. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin. Cancer Biol., 2016, 37-38, 96-105.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.004] [PMID: 27025900];
(c) Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer, 2014, 14(3), 199-208.
[http://dx.doi.org/10.1038/nrc3672] [PMID: 24561446]
[http://dx.doi.org/10.1038/s41598-021-89740-0] [PMID: 33986437];
(b) Marloes, I.J.; Crezee, J.; Oei, A.L.; Stalpers, L.J.A.; Westerveld, H. The role of hyperthermia in the treatment of locally advanced cervical cancer: A comprehensive review. Int. J. Gynecol. Cancer, 2022, 32(3), 288-296.
[http://dx.doi.org/10.1136/ijgc-2021-002473];
(c) Enam, S.F.; Kilic, C. Y.; Huang, J.; Kang, B.J.; Chen, R.; Tribble, C.S.; Betancur, M.I.; Ilich, E.; Blocker, S. J.; Owen, S.J.b. Cytostatic hypothermia and its impact on glioblastoma and survival. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.03.25.436870]
[http://dx.doi.org/10.4236/abc.2016.63011]
[http://dx.doi.org/10.1080/02656730500430538] [PMID: 16423754]
[http://dx.doi.org/10.1038/s41598-018-19628-z] [PMID: 29391477]
[http://dx.doi.org/10.1371/journal.pone.0055361] [PMID: 23383325]
[http://dx.doi.org/10.1242/jcs.163766] [PMID: 25609713];
(b) Matsuoka, S.; Huang, M.; Elledge, S.J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 1998, 282(5395), 1893-1897.
[http://dx.doi.org/10.1126/science.282.5395.1893] [PMID: 9836640]
[http://dx.doi.org/10.1080/09553007114550601] [PMID: 5314347]
[http://dx.doi.org/10.1016/S1040-8428(01)00179-2] [PMID: 12098606]
[PMID: 3180064];
(b) Deorukhakar, V.V.; Anjaria, K.B.; Rao, B.S. Modification of radiation-induced damage by hyperthermia--role of repair processes. Int. J. Hyperthermia, 1993, 9(6), 803-810.
[http://dx.doi.org/10.3109/02656739309034983] [PMID: 8106821]
[PMID: 7199378];
(b) Dewey, W.C. Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat. Res., 1989, 120(2), 191-204.
[http://dx.doi.org/10.2307/3577707] [PMID: 2694212]
[http://dx.doi.org/10.1016/0014-4827(65)90012-1] [PMID: 5831233];
(b) Higashikubo, R.; Holland, J.M.; Roti Roti, J.L. Comparative effects of caffeine on radiation- and heat-induced alterations in cell cycle progression. Radiat. Res., 1989, 119(2), 246-260.
[http://dx.doi.org/10.2307/3577617] [PMID: 2756116];
(c) Nishita, M.; Inoue, S.; Tsuda, M.; Tateda, C.; Miyashita, T. Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia. Exp. Cell Res., 1998, 244(1), 357-366.
[http://dx.doi.org/10.1006/excr.1998.4203] [PMID: 9770379]
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4328] [PMID: 17409407]
[http://dx.doi.org/10.1038/sj.onc.1205196] [PMID: 11850826]
[http://dx.doi.org/10.3892/or.2011.1564] [PMID: 22134635]
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1639] [PMID: 19244134]
[http://dx.doi.org/10.1007/s10495-011-0660-7]
[http://dx.doi.org/10.1038/s41598-020-58267-1] [PMID: 32001771]
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741393.x] [PMID: 10737594];
(b) Pavel, M.; Renna, M.; Park, S.J.; Menzies, F.M.; Ricketts, T.; Füllgrabe, J.; Ashkenazi, A.; Frake, R.A.; Lombarte, A.C.; Bento, C.F.; Franze, K.; Rubinsztein, D.C. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun., 2018, 9(1), 2961.
[http://dx.doi.org/10.1038/s41467-018-05388-x] [PMID: 30054475]
[PMID: 626968]
[http://dx.doi.org/10.1038/273345a0] [PMID: 661946];
(b) Fan, Y.; Meyer, T. Molecular control of cell density-mediated exit to quiescence. Cell Rep., 2021, 36(4), 109436.
[http://dx.doi.org/10.1016/j.celrep.2021.109436] [PMID: 34320337]
[http://dx.doi.org/10.1073/pnas.60.1.300] [PMID: 5241531]
[http://dx.doi.org/10.1038/281259a0] [PMID: 551275]
[http://dx.doi.org/10.1152/ajpcell.00020.2004] [PMID: 15070810];
(b) LeVea, C.M.; Reeder, J.E.; Mooney, R.A. EGF-dependent cell cycle progression is controlled by density-dependent regulation of Akt activation. Exp. Cell Res., 2004, 297(1), 272-284.
[http://dx.doi.org/10.1016/j.yexcr.2004.03.026] [PMID: 15194442]
[http://dx.doi.org/10.1083/jcb.200703010] [PMID: 17548515]
[http://dx.doi.org/10.1083/jcb.200602080] [PMID: 16893970]
[http://dx.doi.org/10.1073/pnas.0502575102] [PMID: 16049098]
[http://dx.doi.org/10.1083/jcb.200503165] [PMID: 16247032]
[http://dx.doi.org/10.1038/ncb1339] [PMID: 16341207];
(b) Yin, F.; Pan, D. Fat flies expanded the hippo pathway: A matter of size control. Sci. STKE, 2007, 2007(380), pe12.
[http://dx.doi.org/10.1126/stke.3802007pe12] [PMID: 17406009]
[http://dx.doi.org/10.1101/gad.8.1.9] [PMID: 8288131]
[http://dx.doi.org/10.1038/s41598-021-84877-4] [PMID: 33664437]
[http://dx.doi.org/10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-S] [PMID: 10699962]
[http://dx.doi.org/10.1038/sj.onc.1202270] [PMID: 9926944]