Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Complex Roles of DNA Repair Pathways, Inhibitors, Hyperthermia, and Contact Inhibition in Cell Cycle Halts

Author(s): Muhammad Bilal Ahmed, Abdullah A.A. Alghamdi, Salman Ul Islam, Haseeb Ahsan and Young Sup Lee*

Volume 23, Issue 5, 2023

Published on: 03 October, 2022

Page: [514 - 529] Pages: 16

DOI: 10.2174/1389557522666220826141837

Price: $65

Abstract

The cell cycle has the capacity to safeguard the cell’s DNA from damage. Thus, cell cycle arrest can allow tumor cells to investigate their own DNA repair processes. Cancer cells become extremely reliant on G1-phase cyclin-dependent kinases due to mutated oncogenes and deactivated tumor suppressors, producing replication stress and DNA damage during the S phase and destroying checkpoints that facilitate progression through the S/G2/M phase. DNA damage checkpoints activate DNA repair pathways to prevent cell proliferation, which occurs when the genome is damaged. However, research on how cells recommence division after a DNA lesion-induced arrest is insufficient which is merely the result of cancer cells’ susceptibility to cell cycle arrest. For example, defects in the G1 arrest checkpoint may cause a cancer cell to proliferate more aggressively, and attempts to fix these complications may cause the cell to grow more slowly and eventually die. Defects in the G2-M arrest checkpoint may enable a damaged cell to enter mitosis and suffer apoptosis, and attempts to boost the effectiveness of chemotherapy may increase its cytotoxicity. Alternatively, attempts to promote G2-M arrest have also been linked to increased apoptosis in the laboratory. Furthermore, variables, such as hyperthermia, contact inhibition, nucleotide shortage, mitotic spindle damage, and resting phase effects, and DNA replication inhibitors add together to halt the cell cycle. In this review, we look at how nucleotide excision repair, MMR, and other variables, such as DNA replication inhibitors, hyperthermia, and contact inhibition, contribute to the outlined processes and functional capacities that cause cell cycle arrest.

Keywords: NER, MMR, CDKs, DNA replication inhibitors, hyperthermia, contact inhibition.

Graphical Abstract

[1]
Johnson, P.F. Molecular stop signs: Regulation of cell-cycle arrest by C/EBP transcription factors. J. Cell Sci., 2005, 118(Pt 12), 2545-2555.
[http://dx.doi.org/10.1242/jcs.02459] [PMID: 15944395]
[2]
(a) Bauer, N.C.; Corbett, A.H.; Doetsch, P.W. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res., 2015, 43(21), 10083-10101.
[http://dx.doi.org/10.1093/nar/gkv1136] [PMID: 26519467];
(b) Kunkel, T.A. Celebrating DNA’s repair crew. Cell, 2015, 163(6), 1301-1303.
[http://dx.doi.org/10.1016/j.cell.2015.11.028] [PMID: 26638062]
[3]
Di Micco, R.; Fumagalli, M.; Cicalese, A.; Piccinin, S.; Gasparini, P.; Luise, C.; Schurra, C.; Garre’, M.; Nuciforo, P.G.; Bensimon, A.; Maestro, R.; Pelicci, P.G.; d’Adda di Fagagna, F. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 2006, 444(7119), 638-642.
[http://dx.doi.org/10.1038/nature05327] [PMID: 17136094]
[4]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078.
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[5]
Weinberg, W.C.; Denning, M.F. P21Waf1 control of epithelial cell cycle and cell fate. Crit. Rev. Oral Biol. Med., 2002, 13(6), 453-464.
[http://dx.doi.org/10.1177/154411130201300603] [PMID: 12499239]
[6]
(a) Rouault, J.P.; Falette, N.; Guéhenneux, F.; Guillot, C.; Rimokh, R.; Wang, Q.; Berthet, C.; Moyret-Lalle, C.; Savatier, P.; Pain, B.; Shaw, P.; Berger, R.; Samarut, J.; Magaud, J.P.; Ozturk, M.; Samarut, C.; Puisieux, A. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat. Genet., 1996, 14(4), 482-486.
[http://dx.doi.org/10.1038/ng1296-482] [PMID: 8944033];
(b) Kastan, M.B.; Zhan, Q.; el-Deiry, W.S.; Carrier, F.; Jacks, T.; Walsh, W.V.; Plunkett, B.S.; Vogelstein, B.; Fornace, A.J. Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 1992, 71(4), 587-597.
[http://dx.doi.org/10.1016/0092-8674(92)90593-2] [PMID: 1423616]
[7]
(a) Goldstein, M.; Kastan, M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med., 2015, 66, 129-143.
[http://dx.doi.org/10.1146/annurev-med-081313-121208] [PMID: 25423595];
(b) Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411(6835), 366-374.
[http://dx.doi.org/10.1038/35077232] [PMID: 11357144];
(c) O’Connor, M.J. Targeting the DNA damage response in cancer. Mol. Cell, 2015, 60(4), 547-560.
[http://dx.doi.org/10.1016/j.molcel.2015.10.040] [PMID: 26590714]
[8]
(a) Jasin, M.; Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol., 2013, 5(11), a012740.
[http://dx.doi.org/10.1101/cshperspect.a012740] [PMID: 24097900];
(b) Malkova, A.; Haber, J.E. Mutations arising during repair of chromosome breaks. Annu. Rev. Genet., 2012, 46, 455-473.
[http://dx.doi.org/10.1146/annurev-genet-110711-155547] [PMID: 23146099];
(c) Reardon, J.T.; Sancar, A. Nucleotide excision repair. Prog. Nucleic Acid Res. Mol. Biol., 2005, 79, 183-235.
[http://dx.doi.org/10.1016/S0079-6603(04)79004-2] [PMID: 16096029];
(d) Reyes, G.X.; Schmidt, T.T.; Kolodner, R.D.; Hombauer, H. New insights into the mechanism of DNA mismatch repair. Chromosoma, 2015, 124(4), 443-462.
[http://dx.doi.org/10.1007/s00412-015-0514-0] [PMID: 25862369];
(e) Sale, J.E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a012708.
[http://dx.doi.org/10.1101/cshperspect.a012708] [PMID: 23457261]
[9]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[10]
Crozier, L.; Foy, R.; Mouery, B.L.; Whitaker, R.H.; Corno, A.; Spanos, C.; Ly, T.; Gowen Cook, J.; Saurin, A.T. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J., 2022, 41(6), e108599.
[http://dx.doi.org/10.15252/embj.2021108599] [PMID: 35037284]
[11]
Pentimalli, F.; Giordano, A. J. D. m. Promises and drawbacks of targeting cell cycle kinases in cancer. Discov. Med., 2009, 843, 177-80.
[12]
(a) Huber, K.V.; Salah, E.; Radic, B.; Gridling, M.; Elkins, J.M.; Stukalov, A.; Jemth, A.S.; Göktürk, C.; Sanjiv, K.; Strömberg, K.; Pham, T.; Berglund, U.W.; Colinge, J.; Bennett, K.L.; Loizou, J.I.; Helleday, T.; Knapp, S.; Superti-Furga, G. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 2014, 508(7495), 222-227.
[http://dx.doi.org/10.1038/nature13194] [PMID: 24695225];
(b) Gad, H.; Koolmeister, T.; Jemth, A.S.; Eshtad, S.; Jacques, S.A.; Ström, C.E.; Svensson, L.M.; Schultz, N.; Lundbäck, T.; Einarsdottir, B.O.; Saleh, A.; Göktürk, C.; Baranczewski, P.; Svensson, R.; Berntsson, R.P.; Gustafsson, R.; Strömberg, K.; Sanjiv, K.; Jacques-Cordonnier, M.C.; Desroses, M.; Gustavsson, A.L.; Olofsson, R.; Johansson, F.; Homan, E.J.; Loseva, O.; Bräutigam, L.; Johansson, L.; Höglund, A.; Hagenkort, A.; Pham, T.; Altun, M.; Gaugaz, F.Z.; Vikingsson, S.; Evers, B.; Henriksson, M.; Vallin, K.S.; Wallner, O.A.; Hammarström, L.G.; Wiita, E.; Almlöf, I.; Kalderén, C.; Axelsson, H.; Djureinovic, T.; Puigvert, J.C.; Häggblad, M.; Jeppsson, F.; Martens, U.; Lundin, C.; Lundgren, B.; Granelli, I.; Jensen, A.J.; Artursson, P.; Nilsson, J.A.; Stenmark, P.; Scobie, M.; Berglund, U.W.; Helleday, T. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508(7495), 215-221.
[http://dx.doi.org/10.1038/nature13181] [PMID: 24695224]
[13]
(a) Sund-Levander, M.; Forsberg, C.; Wahren, L.K. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: A systematic literature review. Scand. J. Caring Sci., 2002, 16(2), 122-128.
[http://dx.doi.org/10.1046/j.1471-6712.2002.00069.x] [PMID: 12000664];
Gisolfi, C.V.; Mora, M.T.; Mora, F.; Teruel, F.M.; Gisolfi, L. The Hot Brain: Survival, Temperature, and the Human Body; MIT Press, 2000.
[14]
(a) Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 301(5), R1207-R1228.
[http://dx.doi.org/10.1152/ajpregu.00109.2011] [PMID: 21900642];
(b) Byrne, C.; Lim, C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Br. J. Sports Med., 2007, 41(3), 126-133.
[http://dx.doi.org/10.1136/bjsm.2006.026344] [PMID: 17178778]
[15]
Lim, C.L.; Byrne, C.; Lee, J.K. Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann. Acad. Med. Singap., 2008, 37(4), 347-353.
[PMID: 18461221]
[16]
Guilherme, L.; Kalil, J. Rheumatic fever and rheumatic heart disease: Cellular mechanisms leading autoimmune reactivity and disease. J. Clin. Immunol., 2010, 30(1), 17-23.
[http://dx.doi.org/10.1007/s10875-009-9332-6] [PMID: 19802690]
[17]
Mahadevan, S.V.; Garmel, G.M. An Introduction to Clinical Emergency Medicine; Cambridge University Press, 2012.
[http://dx.doi.org/10.1017/CBO9780511852091]
[18]
Holleman, A.F.; Wiberg, N. Grundlagen und Hauptgruppenelemente; Walter de Gruyter GmbH & Co KG, 2016.
[http://dx.doi.org/10.1515/9783110495850]
[19]
Ó’Fágáin, C. J. E. Enzyme stabilization—recent experimental progress. Enzyme Microb. Technol., 2003, 33(2-3), 137-149.
[http://dx.doi.org/10.1016/S0141-0229(03)00160-1]
[20]
(a) Engin, K. Biological rationale and clinical experience with hyperthermia. Control. Clin. Trials, 1996, 17(4), 316-342.
[http://dx.doi.org/10.1016/0197-2456(95)00078-X] [PMID: 8889346];
(b) Luchetti, F.; Canonico, B.; Della Felice, M.; Burattini, S.; Battistelli, M.; Papa, S.; Falcieri, E. Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol. Histopathol., 2003, 18(4), 1041-1052.
[http://dx.doi.org/10.14670/hh-18.1041] [PMID: 12973673];
(c) Lepock, J.R. Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int. J. Hyperthermia, 2004, 20(2), 115-130.
[http://dx.doi.org/10.1080/02656730310001637334] [PMID: 15195506];
(d) Vertrees, R.A.; Das, G.C.; Coscio, A.M.; Xie, J.; Zwischenberger, J.B.; Boor, P.J. A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol. Carcinog., 2005, 44(2), 111-121.
[http://dx.doi.org/10.1002/mc.20124] [PMID: 16114053];
(e) Roti Roti, J.L. Cellular responses to hyperthermia (40-46 degrees C): Cell killing and molecular events. Int. J. Hyperthermia, 2008, 24(1), 3-15.
[http://dx.doi.org/10.1080/02656730701769841] [PMID: 18214765]
[21]
Moran, D.S.; Mendal, L. Core temperature measurement: Methods and current insights. Sports Med., 2002, 32(14), 879-885.
[http://dx.doi.org/10.2165/00007256-200232140-00001] [PMID: 12427049]
[22]
Eagle, H.; Levine, E.M. Growth regulatory effects of cellular interaction. Nature, 1967, 213(5081), 1102-1106.
[http://dx.doi.org/10.1038/2131102a0] [PMID: 6029791]
[23]
(a) Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9];
(b) McClatchey, A.I.; Yap, A.S. Contact inhibition (of proliferation) redux. Curr. Opin. Cell Biol., 2012, 24(5), 685-694.
[http://dx.doi.org/10.1016/j.ceb.2012.06.009] [PMID: 22835462]
[24]
Tubbs, A.; Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell, 2017, 168(4), 644-656.
[http://dx.doi.org/10.1016/j.cell.2017.01.002] [PMID: 28187286]
[25]
(a) Owiti, N.A.; Nagel, Z.D.; Engelward, B.P. Fluorescence sheds light on DNA Damage, DNA repair, and mutations. Trends Cancer, 2021, 7(3), 240-248.
[http://dx.doi.org/10.1016/j.trecan.2020.10.006] [PMID: 33203608];
(b) Lin, L.; Cheng, X.; Yin, D. Aberrant DNA methylation in esophageal squamous cell carcinoma: Biological and clinical implications. Front. Oncol., 2020, 10, 549850.
[http://dx.doi.org/10.3389/fonc.2020.549850] [PMID: 33194605];
(c) Patel, S.M.; Dash, R.C.; Hadden, M.K. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Expert Opin. Investig. Drugs, 2021, 30(1), 13-24.
[http://dx.doi.org/10.1080/13543784.2021.1850692] [PMID: 33179552]
[26]
(a) Casati, P.; Gomez, M.S. Chromatin dynamics during DNA damage and repair in plants: New roles for old players. J. Exp. Bot., 2021, 72(11), 4119-4131.
[http://dx.doi.org/10.1093/jxb/eraa551] [PMID: 33206978];
(b) Klintman, J.; Appleby, N.; Stamatopoulos, B.; Ridout, K.; Eyre, T.A.; Robbe, P.; Pascua, L.L.; Knight, S.J.L.; Dreau, H.; Cabes, M.; Popitsch, N.; Ehinger, M.; Martín-Subero, J.I.; Campo, E.; Månsson, R.; Rossi, D.; Taylor, J.C.; Vavoulis, D.V.; Schuh, A. Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood, 2021, 137(20), 2800-2816.
[http://dx.doi.org/10.1182/blood.2020005650] [PMID: 33206936]
[27]
Ragunathan, K.; Upfold, N.L.E.; Oksenych, V. Interaction between fibroblasts and immune cells following DNA damage induced by ionizing radiation. Int. J. Mol. Sci., 2020, 21(22), E8635.
[http://dx.doi.org/10.3390/ijms21228635] [PMID: 33207781]
[28]
Marshall, C.J.; Santangelo, T.J. Archaeal DNA repair mechanisms. Biomolecules, 2020, 10(11), E1472.
[http://dx.doi.org/10.3390/biom10111472] [PMID: 33113933]
[29]
(a) Maremonti, E.; Brede, D.A.; Olsen, A.K.; Eide, D.M.; Berg, E.S. Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: Droplet digital PCR analysis. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2020, 858-860, 503277.
[http://dx.doi.org/10.1016/j.mrgentox.2020.503277] [PMID: 33198926];
(b) Pariset, E.; Malkani, S.; Cekanaviciute, E.; Costes, S. V. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int. J. Radiat. Biol., 2021, 97(sup1), S132-S150.
[http://dx.doi.org/10.1080/09553002.2020.1820598];
(c) Wu, R.; Högberg, J.; Adner, M.; Ramos-Ramírez, P.; Stenius, U.; Zheng, H. Crystalline silica particles cause rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells. Part. Fibre Toxicol., 2020, 17(1), 39.
[http://dx.doi.org/10.1186/s12989-020-00370-2] [PMID: 32778128];
(d) Dussert, F.; Arthaud, P.A.; Arnal, M.E.; Dalzon, B.; Torres, A.; Douki, T.; Herlin, N.; Rabilloud, T.; Carriere, M. Toxicity to RAW264.7 macrophages of silica nanoparticles and the E551 food additive, in combination with genotoxic agents. Nanomaterials (Basel), 2020, 10(7), E1418.
[http://dx.doi.org/10.3390/nano10071418] [PMID: 32708108]
[30]
Gupta, N.; Khetan, D.; Chaudhary, R.; Shukla, J.S. Prospective cohort study to assess the effect of storage duration, leuko-filtration, and gamma irradiation on cell-free DNA in red cell components. Transfus. Med. Hemother., 2020, 47(5), 409-419.
[http://dx.doi.org/10.1159/000505937] [PMID: 33173459]
[31]
(a) Fu, J.; Liao, L.; Balaji, K.S.; Wei, C.; Kim, J.; Peng, J. Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene, 2021, 40(3), 465-474.
[http://dx.doi.org/10.1038/s41388-020-01556-w] [PMID: 33199825];
(b) Tirman, S.; Cybulla, E.; Quinet, A.; Meroni, A.; Vindigni, A. PRIMPOL ready, set, reprime! Crit. Rev. Biochem. Mol. Biol., 2021, 56(1), 17-30.
[http://dx.doi.org/10.1080/10409238.2020.1841089] [PMID: 33179522]
[32]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[33]
Li, J.; Sun, H.; Huang, Y.; Wang, Y.; Liu, Y.; Chen, X. Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(9), 879-889.
[http://dx.doi.org/10.1093/abbs/gmz076] [PMID: 31294447]
[34]
Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res., 2004, 567(1), 1-61.
[http://dx.doi.org/10.1016/j.mrrev.2003.11.001] [PMID: 15341901]
[35]
Slupphaug, G.; Kavli, B.; Krokan, H.E. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res., 2003, 531(1-2), 231-251.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.06.002] [PMID: 14637258]
[36]
Dizdaroglu, M.; Jaruga, P. Mechanisms of free radical-induced damage to DNA. Free Radic. Res., 2012, 46(4), 382-419.
[http://dx.doi.org/10.3109/10715762.2011.653969]
[37]
Ide, H.; Nakano, T.; Salem, A.M.H.; Shoulkamy, M.I. DNA-protein cross-links: Formidable challenges to maintaining genome integrity. DNA Repair (Amst.), 2018, 71, 190-197.
[http://dx.doi.org/10.1016/j.dnarep.2018.08.024] [PMID: 30177436]
[38]
Tretyakova, N.Y.; Groehler, A., IV; Ji, S. DNA-Protein cross-links: Formation, structural identities, and biological outcomes. Acc. Chem. Res., 2015, 48(6), 1631-1644.
[http://dx.doi.org/10.1021/acs.accounts.5b00056] [PMID: 26032357]
[39]
(a) Stingele, J.; Bellelli, R.; Boulton, S.J. Mechanisms of DNA-protein crosslink repair. Nat. Rev. Mol. Cell Biol., 2017, 18(9), 563-573.
[http://dx.doi.org/10.1038/nrm.2017.56] [PMID: 28655905];
(b) Nakano, T.; Xu, X.; Salem, A.M.H.; Shoulkamy, M.I.; Ide, H. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance. Free Radic. Biol. Med., 2017, 107, 136-145.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.041] [PMID: 27894771]
[40]
Zheng, Y.; Sanche, L. Clustered DNA Damages induced by 0.5 to 30 eV Electrons. Int. J. Mol. Sci., 2019, 20(15), E3749.
[http://dx.doi.org/10.3390/ijms20153749] [PMID: 31370253]
[41]
Eccles, L.J.; O’Neill, P.; Lomax, M.E. Delayed repair of radiation induced clustered DNA damage: Friend or foe? Mutat. Res., 2011, 711(1-2), 134-141.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.11.003] [PMID: 21130102]
[42]
Sage, E.; Harrison, L. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival. Mutat. Res., 2011, 711(1-2), 123-133.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.010] [PMID: 21185841]
[43]
Nickoloff, J.A.; Sharma, N.; Taylor, L. Clustered DNA double-strand breaks: Biological effects and relevance to cancer radiotherapy. Genes (Basel), 2020, 11(1), E99.
[http://dx.doi.org/10.3390/genes11010099] [PMID: 31952359]
[44]
(a) Lai, Y.; Beaver, J.M.; Laverde, E.; Liu, Y. Trinucleotide repeat instability via DNA base excision repair. DNA Repair (Amst.), 2020, 93, 102912.
[http://dx.doi.org/10.1016/j.dnarep.2020.102912] [PMID: 33087278];
(b) Sassa, A.; Odagiri, M. Understanding the sequence and structural context effects in oxidative DNA damage repair. DNA Repair (Amst.), 2020, 93, 102906.
[http://dx.doi.org/10.1016/j.dnarep.2020.102906] [PMID: 33087272];
(c) Szewczuk, M.; Boguszewska, K.; Kaźmierczak-Barańska, J.; Karwowski, B.T. The role of AMPK in metabolism and its influence on DNA damage repair. Mol. Biol. Rep., 2020, 47(11), 9075-9086.
[http://dx.doi.org/10.1007/s11033-020-05900-x] [PMID: 33070285]
[45]
Kajitani, G.S.; Nascimento, L.L.S.; Neves, M.R.C.; Leandro, G.D.S.; Garcia, C.C.M.; Menck, C.F.M. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin. Cell Dev. Biol., 2021, 114, 20-35.
[http://dx.doi.org/10.1016/j.semcdb.2020.10.009] [PMID: 33229217]
[46]
da Costa, A.A.B.A.; Baiocchi, G. Genomic profiling of platinum-resistant ovarian cancer: The road into druggable targets. Semin. Cancer Biol., 2021, 77, 29-41.
[http://dx.doi.org/10.1016/j.semcancer.2020.10.016] [PMID: 33161141]
[47]
Sena, L.A.; Fountain, J.; Isaacsson Velho, P.; Lim, S.J.; Wang, H.; Nizialek, E.; Rathi, N.; Nussenzveig, R.; Maughan, B.L.; Velez, M.G.; Ashkar, R.; Larson, A.C.; Pritchard, C.C.; Adra, N.; Bryce, A.H.; Agarwal, N.; Pardoll, D.M.; Eshleman, J.R.; Lotan, T.L.; Antonarakis, E.S. Tumor frameshift mutation proportion predicts response to immunotherapy in mismatch repair-deficient prostate cancer. Oncologist, 2021, 26(2), e270-e278.
[http://dx.doi.org/10.1002/onco.13601] [PMID: 33215787]
[48]
Latham, A.; Shia, J.; Patel, Z.; Reidy-Lagunes, D.L.; Segal, N.H.; Yaeger, R.; Ganesh, K.; Connell, L.; Kemeny, N.E.; Kelsen, D.P.; Hechtman, J.F.; Nash, G.M.; Paty, P.B.; Zehir, A.; Tkachuk, K.A.; Sheikh, R.; Markowitz, A.J.; Mandelker, D.; Offit, K.; Berger, M.F.; Cercek, A.; Garcia-Aguilar, J.; Saltz, L.B.; Weiser, M.R.; Stadler, Z.K. Characterization and clinical outcomes of DNA mismatch repair-deficient small bowel adenocarcinoma. Clin. Cancer Res., 2021, 27(5), 1429-1437.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2892] [PMID: 33199489]
[49]
(a) Gachechiladze, M.; Skarda, J.; Bouchalova, K.; Soltermann, A.; Joerger, M. Predictive and prognostic value of DNA damage response associated kinases in solid tumors. Front. Oncol., 2020, 10, 581217.
[http://dx.doi.org/10.3389/fonc.2020.581217] [PMID: 33224881];
(b) Yoshioka, K.I.; Matsuno, Y. Genomic destabilization and its associated mutagenesis increase with senescence-associated phenotype expression. Cancer Sci., 2021, 112(2), 515-522.
[http://dx.doi.org/10.1111/cas.14746] [PMID: 33222327];
(c) Rzeszutek, I.; Betlej, G. The role of small noncoding RNA in DNA double-strand break repair. Int. J. Mol. Sci., 2020, 21(21), E8039.
[http://dx.doi.org/10.3390/ijms21218039] [PMID: 33126669]
[50]
(a) Clementi, E.; Inglin, L.; Beebe, E.; Gsell, C.; Garajova, Z.; Markkanen, E.J.B. Persistent DNA damage triggers activation of the integrated stress response to promote cell survival under nutrient restriction. BMC Biol., 2020, 18(1), 36.
[http://dx.doi.org/10.1186/s12915-020-00771-x];
(b) Marzio, A.; Puccini, J.; Kwon, Y.; Maverakis, N. K.; Arbini, A.; Sung, P.; Bar-Sagi, D.; Pagano, M.J.M. The F-box domain-dependent activity of EMI1 regulates PARPi sensitivity in triple-negative breast cancers. Mol. Cell, 2019, 73(2), 224-237.
[http://dx.doi.org/10.1016/j.molcel.2018.11.003]
[51]
Cai, Y.; Geacintov, N.E.; Broyde, S. Variable impact of conformationally distinct DNA lesions on nucleosome structure and dynamics: Implications for nucleotide excision repair. DNA Repair (Amst.), 2020, 87, 102768.
[http://dx.doi.org/10.1016/j.dnarep.2019.102768] [PMID: 32018112]
[52]
(a) Spivak, G. Nucleotide excision repair in humans. DNA Repair (Amst.), 2015, 36, 13-18.
[http://dx.doi.org/10.1016/j.dnarep.2015.09.003] [PMID: 26388429];
(b) Brevik, A.; Karlsen, A.; Azqueta, A.; Tirado, A.E.; Blomhoff, R.; Collins, A. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors. Cell Biochem. Funct., 2011, 29(1), 36-42.
[http://dx.doi.org/10.1002/cbf.1715] [PMID: 21264888]
[53]
Wang, G.; Dombkowski, A.; Chuang, L.; Xu, X.X. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response. Cell Res., 2004, 14(4), 303-314.
[http://dx.doi.org/10.1038/sj.cr.7290375] [PMID: 15353127]
[54]
Dutta, A.; Stillman, B. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J., 1992, 11(6), 2189-2199.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05278.x] [PMID: 1318195]
[55]
Wang, H.; Guan, J.; Wang, H.; Perrault, A.R.; Wang, Y.; Iliakis, G. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res., 2001, 61(23), 8554-8563.
[PMID: 11731442]
[56]
Anantha, R.W.; Vassin, V.M.; Borowiec, J.A. Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J. Biol. Chem., 2007, 282(49), 35910-35923.
[http://dx.doi.org/10.1074/jbc.M704645200] [PMID: 17928296]
[57]
Oakley, G.G.; Patrick, S.M.; Yao, J.; Carty, M.P.; Turchi, J.J.; Dixon, K. RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry, 2003, 42(11), 3255-3264.
[http://dx.doi.org/10.1021/bi026377u] [PMID: 12641457]
[58]
Anantha, R.W.; Sokolova, E.; Borowiec, J.A. RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 12903-12908.
[http://dx.doi.org/10.1073/pnas.0803001105] [PMID: 18723675]
[59]
Anantha, R.W.; Borowiec, J.A. Mitotic crisis: The unmasking of a novel role for RPA. Cell Cycle, 2009, 8(3), 357-361.
[http://dx.doi.org/10.4161/cc.8.3.7496] [PMID: 19176996]
[60]
(a) Dodson, G.E.; Shi, Y.; Tibbetts, R.S. DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells. J. Biol. Chem., 2004, 279(32), 34010-34014.
[http://dx.doi.org/10.1074/jbc.C400242200] [PMID: 15197179];
(b) Araya, R.; Hirai, I.; Meyerkord, C.L.; Wang, H.G. Loss of RPA1 induces Chk2 phosphorylation through a caffeine-sensitive pathway. FEBS Lett., 2005, 579(1), 157-161.
[http://dx.doi.org/10.1016/j.febslet.2004.11.066] [PMID: 15620706]
[61]
Stergiou, L.; Doukoumetzidis, K.; Sendoel, A.; Hengartner, M.O. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ., 2007, 14(6), 1129-1138.
[http://dx.doi.org/10.1038/sj.cdd.4402115] [PMID: 17347667]
[62]
(a) de Boer, J.; Hoeijmakers, J.H. Nucleotide excision repair and human syndromes. Carcinogenesis, 2000, 21(3), 453-460.
[http://dx.doi.org/10.1093/carcin/21.3.453] [PMID: 10688865];
(b) McKay, B.C.; Becerril, C.; Spronck, J.C.; Ljungman, M. Ultraviolet light-induced apoptosis is associated with S-phase in primary human fibroblasts. DNA Repair (Amst.), 2002, 1(10), 811-820.
[http://dx.doi.org/10.1016/S1568-7864(02)00109-X] [PMID: 12531028];
(c) Dunkern, T.R.; Kaina, B. Cell proliferation and DNA breaks are involved in ultraviolet light-induced apoptosis in nucleotide excision repair-deficient Chinese hamster cells. Mol. Biol. Cell, 2002, 13(1), 348-361.
[http://dx.doi.org/10.1091/mbc.01-05-0225] [PMID: 11809844];
(d) Stout, G.J.; Oosten, Mv.; Acherrat, F.Z.; Wit, J.; Vermeij, W.P.; Mullenders, L.H.; Gruijl, F.R.; Backendorf, C. Selective DNA damage responses in murine Xpa-/-, Xpc-/- and Csb-/- keratinocyte cultures. DNA Repair (Amst.), 2005, 4(11), 1337-1344.
[http://dx.doi.org/10.1016/j.dnarep.2005.07.012] [PMID: 16182614]
[63]
Heidenreich, E.; Eisler, H.; Lengheimer, T.; Dorninger, P.; Steinboeck, F. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation. DNA Repair (Amst.), 2010, 9(1), 96-100.
[http://dx.doi.org/10.1016/j.dnarep.2009.10.007] [PMID: 19910266]
[64]
Hyka-Nouspikel, N.; Desmarais, J.; Gokhale, P.J.; Jones, M.; Meuth, M.; Andrews, P.W.; Nouspikel, T. Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells. Stem Cells, 2012, 30(9), 1901-1910.
[http://dx.doi.org/10.1002/stem.1177] [PMID: 22821732]
[65]
Guillotin, D.; Martin, S.A. Exploiting DNA mismatch repair deficiency as a therapeutic strategy. Exp. Cell Res., 2014, 329(1), 110-115.
[http://dx.doi.org/10.1016/j.yexcr.2014.07.004] [PMID: 25017099]
[66]
Tiraby, J.G.; Fox, M.S. Marker discrimination in transformation and mutation of pneumococcus. Proc. Natl. Acad. Sci. USA, 1973, 70(12), 3541-3545.
[http://dx.doi.org/10.1073/pnas.70.12.3541] [PMID: 4148702]
[67]
(a) Ijsselsteijn, R.; Jansen, J.G.; de Wind, N. DNA mismatch repair-dependent DNA damage responses and cancer. DNA Repair (Amst.), 2020, 93, 102923.
[http://dx.doi.org/10.1016/j.dnarep.2020.102923] [PMID: 33087264];
(b) Huang, Y.; Li, G.M. DNA mismatch repair in the chromatin context: Mechanisms and therapeutic potential. DNA Repair (Amst.), 2020, 93, 102918.
[http://dx.doi.org/10.1016/j.dnarep.2020.102918] [PMID: 33087261]
[68]
(a) Modrich, P.; Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem., 1996, 65, 101-133.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.000533] [PMID: 8811176];
(b) Lynch, H.T.; de la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet., 1999, 36(11), 801-818.
[PMID: 10544223]
[69]
(a) Li, G.M. The role of mismatch repair in DNA damage-induced apoptosis. Oncol. Res., 1999, 11(9), 393-400.;
(b) Stojic, L.; Brun, R.; Jiricny, J. Mismatch repair and DNA damage signalling. DNA Repair (Amst.), 2004, 3(8-9), 1091-1101.
[http://dx.doi.org/10.1016/j.dnarep.2004.06.006] [PMID: 15279797]
[70]
Jiricny, J. Mediating mismatch repair. Nat. Genet., 2000, 24(1), 6-8.
[http://dx.doi.org/10.1038/71698] [PMID: 10615114]
[71]
(a) Chakraborty, U.; Dinh, T.A.; Alani, E. Genomic instability promoted by overexpression of mismatch repair factors in yeast: A model for understanding cancer progression. Genetics, 2018, 209(2), 439-456.
[http://dx.doi.org/10.1534/genetics.118.300923] [PMID: 29654124];
(b) Chakraborty, U.; Alani, E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res., 2016, 16(6), fow071.
[http://dx.doi.org/10.1093/femsyr/fow071] [PMID: 27573382]
[72]
He, D.; Li, T.; Sheng, M.; Yang, B. Exonuclease 1 (Exo1) participates in mammalian non-homologous end joining and contributes to drug resistance in ovarian cancer. Med. Sci. Monit., 2020, 26, e918751.
[http://dx.doi.org/10.12659/MSM.918751] [PMID: 32167078]
[73]
Bowen, N.; Kolodner, R.D. Reconstitution of Saccharomyces cerevisiae DNA polymerase ε-dependent mismatch repair with purified proteins. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3607-3612.
[http://dx.doi.org/10.1073/pnas.1701753114] [PMID: 28265089]
[74]
Motegi, A.; Masutani, M.; Yoshioka, K.I.; Bessho, T. Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin. Cancer Biol., 2019, 58, 29-46.
[http://dx.doi.org/10.1016/j.semcancer.2019.02.005] [PMID: 30922960]
[75]
Narine, K.A.; Felton, K.E.; Parker, A.A.; Tron, V.A.; Andrew, S.E. Non-tumor cells from an MSH2-null individual show altered cell cycle effects post-UVB. Oncol. Rep., 2007, 18(6), 1403-1411.
[http://dx.doi.org/10.3892/or.18.6.1403] [PMID: 17982623]
[76]
(a) Sørensen, C.S.; Hansen, L.T.; Dziegielewski, J.; Syljuåsen, R.G.; Lundin, C.; Bartek, J.; Helleday, T. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol., 2005, 7(2), 195-201.
[http://dx.doi.org/10.1038/ncb1212] [PMID: 15665856];
(b) Leung-Pineda, V.; Ryan, C.E.; Piwnica-Worms, H. Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol. Cell. Biol., 2006, 26(20), 7529-7538.
[http://dx.doi.org/10.1128/MCB.00447-06] [PMID: 17015476]
[77]
Brown, K.D.; Rathi, A.; Kamath, R.; Beardsley, D.I.; Zhan, Q.; Mannino, J.L.; Baskaran, R. The mismatch repair system is required for S-phase checkpoint activation. Nat. Genet., 2003, 33(1), 80-84.
[http://dx.doi.org/10.1038/ng1052] [PMID: 12447371]
[78]
(a) Kim, W-J.; Rajasekaran, B.; Brown, K.D. MLH1- and ATM-dependent MAPK signaling is activated through c-Abl in response to the alkylator N-methyl-N'-nitro-N'-nitrosoguanidine. J. Biol. Chem., 2007, 282(44), 32021-32031.
[http://dx.doi.org/10.1074/jbc.M701451200] [PMID: 17804421];
(b) Gong, J.G.; Costanzo, A.; Yang, H-Q.; Melino, G.; Kaelin, W.G., Jr; Levrero, M.; Wang, J.Y. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature, 1999, 399(6738), 806-809.
[http://dx.doi.org/10.1038/21690] [PMID: 10391249];
(c) Yoshioka, K.; Yoshioka, Y.; Hsieh, P. ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol. Cell, 2006, 22(4), 501-510.
[http://dx.doi.org/10.1016/j.molcel.2006.04.023] [PMID: 16713580]
[79]
Allmann, S.; Mayer, L.; Olma, J.; Kaina, B.; Hofmann, T.G.; Tomicic, M.T.; Christmann, M. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence. Nucleic Acids Res., 2020, 48(21), 12085-12101.
[http://dx.doi.org/10.1093/nar/gkaa965] [PMID: 33166399]
[80]
(a) Wang, H.; Cao, Q.; Zhao, Q.; Arfan, M.; Liu, W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. Chemosphere, 2020, 246, 125614.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125614] [PMID: 31883478];
(b) Xiong, J.; Zhang, J.; Li, H. Identification of G2 and S phase-expressed-1 as a potential biomarker in patients with prostate cancer. Cancer Manag. Res., 2020, 12, 9259-9269.
[http://dx.doi.org/10.2147/CMAR.S272795] [PMID: 33061616]
[81]
Suwala, A.K.; Stichel, D.; Schrimpf, D.; Kloor, M.; Wefers, A.K.; Reinhardt, A.; Maas, S.L.N.; Kratz, C.P.; Schweizer, L.; Hasselblatt, M.; Snuderl, M.; Abedalthagafi, M.S.J.; Abdullaev, Z.; Monoranu, C.M.; Bergmann, M.; Pekrun, A.; Freyschlag, C.; Aronica, E.; Kramm, C.M.; Hinz, F.; Sievers, P.; Korshunov, A.; Kool, M.; Pfister, S.M.; Sturm, D.; Jones, D.T.W.; Wick, W.; Unterberg, A.; Hartmann, C.; Dodgshun, A.; Tabori, U.; Wesseling, P.; Sahm, F.; von Deimling, A.; Reuss, D.E. Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathol., 2021, 141(1), 85-100.
[http://dx.doi.org/10.1007/s00401-020-02243-6] [PMID: 33216206]
[82]
Rohaly, G.; Chemnitz, J.; Dehde, S.; Nunez, A.M.; Heukeshoven, J.; Deppert, W.; Dornreiter, I. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell, 2005, 122(1), 21-32.
[http://dx.doi.org/10.1016/j.cell.2005.04.032] [PMID: 16009130]
[83]
Lukas, J.; Lukas, C.; Bartek, J. Mammalian cell cycle checkpoints: Signalling pathways and their organization in space and time. DNA Repair (Amst.), 2004, 3(8-9), 997-1007.
[http://dx.doi.org/10.1016/j.dnarep.2004.03.006] [PMID: 15279786]
[84]
Swanton, C. Cell-cycle targeted therapies. Lancet Oncol., 2004, 5(1), 27-36.
[http://dx.doi.org/10.1016/S1470-2045(03)01321-4] [PMID: 14700606]
[85]
(a) Bartek, J.; Lukas, J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr. Opin. Cell Biol., 2007, 19(2), 238-245.
[http://dx.doi.org/10.1016/j.ceb.2007.02.009] [PMID: 17303408];
(b) Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[86]
Smits, V.A.; Klompmaker, R.; Vallenius, T.; Rijksen, G.; Mäkela, T.P.; Medema, R.H. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J. Biol. Chem., 2000, 275(39), 30638-30643.
[http://dx.doi.org/10.1074/jbc.M005437200] [PMID: 10913154]
[87]
Hermeking, H.; Benzinger, A. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol., 2006, 16(3), 183-192.
[http://dx.doi.org/10.1016/j.semcancer.2006.03.002] [PMID: 16697662]
[88]
(a) Harms, K.; Nozell, S.; Chen, X. The common and distinct target genes of the p53 family transcription factors. Cell. Mol. Life Sci., 2004, 61(7-8), 822-842.
[http://dx.doi.org/10.1007/s00018-003-3304-4] [PMID: 15095006];
(b) Ohki, R.; Nemoto, J.; Murasawa, H.; Oda, E.; Inazawa, J.; Tanaka, N.; Taniguchi, T. Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J. Biol. Chem., 2000, 275(30), 22627-22630.
[http://dx.doi.org/10.1074/jbc.C000235200] [PMID: 10930422];
(c) Sugimoto, M.; Gromley, A.; Sherr, C.J. Hzf, a p53-responsive gene, regulates maintenance of the G2 phase checkpoint induced by DNA damage. Mol. Cell. Biol., 2006, 26(2), 502-512.
[http://dx.doi.org/10.1128/MCB.26.2.502-512.2006] [PMID: 16382142];
(d) Zhu, J.; Chen, X. MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G(2)-. M. Mol. Cell. Biol., 2000, 20(15), 5602-5618.
[http://dx.doi.org/10.1128/MCB.20.15.5602-5618.2000] [PMID: 10891498]
[89]
(a) Li, X.; Nicklas, R.B. Mitotic forces control a cell-cycle checkpoint. Nature, 1995, 373(6515), 630-632.
[http://dx.doi.org/10.1038/373630a0] [PMID: 7854422];
(b) Li, X.; Nicklas, R.B. Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J. Cell Sci., 1997, 110(Pt 5), 537-545.
[http://dx.doi.org/10.1242/jcs.110.5.537] [PMID: 9092936]
[90]
(a) Amon, A. The spindle checkpoint. Curr. Opin. Genet. Dev., 1999, 9(1), 69-75.
[http://dx.doi.org/10.1016/S0959-437X(99)80010-0] [PMID: 10072359];
(b) Dawson, I.A.; Roth, S.; Artavanis-Tsakonas, S. The drosophila cell cycle gene fizzy is required for normal degradation of cyclins a and b during mitosis and has homology to the CDC20 gene of saccharomyces cerevisiae. J. Cell Biol., 1995, 129(3), 725-737.
[http://dx.doi.org/10.1083/jcb.129.3.725] [PMID: 7730407]
[91]
Mundhara, N.; Majumder, A.; Panda, D. Hyperthermia induced disruption of mechanical balance leads to G1 arrest and senescence in cells. Biochem. J., 2021, 478(1), 179-196.
[http://dx.doi.org/10.1042/BCJ20200705] [PMID: 33346336]
[92]
de la Broise, D.; Noiseux, M.; Lemieux, R.; Massie, B. Long-term perfusion culture of hybridoma: A “grow or die” cell cycle system. Biotechnol. Bioeng., 1991, 38(7), 781-787.
[http://dx.doi.org/10.1002/bit.260380712] [PMID: 18600804]
[93]
Moore, A.; Mercer, J.; Dutina, G.; Donahue, C.J.; Bauer, K.D.; Mather, J.P.; Etcheverry, T.; Ryll, T. Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultues. Cytotechnology, 1997, 23(1-3), 47-54.
[http://dx.doi.org/10.1023/A:1007919921991] [PMID: 22358520]
[94]
Enninga, I.C.; Groenendijk, R.T.; van Zeeland, A.A.; Simons, J.W. Use of low temperature for growth arrest and synchronization of human diploid fibroblasts. Mutat. Res., 1984, 130(5), 343-352.
[http://dx.doi.org/10.1016/0165-1161(84)90020-7] [PMID: 6493255]
[95]
Nakai, N.; Fujita, R.; Kawano, F.; Takahashi, K.; Ohira, T.; Shibaguchi, T.; Nakata, K.; Ohira, Y. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma. J. Physiol. Sci., 2014, 64(5), 365-375.
[http://dx.doi.org/10.1007/s12576-014-0328-5] [PMID: 25034108]
[96]
(a) van den Tempel, N.; Horsman, M.R.; Kanaar, R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int. J. Hyperthermia, 2016, 32(4), 446-454.
[http://dx.doi.org/10.3109/02656736.2016.1157216] [PMID: 27086587];
(b) Mantso, T.; Goussetis, G.; Franco, R.; Botaitis, S.; Pappa, A.; Panayiotidis, M. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin. Cancer Biol., 2016, 37-38, 96-105.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.004] [PMID: 27025900];
(c) Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer, 2014, 14(3), 199-208.
[http://dx.doi.org/10.1038/nrc3672] [PMID: 24561446]
[97]
(a) Wan Mohd Zawawi, W.F.A.; Hibma, M.H.; Salim, M.I.; Jemon, K. Hyperthermia by near infrared radiation induced immune cells activation and infiltration in breast tumor. Sci. Rep., 2021, 11(1), 10278.
[http://dx.doi.org/10.1038/s41598-021-89740-0] [PMID: 33986437];
(b) Marloes, I.J.; Crezee, J.; Oei, A.L.; Stalpers, L.J.A.; Westerveld, H. The role of hyperthermia in the treatment of locally advanced cervical cancer: A comprehensive review. Int. J. Gynecol. Cancer, 2022, 32(3), 288-296.
[http://dx.doi.org/10.1136/ijgc-2021-002473];
(c) Enam, S.F.; Kilic, C. Y.; Huang, J.; Kang, B.J.; Chen, R.; Tribble, C.S.; Betancur, M.I.; Ilich, E.; Blocker, S. J.; Owen, S.J.b. Cytostatic hypothermia and its impact on glioblastoma and survival. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.03.25.436870]
[98]
Paulson, J. R.; Kresch, A. K.; Mesner, P. W. Moderate hyperthermia induces apoptosis in metaphase-arrested cells but not in interphase Hela cells. Adv. Carbohydr. Chem. Biochem., 2016, 6(3), 126-139.
[http://dx.doi.org/10.4236/abc.2016.63011]
[99]
Lim, C.U.; Zhang, Y.; Fox, M.H. Cell cycle dependent apoptosis and cell cycle blocks induced by hyperthermia in HL-60 cells. Int. J. Hyperthermia, 2006, 22(1), 77-91.
[http://dx.doi.org/10.1080/02656730500430538] [PMID: 16423754]
[100]
Feng, Q.; Liu, Y.; Huang, J.; Chen, K.; Huang, J.; Xiao, K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep., 2018, 8(1), 2082.
[http://dx.doi.org/10.1038/s41598-018-19628-z] [PMID: 29391477]
[101]
Tuul, M.; Kitao, H.; Iimori, M.; Matsuoka, K.; Kiyonari, S.; Saeki, H.; Oki, E.; Morita, M.; Maehara, Y. Rad9, Rad17, TopBP1 and claspin play essential roles in heat-induced activation of ATR kinase and heat tolerance. PLoS One, 2013, 8(2), e55361.
[http://dx.doi.org/10.1371/journal.pone.0055361] [PMID: 23383325]
[102]
(a) Shaltiel, I.A.; Krenning, L.; Bruinsma, W.; Medema, R.H. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J. Cell Sci., 2015, 128(4), 607-620.
[http://dx.doi.org/10.1242/jcs.163766] [PMID: 25609713];
(b) Matsuoka, S.; Huang, M.; Elledge, S.J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 1998, 282(5395), 1893-1897.
[http://dx.doi.org/10.1126/science.282.5395.1893] [PMID: 9836640]
[103]
Westra, A.; Dewey, W.C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1971, 19(5), 467-477.
[http://dx.doi.org/10.1080/09553007114550601] [PMID: 5314347]
[104]
Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol., 2002, 43(1), 33-56.
[http://dx.doi.org/10.1016/S1040-8428(01)00179-2] [PMID: 12098606]
[105]
(a) Mackey, M.A.; Morgan, W.F.; Dewey, W.C. Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells. Cancer Res., 1988, 48(22), 6478-6483.
[PMID: 3180064];
(b) Deorukhakar, V.V.; Anjaria, K.B.; Rao, B.S. Modification of radiation-induced damage by hyperthermia--role of repair processes. Int. J. Hyperthermia, 1993, 9(6), 803-810.
[http://dx.doi.org/10.3109/02656739309034983] [PMID: 8106821]
[106]
(a) Coss, R.A.; Dewey, W.C.; Bamburg, J.R. Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res., 1982, 42(3), 1059-1071.
[PMID: 7199378];
(b) Dewey, W.C. Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat. Res., 1989, 120(2), 191-204.
[http://dx.doi.org/10.2307/3577707] [PMID: 2694212]
[107]
(a) Sisken, J.E.; Morasca, L.; Kibby, S. Effects of temperature on the kinetics of the mitotic cycle of mammalian cells in culture. Exp. Cell Res., 1965, 39(1), 103-116.
[http://dx.doi.org/10.1016/0014-4827(65)90012-1] [PMID: 5831233];
(b) Higashikubo, R.; Holland, J.M.; Roti Roti, J.L. Comparative effects of caffeine on radiation- and heat-induced alterations in cell cycle progression. Radiat. Res., 1989, 119(2), 246-260.
[http://dx.doi.org/10.2307/3577617] [PMID: 2756116];
(c) Nishita, M.; Inoue, S.; Tsuda, M.; Tateda, C.; Miyashita, T. Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia. Exp. Cell Res., 1998, 244(1), 357-366.
[http://dx.doi.org/10.1006/excr.1998.4203] [PMID: 9770379]
[108]
Hunt, C.R.; Pandita, R.K.; Laszlo, A.; Higashikubo, R.; Agarwal, M.; Kitamura, T.; Gupta, A.; Rief, N.; Horikoshi, N.; Baskaran, R.; Lee, J.H.; Löbrich, M.; Paull, T.T.; Roti Roti, J.L.; Pandita, T.K. Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res., 2007, 67(7), 3010-3017.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4328] [PMID: 17409407]
[109]
Miyakoda, M.; Suzuki, K.; Kodama, S.; Watanabe, M. Activation of ATM and phosphorylation of p53 by heat shock. Oncogene, 2002, 21(7), 1090-1096.
[http://dx.doi.org/10.1038/sj.onc.1205196] [PMID: 11850826]
[110]
Jung, H.J.; Seo, Y.R. Protective effects of thioredoxin-mediated p53 activation in response to mild hyperthermia. Oncol. Rep., 2012, 27(3), 650-656.
[http://dx.doi.org/10.3892/or.2011.1564] [PMID: 22134635]
[111]
Laszlo, A.; Fleischer, I. Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones. Cancer Res., 2009, 69(5), 2042-2049.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1639] [PMID: 19244134]
[112]
Furusawa, Y.; Iizumi, T.; Fujiwara, Y.; Zhao, Q. L.; Tabuchi, Y.; Nomura, T.; Kondo, T. Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis, 2012, 17(1), 102-112.
[http://dx.doi.org/10.1007/s10495-011-0660-7]
[113]
Jentsch, M.; Snyder, P.; Sheng, C.; Cristiano, E.; Loewer, A. p53 dynamics in single cells are temperature-sensitive. Sci. Rep., 2020, 10(1), 1481.
[http://dx.doi.org/10.1038/s41598-020-58267-1] [PMID: 32001771]
[114]
(a) Fuse, T.; Tanikawa, M.; Nakanishi, M.; Ikeda, K.; Tada, T.; Inagaki, H.; Asai, K.; Kato, T.; Yamada, K. p27Kip1 expression by contact inhibition as a prognostic index of human glioma. J. Neurochem., 2000, 74(4), 1393-1399.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741393.x] [PMID: 10737594];
(b) Pavel, M.; Renna, M.; Park, S.J.; Menzies, F.M.; Ricketts, T.; Füllgrabe, J.; Ashkenazi, A.; Frake, R.A.; Lombarte, A.C.; Bento, C.F.; Franze, K.; Rubinsztein, D.C. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun., 2018, 9(1), 2961.
[http://dx.doi.org/10.1038/s41467-018-05388-x] [PMID: 30054475]
[115]
Lipkin, G.; Knecht, M.E.; Rosenberg, M. A potent inhibitor of normal and transformed cell growth derived from contact-inhibited cells. Cancer Res., 1978, 38(3), 635-643.
[PMID: 626968]
[116]
(a) Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature, 1978, 273(5661), 345-349.
[http://dx.doi.org/10.1038/273345a0] [PMID: 661946];
(b) Fan, Y.; Meyer, T. Molecular control of cell density-mediated exit to quiescence. Cell Rep., 2021, 36(4), 109436.
[http://dx.doi.org/10.1016/j.celrep.2021.109436] [PMID: 34320337]
[117]
Holley, R.W.; Kiernan, J.A. “Contact inhibition” of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA, 1968, 60(1), 300-304.
[http://dx.doi.org/10.1073/pnas.60.1.300] [PMID: 5241531]
[118]
Abercrombie, M. Contact inhibition and malignancy. Nature, 1979, 281(5729), 259-262.
[http://dx.doi.org/10.1038/281259a0] [PMID: 551275]
[119]
(a) Li, S.; Gerrard, E.R., Jr; Balkovetz, D.F. Evidence for ERK1/2 phosphorylation controlling contact inhibition of proliferation in Madin-Darby canine kidney epithelial cells. Am. J. Physiol. Cell Physiol., 2004, 287(2), C432-C439.
[http://dx.doi.org/10.1152/ajpcell.00020.2004] [PMID: 15070810];
(b) LeVea, C.M.; Reeder, J.E.; Mooney, R.A. EGF-dependent cell cycle progression is controlled by density-dependent regulation of Akt activation. Exp. Cell Res., 2004, 297(1), 272-284.
[http://dx.doi.org/10.1016/j.yexcr.2004.03.026] [PMID: 15194442]
[120]
Curto, M.; Cole, B.K.; Lallemand, D.; Liu, C.H.; McClatchey, A.I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol., 2007, 177(5), 893-903.
[http://dx.doi.org/10.1083/jcb.200703010] [PMID: 17548515]
[121]
Lampugnani, M.G.; Orsenigo, F.; Gagliani, M.C.; Tacchetti, C.; Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol., 2006, 174(4), 593-604.
[http://dx.doi.org/10.1083/jcb.200602080] [PMID: 16893970]
[122]
Nelson, C.M.; Jean, R.P.; Tan, J.L.; Liu, W.F.; Sniadecki, N.J.; Spector, A.A.; Chen, C.S. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11594-11599.
[http://dx.doi.org/10.1073/pnas.0502575102] [PMID: 16049098]
[123]
Okada, T.; Lopez-Lago, M.; Giancotti, F.G. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J. Cell Biol., 2005, 171(2), 361-371.
[http://dx.doi.org/10.1083/jcb.200503165] [PMID: 16247032]
[124]
(a) Hamaratoglu, F.; Willecke, M.; Kango-Singh, M.; Nolo, R.; Hyun, E.; Tao, C.; Jafar-Nejad, H.; Halder, G. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol., 2006, 8(1), 27-36.
[http://dx.doi.org/10.1038/ncb1339] [PMID: 16341207];
(b) Yin, F.; Pan, D. Fat flies expanded the hippo pathway: A matter of size control. Sci. STKE, 2007, 2007(380), pe12.
[http://dx.doi.org/10.1126/stke.3802007pe12] [PMID: 17406009]
[125]
Polyak, K.; Kato, J.Y.; Solomon, M.J.; Sherr, C.J.; Massague, J.; Roberts, J.M.; Koff, A. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev., 1994, 8(1), 9-22.
[http://dx.doi.org/10.1101/gad.8.1.9] [PMID: 8288131]
[126]
Okuyama, K.; Suzuki, K.; Naruse, T.; Tsuchihashi, H.; Yanamoto, S.; Kaida, A.; Miura, M.; Umeda, M.; Yamashita, S. Prolonged cetuximab treatment promotes p27Kip1-mediated G1 arrest and autophagy in head and neck squamous cell carcinoma. Sci. Rep., 2021, 11(1), 5259.
[http://dx.doi.org/10.1038/s41598-021-84877-4] [PMID: 33664437]
[127]
Sgambato, A.; Cittadini, A.; Faraglia, B.; Weinstein, I.B. Multiple functions of p27(Kip1) and its alterations in tumor cells: A review. J. Cell. Physiol., 2000, 183(1), 18-27.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-S] [PMID: 10699962]
[128]
Wieser, R.J.; Faust, D.; Dietrich, C.; Oesch, F. p16INK4 mediates contact-inhibition of growth. Oncogene, 1999, 18(1), 277-281.
[http://dx.doi.org/10.1038/sj.onc.1202270] [PMID: 9926944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy