Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Antidiabetic Potential of Ruthenium(III) Hydroxamate Complexes: Spectrophotometric Investigations

Author(s): Raj Kaushal* and Mandeep Kaur

Volume 18, Issue 3, 2022

Published on: 03 October, 2022

Page: [200 - 210] Pages: 11

DOI: 10.2174/1573408018666220825152849

Price: $65

Abstract

Background: The potential antidiabetic and antioxidant properties of four ruthenium(III) hydroxamate complexes [RuCl(H2O)(LI-III)2] (1-3) and [RuCl3(H2O)(HLIV)2] (4) were investigated on α- cell enzymes (α-amylase and α-glucosidase).

Methods: In the instance of α-amylase inhibition investigations, the antidiabetic studies of the complexes revealed that they are more active than even the Acarbose as standard, with complex 4 having an IC50 value of 52.31 g/ml. For α-glucosidase inhibition, complex 4 was observed to be the best inhibitor with a remarkable 0.35μg/ml IC50 value, which may be attributed to the size and superior lipophilicity of this complex, enabling it to interact with the biological system more effectively than complexes 1-3. The complexes with the best IC50 values were studied further for enzyme kinetics. Molecular docking studies were performed as well to investigate the interactions between the synthesized complexes and target enzymes viz., α-glucosidase and α-amylase.

Results: The obtained in-vitro results have also been supported by the results of the in-silico docking studies. Furthermore, the antiradical activity of Ru(III) complexes was assessed for its effectiveness in reducing oxidative stress.

Conclusion: All the complexes (except complex 3) exhibited remarkable antiradical activity.

Keywords: α-amylase inhibition, Analytical Methods, Antioxidants, Docking studies, α-glucosidase inhibition, Kinetics, Ruthenium(III)hydroxamate complexes.

Graphical Abstract

[1]
a) Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2020; 152: 436-88. http://dx.doi.org/10.1016/j.ejmech.2018.04.061;
b) Paudel S, Tran T, Owen AJ, Smith BJ. The contribution of physical inactivity and socioeconomic factors to type 2 diabetes in Nepal: a structural equation modelling analysis. Nutr Metab Cardiovasc Dis 2020; 30(10): 1758-67. http://dx.doi.org/10.1016/j.numecd.2020.06.003
[2]
Rice BBH. Dietary fat and risk for type 2 diabetes: A review of recent research. Curr Nutr Rep 2018; 7(4): 214-26.
[http://dx.doi.org/10.1007/s13668-018-0244-z] [PMID: 30242725]
[3]
Bishu KG, Jenkins C, Yebyo HG, Atsbha M, Wubayehu T, Gebregziabher M. Diabetes in ethiopia: A systematic review of prevalence, risk factors, complications, and cost. Obes Med 2019; 15(100132): 100132.
[http://dx.doi.org/10.1016/j.obmed.2019.100132]
[4]
Ceriello A, deValk HW, Guerci B. et al. The burden of type 2 diabetes in Europe: Current and future aspects of insulin treatment from patient and healthcare spending perspectives. Diabetes Res Clin Pract 2020; 161(7): 108053.
[http://dx.doi.org/10.1016/j.diabres.2020.108053] [PMID: 32035117]
[5]
W.H. Organization. Diabetes. 2020. Available from: https://www.who.int/news-room/factsheets/detail/diabetes
[6]
Suwannaphant K, Laohasiriwong W, Puttanapong N, Saengsuwan J, Phajan T. Association between socioeconomic status and diabetes mellitus: The national socioeconomics survey, 2010 and 2012. J Clin Diagn Res 2017; 11(7): LC18-22.
[http://dx.doi.org/10.7860/JCDR/2017/28221.10286] [PMID: 28892937]
[7]
Mutyambizi C, Booysen F, Stokes A, Pavlova M, Groot W. Lifestyle and socio-economic inequalities in diabetes prevalence in South Africa: A decomposition analysis. PLoS One 2019; 14(1): e0211208.
[http://dx.doi.org/10.1371/journal.pone.0211208] [PMID: 30699173]
[8]
Peng M, Yang X. Controlling diabetes by chromium complexes: The role of the ligands. J Inorg Biochem 2015; 146: 97-103.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.01.002] [PMID: 25631328]
[9]
Maikoo S, Makayane D, Booysen IN, Ngubane P, Khathi A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. Eur J Med Chem 2021; 213(113064): 113064.
[http://dx.doi.org/10.1016/j.ejmech.2020.113064] [PMID: 33279292]
[10]
Weigelt B, Peterse JL, Van ’t Veer LJ. Breast cancer metastasis: Markers and models. Nat Rev Cancer 2005; 5(8): 591-602.
[http://dx.doi.org/10.1038/nrc1670] [PMID: 16056258]
[11]
Javid MT, Rahim F, Taha M. et al. Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole ana-logs. Bioorg Chem 2018; 78: 201-9.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.022] [PMID: 29597114]
[12]
Swaroopa V, Reddy VJS, Koshma M, Sudharani Y, Basha SJ, Adithya TN. Review on antidiabetic activity on medicinal plants. Int J Phar-macol Res 2017; 7: 230-5.
[http://dx.doi.org/10.7439/ijpr.v7i12.4457]
[13]
Leung CH, Zhong HJ, Chan DSH, Ma DL. Bioactive iridium and rhodium complexes as therapeutic agents. Coord Chem Rev 2013; 257(11–12): 1764-76.
[http://dx.doi.org/10.1016/j.ccr.2013.01.034]
[14]
Gitlin JD, Lill R. Special issue: Cell biology of metals. Biochim Biophys Acta Mol Cell Res 2012; 1823(9): 1405.
[http://dx.doi.org/10.1016/j.bbamcr.2012.07.008]
[15]
Howerton BS, Heidary DK, Glazer EC. Strained ruthenium complexes are potent light-activated anticancer agents. J Am Chem Soc 2012; 134(20): 8324-7.
[http://dx.doi.org/10.1021/ja3009677] [PMID: 22553960]
[16]
Frezza M, Hindo S, Chen D. et al. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 2010; 16(16): 1813-25.
[http://dx.doi.org/10.2174/138161210791209009] [PMID: 20337575]
[17]
Yang Y, Liao G, Fu C. Recent advances on octahedral polypyridyl ruthenium(II) complexes as antimicrobial agents. Polymers (Basel) 2018; 10(6): 650.
[http://dx.doi.org/10.3390/polym10060650] [PMID: 30966684]
[18]
Wabaidur SM, Eldesoky GE, Alothman ZA. The fluorescence quenching of Ru(bipy)32+: An application for the determination of biliru-bin in biological samples. Luminescence 2018; 33(3): 625-9.
[http://dx.doi.org/10.1002/bio.3455] [PMID: 29399944]
[19]
Lee SH, Jeon CW, Wabaidur SM. Flow-injection chemiluminescence determination of aspartic acid in tea leaves using tris (2,2′-bipyridyl) ruthenium (II)-Ce(IV) system. J Fluoresc 2008; 18(3-4): 655-60.
[http://dx.doi.org/10.1007/s10895-008-0387-1] [PMID: 18523876]
[20]
Muthukutty B, Ganesamurthi J, Chen SM, Arumugam B, Chang FM, Wabaidur SM. Construction of novel binary metal oxides: Copper oxide–tin oxidenanoparticles regulated for selective and nanomolar levelelectrochemical detection of anti-psychotic drug. Electrochim Acta 2021; 386: 138482.
[http://dx.doi.org/10.1016/j.electacta.2021.138482]
[21]
Brabec V, Kasparkova J. Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coord Chem Rev 2018; 376: 75-94.
[http://dx.doi.org/10.1016/j.ccr.2018.07.012]
[22]
Zeng L, Gupta P, Chen Y. et al. The development of anticancer ruthenium (ii) complexes: From single molecule compounds to nano-materials. Chem Soc Rev 2017; 46(19): 5771-804.
[http://dx.doi.org/10.1039/C7CS00195A] [PMID: 28654103]
[23]
Zhang X, Liu D, Lv F, Yu B, Shen Y, Cong H. Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. Colloids Surf B Biointerfaces 2019; 182(110373): 110373.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110373] [PMID: 31376689]
[24]
Osta MSC, Gonçalves YG, Borges BC. et al. Ruthenium (II) complex cis-[RuII(ŋ2-O2CC7H7O2)(dppm)2]PF6-hmxbato induces ROS-mediated apoptosis in lung tumor cells producing selective cytotoxicity. Sci Rep 2020; 10: 15410.
[http://dx.doi.org/10.1038/s41598-020-72420-w] [PMID: 32958783]
[25]
Southam HM, Butler JA, Chapman JA, Poole RK. The microbiology of ruthenium complexes. Adv Microb Physiol 2017; 71: 1-96.
[26]
Małecka M, Skoczyńska A, Goodman DM, Hartinger CG, Budzisz E. Biological properties of ruthenium(II)/(III) complexes with flavo-noids as ligands. Coord Chem Rev 2021; 436(213849): 213849.
[http://dx.doi.org/10.1016/j.ccr.2021.213849]
[27]
Leijen S, Burgers SA, Baas P. et al. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest New Drugs 2015; 33(1): 201-14.
[http://dx.doi.org/10.1007/s10637-014-0179-1] [PMID: 25344453]
[28]
Alessio E, Messori L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: A case story in medici-nal inorganic chemistry. Molecules 2019; 24(10): 1995.
[http://dx.doi.org/10.3390/molecules24101995] [PMID: 31137659]
[29]
Mabuza LP, Gamede MW, Maikoo S, Booysen IN, Ngubane PS, Khathi A. Effects of a ruthenium schiff base complex on glucose homeo-stasis in diet-induced pre-diabetic rats. Molecules 2018; 23(7): 1721.
[http://dx.doi.org/10.3390/molecules23071721] [PMID: 30011905]
[30]
Jia Q, Liu Y, Yan F, Wang Q, Ma P. Predicting the activity of hydroxamic acid analogues. Mol Simul 2017; 43(13–16): 1026-33.
[http://dx.doi.org/10.1080/08927022.2017.1353693]
[31]
Kaushal R. Sheetal. In vitro anticancer and antibacterial activities of octahedral ruthenium(III) complexes with hydroxamic acids. Synthe-sis and spectroscopic characterization. Russ J Gen Chem 2016; 86(2): 360-7.
[http://dx.doi.org/10.1134/S1070363216020274]
[32]
Abdellatif KRA, Elshemy HAH, Salama SA, Omar HA. Synthesis, characterization and biological evaluation of novel 4′-fluoro-2′-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents. J Enzyme Inhib Med Chem 2015; 30(3): 484-91.
[http://dx.doi.org/10.3109/14756366.2014.949255] [PMID: 25198887]
[33]
Shenvi S, Kumar K, Hatti KS, Rijesh K, Diwakar L, Reddy GC. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chal-cones and analogues from asaronaldehyde: Structure-activity relationship. Eur J Med Chem 2013; 62: 435-42.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.018] [PMID: 23395966]
[34]
Avcı D, Altürk S, Sönmez F. et al. Three novel Cu(II), Cd(II) and Cr(III) complexes of 6−methylpyridine−2−carboxylic acid with thiocya-nate: Synthesis, crystal structures, DFT calculations, molecular docking and α-glucosidase inhibition studies. Tetrahedron 2018; 74(50): 7198-208.
[http://dx.doi.org/10.1016/j.tet.2018.10.054]
[35]
Chi G, Wang L, Chen B. et al. Polyoxometalates: Study of inhibitory kinetics and mechanism against α-glucosidase. J Inorg Biochem 2019; 199(110784): 110784.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110784] [PMID: 31351380]
[36]
Zheng JW, Ma L. Metal complexes of anthranilic acid derivatives: A new class of non-competitive α-glucosidase inhibitors. Chin Chem Lett 2016; 27(5): 627-30.
[http://dx.doi.org/10.1016/j.cclet.2016.01.052]
[37]
Kotowaroo MI, Mahomoodally MF, Gurib-Fakim A, Subratty AH. Screening of traditional antidiabetic medicinal plants of mauritius for possible α-amylase inhibitory effects in vitro. Phytother Res 2006; 20(3): 228-31.
[http://dx.doi.org/10.1002/ptr.1839] [PMID: 16521114]
[38]
Kaur M, Kaushal R. Synthesis and in-silico molecular modelling, DFT studies, antiradical and antihyperglycemic activity of novel vanadyl complexes based on chalcone derivatives. J Mol Struct 2022; 1252(132176): 132176.
[http://dx.doi.org/10.1016/j.molstruc.2021.132176]
[39]
Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M. Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. Artif Cells Nanomed Biotechnol 2018; 46: S538-45.
[http://dx.doi.org/10.1080/21691401.2018.1501378]
[40]
Kalita D, Holm DG, LaBarbera DV, Petrash JM, Jayanty SS. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato poly-phenolic compounds. PLoS One 2018; 13(1): e0191025.
[http://dx.doi.org/10.1371/journal.pone.0191025] [PMID: 29370193]
[41]
Taha M, Baharudin MS, Ismail NH. et al. Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorg Chem 2018; 80: 36-42.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.021] [PMID: 29864686]
[42]
Ammal PR, Prasad AR, Joseph A. Synthesis, characterization, in silico, and in vitro biological screening of coordination compounds with 1,2,4-triazine based biocompatible ligands and selected 3d-metal ions. Heliyon 2020; 6(10): e05144.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05144] [PMID: 33083609]
[43]
Functional Metabolism: Regulation and Adaptation. Storey KB, Ed. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2004.
[44]
Md Abdur Rauf S, Arvidsson PI, Albericio F. et al. The effect of N-methylation of Amino acids (Ac-X-OMe) on solubility and confor-mation: A DFT study. Org Biomol Chem 2015; 13(39): 9993-10006.
[http://dx.doi.org/10.1039/C5OB01565K] [PMID: 26289381]
[45]
Kurt M, Sas EB, Can M. et al. Synthesis and spectroscopic characterization on 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid: A DFT approach. Spectrochim Acta A Mol Biomol Spectrosc 2016; 152: 8-17.
[http://dx.doi.org/10.1016/j.saa.2015.07.058] [PMID: 26186392]
[46]
Balan K, Ratha P, Prakash G, Viswanathamurthi P, Adisakwattana S, Palvannan T. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potential of N2O2 schiff base Zn complex. Arab J Chem 2017; 10(5): 732-8.
[http://dx.doi.org/10.1016/j.arabjc.2014.07.002]
[47]
Wang X, Ling N, Zhang YW, Wang X, Yang HX. Synthesis, structure, antidiabetic and antioxidant properties of a new Co(II) complex with a flexible tripodal ligand. Inorg Chem Commun 2019; 110(107585): 107585.
[http://dx.doi.org/10.1016/j.inoche.2019.107585]
[48]
Sneha Jose E, Philip JE, Shanty AA, Kurup MRP, Mohanan PV. Novel class of mononuclear 2-methoxy-4-chromanones ligated Cu (II), Zn (II), Ni (II) complexes: Synthesis, characterisation and biological studies. Inorganica Chim Acta 2018; 478: 155-65.
[http://dx.doi.org/10.1016/j.ica.2018.03.023]
[49]
Lipkind GM, Fozzard HA. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol Pharmacol 2005; 68(6): 1611-22.
[http://dx.doi.org/10.1124/mol.105.014803] [PMID: 16174788]
[50]
Naaz S, Laskar RA, Rahaman SK. et al. Supramolecular assembly of a terpyridyl based binuclear Cu(II) complex and its DNA docking study. Supramol Chem 2022. [ePub ahead of print] http://dx.doi.org/10.1080/10610278.2022.2057228
[51]
Bhowmick S, AlFaris NA. Zaidan ALTamimi J, et al. Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibi-tors-modulators via negative image-based screening and computational simulations. Comput Biol Med 2022; 145: 105474.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105474] [PMID: 35395517]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy