Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Clinical Progress in Gold Nanoparticle (GNP)-mediated Photothermal Cancer Therapy

Author(s): Kavitha Palaniappan*

Volume 19, Issue 1, 2023

Published on: 08 November, 2022

Page: [13 - 18] Pages: 6

DOI: 10.2174/1573394718666220823154459

Price: $65

Abstract

The field of oncotherapy has always been looking out for alternative treatment methods that have much lesser side effects compared to the currently used therapies that lower the patients’ quality of life. Gold Nanoparticle (GNP)-mediated photothermal therapies are proving to be a boon as they are both non-invasive and tumour-specific. This review analyses how GNPs can help right from the beginning, that is, the diagnosis of cancer, to the end, that is, effective ablation of cancerous cells. Their ability to function as photothermal absorbers, targeted drug deliverers, and inducers of photoimmunity are reviewed in detail, bringing out the current clinical progress in each of those areas. Even though they stand to be a promising solution for cancer therapy, it is necessary to understand their biodegradation and in vivo toxicity before their extensive clinical usage.

Keywords: Gold nanoparticles, photothermal absorbers, targeted drug delivery

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Dash SR, Kundu CN. Photothermal therapy is a new approach to eradicate the cancer. CNANO 2021. Available from: https://www.eurekaselect.com/191901/article
[3]
Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8(7): 545-54.
[http://dx.doi.org/10.1038/nrc2419] [PMID: 18511937]
[4]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[5]
Doughty A, Hoover A, Layton E, Murray C, Howard E, Chen W. Nanomaterial applications in photothermal therapy for cancer. Materials (Basel) 2019; 12(5): 779.
[http://dx.doi.org/10.3390/ma12050779] [PMID: 30866416]
[6]
Fann JR, Thomas-Rich AM, Katon WJ, et al. Major depression after breast cancer: A review of epidemiology and treatment. Gen Hosp Psychiatry 2008; 30(2): 112-26.
[http://dx.doi.org/10.1016/j.genhosppsych.2007.10.008] [PMID: 18291293]
[7]
Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev 2016; 98: 19-34.
[http://dx.doi.org/10.1016/j.addr.2015.10.022] [PMID: 26546751]
[8]
Zhao H, Yao Y, Yang H, Ma D, Chen A. Hormone therapy as a management strategy for lung metastasis after 5 years of endometrial cancer. Medicine (Baltimore) 2017; 96(51)e9223
[http://dx.doi.org/10.1097/MD.0000000000009223] [PMID: 29390473]
[9]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[10]
Yoest J. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: A short review. ImmunoTargets Ther 2017; 6: 73-82.
[http://dx.doi.org/10.2147/ITT.S126227] [PMID: 29067284]
[11]
Zou L, Wang H, He B, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016; 6(6): 762-72.
[http://dx.doi.org/10.7150/thno.14988] [PMID: 27162548]
[12]
Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev 2016; 45(23): 6488-519.
[http://dx.doi.org/10.1039/C6CS00616G] [PMID: 27722560]
[13]
Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 2016; 120(9): 4691-716.
[http://dx.doi.org/10.1021/acs.jpcc.5b11232]
[14]
Han HS, Choi KY. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines 2021; 9(3): 305.
[http://dx.doi.org/10.3390/biomedicines9030305] [PMID: 33809691]
[15]
Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 2013; 65(15): 2045-60.
[http://dx.doi.org/10.1016/j.addr.2013.08.001] [PMID: 23933617]
[16]
Haine AT, Niidome T. Gold nanorods as nanodevices for bioimaging, photothermal therapeutics, and drug delivery. Chem Pharm Bull (Tokyo) 2017; 65(7): 625-8.
[http://dx.doi.org/10.1248/cpb.c17-00102] [PMID: 28674334]
[17]
Gui C, Cui DX. Functionalized gold nanorods for tumor imaging and targeted therapy. Cancer Biol Med 2012; 9(4): 221-33.
[PMID: 23691482]
[18]
Xie X, Shao X, Gao F, et al. Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells. Oncol Rep 2011; 25(6): 1573-9.
[PMID: 21455587]
[19]
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016; 7(1): 13193.
[http://dx.doi.org/10.1038/ncomms13193] [PMID: 27767031]
[20]
Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop J Pharm Res 2014; 13(7): 1169-77.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[21]
Jin K, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 2018; 8(1): 23-33.
[http://dx.doi.org/10.1016/j.apsb.2017.12.002] [PMID: 29872620]
[22]
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2021; 109(2): 415-24.
[http://dx.doi.org/10.1002/JLB.5MR0420-008RR] [PMID: 32967052]
[23]
Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene). Adv Mater 2018; 30(4)1703284
[http://dx.doi.org/10.1002/adma.201703284] [PMID: 29226386]
[24]
Lovell JF, Jin CS, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011; 10(4): 324-32.
[http://dx.doi.org/10.1038/nmat2986] [PMID: 21423187]
[25]
Xu Y, Liang X, Bhattarai P, et al. Enhancing therapeutic efficacy of combined cancer phototherapy by ultrasound-mediated in situ conversion of near-infrared Cyanine/Porphyrin microbubbles into nanoparticles. Adv Funct Mater 2017; 27(48)1704096
[http://dx.doi.org/10.1002/adfm.201704096]
[26]
Sun Y, Mayers BT, Xia Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2002; 2(5): 481-5.
[http://dx.doi.org/10.1021/nl025531v]
[27]
Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2-4): 243-7.
[http://dx.doi.org/10.1016/S0009-2614(98)00277-2]
[28]
Ross A, Muñoz M, Rotstein BH, Suuronen EJ, Alarcon EI. A low cost and open access system for rapid synthesis of large volumes of gold and silver nanoparticles. Sci Rep 2021; 11(1): 5420.
[http://dx.doi.org/10.1038/s41598-021-84896-1] [PMID: 33686164]
[29]
El-Sayed WA, Abbas HAS, Mohamed AM, Abdel-Rahman AAH. ChemInform abstract: Synthesis and antimicrobial activity of new C-Furyl glycosides bearing substituted 1,3,4-oxadiazoles. ChemInform 2012; 43(7)
[30]
Biao L, Tan S, Meng Q, et al. Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials (Basel) 2018; 8(1): 53.
[http://dx.doi.org/10.3390/nano8010053] [PMID: 29361727]
[31]
Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006; 114(3): 343-7.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.017] [PMID: 16876898]
[32]
Perezjuste J, Pastorizasantos I, Lizmarzan L, Mulvaney P. Gold nanorods: Synthesis, characterization and applications. Coord Chem Rev 2005; 249(17-18): 1870-901.
[http://dx.doi.org/10.1016/j.ccr.2005.01.030]
[33]
Ali MRK, Rahman MA, Wu Y, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci USA 2017; 114(15): E3110-8.
[http://dx.doi.org/10.1073/pnas.1619302114] [PMID: 28356516]
[34]
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128(6): 2115-20.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]
[35]
Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 2010; 7(1): 94-104.
[http://dx.doi.org/10.1021/mp9001415] [PMID: 19891496]
[36]
Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008; 269(1): 57-66.
[http://dx.doi.org/10.1016/j.canlet.2008.04.026] [PMID: 18541363]
[37]
Jang B, Park JY, Tung CH, Kim IH, Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011; 5(2): 1086-94.
[http://dx.doi.org/10.1021/nn102722z] [PMID: 21244012]
[38]
Hainfeld JF, O’Connor MJ, Lin P, Qian L, Slatkin DN, Smilowitz HM. Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy. In: Karathanasis E, Ed. PLoS ONE. 2014; 9: p. (2)e88414.
[http://dx.doi.org/10.1371/journal.pone.0088414]
[39]
Park S, Lee WJ, Park S, Choi D, Kim S, Park N. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy. Sci Rep 2019; 9(1): 20180.
[http://dx.doi.org/10.1038/s41598-019-56754-8] [PMID: 31882911]
[40]
Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 2009; 61(6): 457-66.
[http://dx.doi.org/10.1016/j.addr.2009.03.010] [PMID: 19386275]
[41]
Tian EK, Wang Y, Ren R, Zheng W, Liao W. Gold nanoparticle: Recent progress on its antibacterial applications and mechanisms. J Nanomater 2021; 2021: 1-18.
[42]
Pandey S, Thakur M, Mewada A, Anjarlekar D, Mishra N, Sharon M. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: Tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J Mater Chem B Mater Biol Med 2013; 1(38): 4972-82.
[http://dx.doi.org/10.1039/c3tb20761g] [PMID: 32261087]
[43]
Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 2010; 26(8): 5428-34.
[http://dx.doi.org/10.1021/la903893n] [PMID: 20095619]
[44]
Shen S, Tang H, Zhang X, et al. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013; 34(12): 3150-8.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.051] [PMID: 23369218]
[45]
Elbialy NS, Fathy MM. AL-Wafi R, et al. Multifunctional magnetic-gold nanoparticles for efficient combined targeted drug delivery and interstitial photothermal therapy. Int J Pharm 2019; 554: 256-63.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.021] [PMID: 30423414]
[46]
Yamashita S, Fukushima H, Niidome Y, Mori T, Katayama Y, Niidome T. Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods. Langmuir 2011; 27(23): 14621-6.
[http://dx.doi.org/10.1021/la2036746] [PMID: 21988322]
[47]
Bear AS, Kennedy LC, Young JK, et al. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. PLoS One 2013; 8(7)e69073
[http://dx.doi.org/10.1371/journal.pone.0069073] [PMID: 23935927]
[48]
den Brok MHMGM, Sutmuller RPM, van der Voort R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 2004; 64(11): 4024-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3949] [PMID: 15173017]
[49]
Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation. Biochim Biophys Acta 2010; 1805(1): 53-71.
[PMID: 19720113]
[50]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[51]
Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 2008; 27(2): 161-7.
[http://dx.doi.org/10.1038/sj.onc.1210911] [PMID: 18176597]
[52]
Yata T, Takahashi Y, Tan M, et al. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials 2017; 146: 136-45.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.014] [PMID: 28918263]
[53]
Dengler R. Heating up CAR T cells for cancer therapy. The Scientist Magazine® 2021. Available from: https://www.the-scientist.com/sponsored-article/heating-up-car-t-cells-for-cancer-therapy-69173
[54]
Chen Q, Hu Q, Dukhovlinova E, et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv Mater 2019; 31(23)1900192
[http://dx.doi.org/10.1002/adma.201900192] [PMID: 30916367]
[55]
Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, et al. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat Biomed Eng 2021. Available from: https://www.nature.com/articles/s41551-021-00781-2
[http://dx.doi.org/10.1038/s41551-021-00781-2]
[56]
Imura K, Nagahara T, Okamoto H. Plasmon mode imaging of single gold nanorods. J Am Chem Soc 2004; 126(40): 12730-1.
[http://dx.doi.org/10.1021/ja047836c] [PMID: 15469240]
[57]
Choi J, Yang J, Bang D, et al. Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging. Small 2012; 8(5): 746-53.
[http://dx.doi.org/10.1002/smll.201101789] [PMID: 22271594]
[58]
El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett 2005; 5(5): 829-34.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[59]
Wang B, Wang JH, Liu Q, et al. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014; 35(6): 1954-66.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.066] [PMID: 24331707]
[60]
Xiong S, Xiong G, Li Z, et al. Gold nanoparticle-based nanoprobes with enhanced tumor targeting and photothermal/photodynamic response for therapy of osteosarcoma. Nanotechnology 2021; 32(15)155102
[http://dx.doi.org/10.1088/1361-6528/abd816] [PMID: 33395672]
[61]
Yang L, Tseng YT, Suo G, et al. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl Mater Interfaces 2015; 7(9): 5097-106.
[http://dx.doi.org/10.1021/am508117e] [PMID: 25705789]
[62]
Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 2019; 116(37): 18590-6.
[http://dx.doi.org/10.1073/pnas.1906929116] [PMID: 31451630]
[63]
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100(23): 13549-54.
[http://dx.doi.org/10.1073/pnas.2232479100] [PMID: 14597719]
[64]
Riley R, O’Sullivan R, Potocny A, Rosenthal J, Day E. Evaluating nanoshells and a potent biladiene photosensitizer for dual photothermal and photodynamic therapy of triple negative breast cancer cells. Nanomaterials (Basel) 2018; 8(9): 658.
[http://dx.doi.org/10.3390/nano8090658] [PMID: 30149630]
[65]
Bao Z, Liu X, Liu Y, Liu H, Zhao K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. A J of Pharm Sci 2016; 11(3): 349-64.
[http://dx.doi.org/10.1016/j.ajps.2015.11.123]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy