Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Target and Mechanism of Radix Paeoniae Alba on Sjogren’s Syndrome

Author(s): Fangping Wu, Guolin Wu*, Tianyi Li, Wenwen Lu, Tianxiao Fu and Zhenyi Zhang

Volume 26, Issue 6, 2023

Published on: 17 October, 2022

Page: [1224 - 1232] Pages: 9

DOI: 10.2174/1386207325666220823144054

Price: $65

Abstract

Background: Radix Paeoniae Alba is a traditional Chinese herbal medicine. It can accelerate salivary secretion and alleviate the dry mouth of patients with Sjogren’s syndrome (SS). Although it is widely used in clinical treatment, its target and mechanism remain unclear.

Objective: This study aims to analyze the main components of Radix Paeoniae Alba, explore the target genes, and propose the possible mechanism for Radix Paeoniae Alba’s acceleration of salivary secretion.

Methods: The main active components and potential targets of Radix Paeoniae Alba were searched through the TCMSP database. Efforts were made to search for the related genes of Sjogren’s syndrome in OMIM and GeneCards databases. Cytoscape v3.8.0 software was used to link target genes of active components and key genes of the disease. The software Autodock vina1.1.2. was adopted to simulate the interaction between active components and target genes. Human submandibular gland (HSG) cells were used in vitro experiments to verify the results of our analysis.

Results: β-Sitosterol, the main component of Radix Paeoniae Alba, may intervene in the disease through CHRM3. Molecular docking shows β-Sitosterol has a high affinity with CHRM3, and the interaction between CHRM3 and β-Sitosterol is the basis of biological activity. The in vitro experiments showed that β-Sitosterol could significantly up-regulate the mRNA and protein expression levels of both CHRM3 and secretion-related genes in HSG cells.

Conclusion: Our study shows that the chemical components of Radix Paeoniae Alba have a positive effect on the related mechanism of salivary secretion. We found that β-Sitosterol can promote the expression of CHRM3, stimulate salivary secretion, treat Sjogren’s syndrome and potentially improve its prognosis.

Keywords: Sjogren’s syndrome, Radix Paeoniae Alba, β-Sitosterol, CHRM3, Network pharmacology.

Graphical Abstract

[1]
Parisis, D.; Chivasso, C.; Perret, J.; Soyfoo, M.S.; Delporte, C. Current state of knowledge on primary Sjögren’s syndrome, an autoimmune exocrinopathy. J. Clin. Med., 2020, 9(7), 2299.
[http://dx.doi.org/10.3390/jcm9072299] [PMID: 32698400]
[2]
Vivino, F.B.; Carsons, S.E.; Foulks, G.; Daniels, T.E.; Parke, A.; Brennan, M.T.; Forstot, S.L.; Scofield, R.H.; Hammitt, K.M. New treatment guidelines for Sjögren’s disease. Rheum. Dis. Clin. North Am., 2016, 42(3), 531-551.
[http://dx.doi.org/10.1016/j.rdc.2016.03.010] [PMID: 27431353]
[3]
Zhang, L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther., 2020, 207, 107452.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107452] [PMID: 31836457]
[4]
Li, B.; Liu, G.; Liu, R.; He, S.; Li, X.; Huang, L.; Wang, Z.; Li, Y.; Chen, Y.; Yin, H.; Fang, W. Total glucosides of paeony (TGP) alleviates Sjogren’s syndrome through inhibiting inflammatory responses in mice. Phytomedicine, 2020, 71, 153203.
[http://dx.doi.org/10.1016/j.phymed.2020.153203] [PMID: 32402913]
[5]
Yang, X.Z.; Wei, W. CP-25, a compound derived from paeoniflorin: research advance on its pharmacological actions and mechanisms in the treatment of inflammation and immune diseases. Acta Pharmacol. Sin., 2020, 41(11), 1387-1394.
[http://dx.doi.org/10.1038/s41401-020-00510-6] [PMID: 32884075]
[6]
Lu, W.W.; Fu, T.X.; Wang, Q.; Chen, Y.L.; Li, T.Y.; Wu, G.L. The effect of total glucoside of paeony on gut microbiota in NOD mice with Sjögren’s syndrome based on high-throughput sequencing of 16SrRNA gene. Chin. Med., 2020, 15, 61.
[http://dx.doi.org/10.1186/s13020-020-00342-w] [PMID: 32536964]
[7]
Wu, G.L.; Pu, X.H.; Yu, G.Y.; Li, T.Y. Effects of total glucosides of peony on AQP-5 and its mRNA expression in submandibular glands of NOD mice with Sjogren’s syndrome. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(1), 173-178.
[PMID: 25635992]
[8]
Gottenberg, J.E.; Ravaud, P.; Puéchal, X.; Le Guern, V.; Sibilia, J.; Goeb, V.; Larroche, C.; Dubost, J.J.; Rist, S.; Saraux, A.; Devauchelle-Pensec, V.; Morel, J.; Hayem, G.; Hatron, P.; Perdriger, A.; Sene, D.; Zarnitsky, C.; Batouche, D.; Furlan, V.; Benessiano, J.; Perrodeau, E.; Seror, R.; Mariette, X. Effects of hydroxychloroquine on symptomatic improvement in primary Sjögren syndrome: The JOQUER randomized clinical trial. JAMA, 2014, 312(3), 249-258.
[http://dx.doi.org/10.1001/jama.2014.7682] [PMID: 25027140]
[9]
Zhang, H.F.; Hou, P.; Xiao, W.G. Clinical observation on effect of total glucosides of paeony in treating patients with non-systemic involved Sjögren syndrome. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2007, 27(7), 596-598.
[PMID: 17717915]
[10]
Zhou, Y.; Jin, L.; Kong, F.; Zhang, H.; Fang, X.; Chen, Z.; Wang, G.; Li, X.; Li, X. Clinical and immunological consequences of total glucosides of paeony treatment in Sjögren’s syndrome: A randomized controlled pilot trial. Int. Immunopharmacol., 2016, 39, 314-319.
[http://dx.doi.org/10.1016/j.intimp.2016.08.006] [PMID: 27517517]
[11]
Jin, L.; Li, C.; Li, Y.; Wu, B. Clinical efficacy and safety of total glucosides of paeony for primary Sjögren’s syndrome: A systematic review. Evid. Based Complement. Alternat. Med., 2017, 2017, 3242301.
[http://dx.doi.org/10.1155/2017/3242301] [PMID: 28642798]
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[13]
Daina, A.; Michielin, O.; Zoete, V. Swiss Target Prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[14]
Fu, G.; Batchelor, C.; Dumontier, M.; Hastings, J.; Willighagen, E.; Bolton, E. PubChemRDF: Towards the semantic annotation of PubChem compound and substance databases. J. Cheminform., 2015, 7, 34.
[http://dx.doi.org/10.1186/s13321-015-0084-4] [PMID: 26175801]
[15]
UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[16]
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol., 2019, 20(1), 185.
[http://dx.doi.org/10.1186/s13059-019-1758-4] [PMID: 31477170]
[17]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[18]
Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res., 2019, 47(D1), D1038-D1043.
[http://dx.doi.org/10.1093/nar/gky1151] [PMID: 30445645]
[19]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. Gene cards version 3: The human gene integrator. Database (Oxford), 2010, 2010, baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[20]
Sterling, T.; Irwin, J.J. ZINC 15 - Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[21]
wwPDB consortium. Protein data bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res., 2019, 47(D1), D520-D528.
[http://dx.doi.org/10.1093/nar/gky949] [PMID: 30357364]
[22]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[23]
Liu, Y.; Grimm, M.; Dai, W.T.; Hou, M.C.; Xiao, Z.X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol. Sin., 2020, 41(1), 138-144.
[http://dx.doi.org/10.1038/s41401-019-0228-6] [PMID: 31263275]
[24]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[25]
Dawson, L.; Tobin, A.; Smith, P.; Gordon, T. Antimuscarinic antibodies in Sjögren’s syndrome: Where are we, and where are we going? Arthritis Rheum., 2005, 52(10), 2984-2995.
[http://dx.doi.org/10.1002/art.21347] [PMID: 16200578]
[26]
Nguyen, K.H.; Brayer, J.; Cha, S.; Diggs, S.; Yasunari, U.; Hilal, G.; Peck, A.B.; Humphreys-Beher, M.G. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. Arthritis Rheum., 2000, 43(10), 2297-2306.
[http://dx.doi.org/10.1002/1529-0131(200010)43:10<2297:AID-ANR18>3.0.CO;2-X] [PMID: 11037890]
[27]
Gresz, V.; Horvath, A.; Gera, I.; Nielsen, S.; Zelles, T. Immunolocalization of AQP5 in resting and stimulated normal labial glands and in Sjögren’s syndrome. Oral Dis., 2015, 21(1), e114-e120.
[http://dx.doi.org/10.1111/odi.12239] [PMID: 24661359]
[28]
Haga, T. Molecular properties of muscarinic acetylcholine receptors. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2013, 89(6), 226-256.
[http://dx.doi.org/10.2183/pjab.89.226] [PMID: 23759942]
[29]
Li, J.; Ha, Y.M.; Kü, N.Y.; Choi, S.Y.; Lee, S.J.; Oh, S.B.; Kim, J.S.; Lee, J.H.; Lee, E.B.; Song, Y.W.; Park, K. Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren’s syndrome. Lab. Invest., 2004, 84(11), 1430-1438.
[http://dx.doi.org/10.1038/labinvest.3700173] [PMID: 15448705]
[30]
Krane, C.M.; Melvin, J.E.; Nguyen, H.V.; Richardson, L.; Towne, J.E.; Doetschman, T.; Menon, A.G. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J. Biol. Chem., 2001, 276(26), 23413-23420.
[http://dx.doi.org/10.1074/jbc.M008760200] [PMID: 11290736]
[31]
Ma, T.; Song, Y.; Gillespie, A.; Carlson, E.J.; Epstein, C.J.; Verkman, A.S. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem., 1999, 274(29), 20071-20074.
[http://dx.doi.org/10.1074/jbc.274.29.20071] [PMID: 10400615]
[32]
Janeček, Š.; Svensson, B.; MacGregor, E.A. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci., 2014, 71(7), 1149-1170.
[http://dx.doi.org/10.1007/s00018-013-1388-z] [PMID: 23807207]
[33]
Manconi, B.; Castagnola, M.; Cabras, T.; Olianas, A.; Vitali, A.; Desiderio, C.; Sanna, M.T.; Messana, I. The intriguing heterogeneity of human salivary proline-rich proteins: Short title: Salivary proline-rich protein species. J. Proteomics, 2016, 134, 47-56.
[http://dx.doi.org/10.1016/j.jprot.2015.09.009] [PMID: 26375204]
[34]
Hwang, S.L.; Kim, H.N.; Jung, H.H.; Kim, J.E.; Choi, D.K.; Hur, J.M.; Lee, J.Y.; Song, H.; Song, K.S.; Huh, T.L. Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2008, 377(4), 1253-1258.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.136] [PMID: 18992226]
[35]
Wong, H.S.; Chen, N.; Leong, P.K.; Ko, K.M. β-sitosterol enhances cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration: Protection against oxidant injury in H9c2 cells and rat hearts. Phytother. Res., 2014, 28(7), 999-1006.
[http://dx.doi.org/10.1002/ptr.5087] [PMID: 24281915]
[36]
Shi, C.; Luo, X.; Wang, J.; Long, D. Incorporation of β-sitosterol into the membrane prevents tumor necrosis factor-α-induced nuclear factor-κB activation and gonadotropin-releasing hormone decline. Steroids, 2015, 96, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2014.12.014] [PMID: 25554578]
[37]
Lampronti, I.; Dechecchi, M.C.; Rimessi, A.; Bezzerri, V.; Nicolis, E.; Guerrini, A.; Tacchini, M.; Tamanini, A.; Munari, S.; D’Aversa, E.; Santangelo, A.; Lippi, G.; Sacchetti, G.; Pinton, P.; Gambari, R.; Agostini, M.; Cabrini, G. β-sitosterol reduces the expression of chemotactic cytokine genes in cystic fibrosis bronchial epithelial cells. Front. Pharmacol., 2017, 8, 236.
[http://dx.doi.org/10.3389/fphar.2017.00236] [PMID: 28553226]
[38]
Rajavel, T.; Packiyaraj, P.; Suryanarayanan, V.; Singh, S.K.; Ruckmani, K.; Pandima Devi, K. β-sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci. Rep., 2018, 8(1), 2071.
[http://dx.doi.org/10.1038/s41598-018-20311-6] [PMID: 29391428]
[39]
Berardicurti, O.; Ruscitti, P.; Cipriani, P.; Ciccia, F.; Liakouli, V.; Guggino, G.; Carubbi, F.; Di Benedetto, P.; Triolo, G.; Giacomelli, R. Cardiovascular disease in primary Sjögren’s syndrome. Rev. Recent Clin. Trials, 2018, 13(3), 164-169.
[http://dx.doi.org/10.2174/1574887113666180315130336] [PMID: 29542415]
[40]
Lodde, B.M.; Sankar, V.; Kok, M.R.; Leakan, R.A.; Tak, P.P.; Pillemer, S.R. Serum lipid levels in Sjögren’s syndrome. Rheumatology (Oxford), 2006, 45(4), 481-484.
[http://dx.doi.org/10.1093/rheumatology/kei190] [PMID: 16303821]
[41]
Karjalainen, S.; Sewón, L.; Söderling, E.; Larsson, B.; Johansson, I.; Simell, O.; Lapinleimu, H.; Seppänen, R. Salivary cholesterol of healthy adults in relation to serum cholesterol concentration and oral health. J. Dent. Res., 1997, 76(10), 1637-1643.
[http://dx.doi.org/10.1177/00220345970760100401] [PMID: 9326895]
[42]
Cheng, Y.; Chen, Y.; Li, J.; Qu, H.; Zhao, Y.; Wen, C.; Zhou, Y. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers. Poult. Sci., 2020, 99(3), 1400-1408.
[http://dx.doi.org/10.1016/j.psj.2019.10.025] [PMID: 32111314]
[43]
Scarselli, M.; Li, B.; Kim, S.K.; Wess, J. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J. Biol. Chem., 2007, 282(10), 7385-7396.
[http://dx.doi.org/10.1074/jbc.M610394200] [PMID: 17213190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy