Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Five Years of Gene Networks Modeling in Single-cell RNA-sequencing Studies: Current Approaches and Outstanding Challenges

Author(s): Samarendra Das*, Upendra Pradhan and Shesh N. Rai*

Volume 17, Issue 10, 2022

Published on: 10 October, 2022

Page: [888 - 908] Pages: 21

DOI: 10.2174/1574893617666220823114108

Price: $65

Abstract

Single-cell RNA-sequencing (scRNA-seq) is a rapidly growing field in transcriptomics, which generates a tremendous amount of gene expression data at the single-cell level. Improved statistical approaches and tools are required to extract informative knowledge from such data. Gene network modeling and analysis is one such approach for downstream analysis of scRNA-seq data. Therefore, newer and innovative methods have been introduced in the literature. These approaches greatly vary in their utility, basic statistical concepts, models fitted to the data, etc. Therefore, we present a comprehensive overview of the available approaches for gene network modeling and analysis in single-cell studies, along with their limitations. We also classify the approaches based on different statistical principles and present a class-wise review. We discuss the limitations that are specific to each class of approaches and how they are addressed by subsequent classes of methods. We identify several biological and methodological challenges that must be addressed to enable the development of novel and innovative single-cell gene network inference approaches and tools. These new approaches will be able to analyze the singlecell data efficiently and accurately to better understand the biological systems, increasing the specificity, sensitivity, utility, and relevance of single-cell studies. Furthermore, this review will serve as a catalog and provide guidelines to genome researchers and experimental biologists for objectively choosing the better gene network modeling approach.

Keywords: Single-cell, scRNA-seq, Gene Networks, Models, Classification, Statistical Approach, Challenges

Graphical Abstract

[1]
Sandberg R. Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 2014; 11(1): 22-4.
[http://dx.doi.org/10.1038/nmeth.2764] [PMID: 24524133]
[2]
Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 2016; 17(1): 63.
[http://dx.doi.org/10.1186/s13059-016-0927-y] [PMID: 27052890]
[3]
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell 2015; 58(4): 610-20.
[http://dx.doi.org/10.1016/j.molcel.2015.04.005] [PMID: 26000846]
[4]
Trapnell C. Defining cell types and states with single-cell genomics. Genome Res 2015; 25(10): 1491-8.
[http://dx.doi.org/10.1101/gr.190595.115] [PMID: 26430159]
[5]
Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011; 21(7): 1160-7.
[http://dx.doi.org/10.1101/gr.110882.110] [PMID: 21543516]
[6]
Tung P-Y, Blischak JD, Hsiao CJ, et al. Batch effects and the effective design of single-cell gene expression studies. Sci Rep 2017; 7(1): 39921.
[http://dx.doi.org/10.1038/srep39921] [PMID: 28045081]
[7]
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015; 16(3): 133-45.
[http://dx.doi.org/10.1038/nrg3833] [PMID: 25628217]
[8]
Das S, Rai A, Merchant ML, Cave MC, Rai SN. A comprehensive survey of statistical approaches for differential expression analysis in single-cell RNA sequencing studies. Genes (Basel) 2021; 12(12): 1947.
[http://dx.doi.org/10.3390/genes12121947] [PMID: 34946896]
[9]
Nguyen H, Tran D, Tran B, Pehlivan B, Nguyen T. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief Bioinform 2021; 22(3): bbaa190.
[http://dx.doi.org/10.1093/bib/bbaa190] [PMID: 34020546]
[10]
Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics 2018; 19(1): 232.
[http://dx.doi.org/10.1186/s12859-018-2217-z] [PMID: 29914350]
[11]
Qiu X, Rahimzamani A, Wang L, et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst 2020; 10(3): 265-274.e11.
[http://dx.doi.org/10.1016/j.cels.2020.02.003] [PMID: 32135093]
[12]
Aubin-Frankowski P-C, Vert J-P. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics 2020; 36(18): 4774-80.
[http://dx.doi.org/10.1093/bioinformatics/btaa576] [PMID: 33026066]
[13]
Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods 2020; 17(2): 147-54.
[http://dx.doi.org/10.1038/s41592-019-0690-6] [PMID: 31907445]
[14]
Cha J, Lee I. Single-cell network biology for resolving cellular heterogeneity in human diseases. Exp Mol Med 2020; 52(11): 1798-808.
[http://dx.doi.org/10.1038/s12276-020-00528-0] [PMID: 33244151]
[15]
Matsumoto H, Kiryu H, Furusawa C, et al. SCODE: An efficient regulatory network inference algorithm from single-cell RNA-seq during differentiation. Bioinformatics 2017; 33(15): 2314-21.
[http://dx.doi.org/10.1093/bioinformatics/btx194] [PMID: 28379368]
[16]
Das S, Meher PK, Rai A, Bhar LM, Mandal BN. Statistical approaches for gene selection, hub gene identification and module interaction in gene co-expression network analysis: An application to aluminum stress in soybean (glycine max L.). PLoS One 2017; 12(1): e0169605.
[http://dx.doi.org/10.1371/journal.pone.0169605] [PMID: 28056073]
[17]
Stumpf MPH, Porter MA. Mathematics. Critical truths about power laws. Science 2012; 335(6069): 665-6.
[http://dx.doi.org/10.1126/science.1216142] [PMID: 22323807]
[18]
Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 2015; 31(12): i89-96.
[http://dx.doi.org/10.1093/bioinformatics/btv257] [PMID: 26072513]
[19]
Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 2015; 31(18): 2989-98.
[http://dx.doi.org/10.1093/bioinformatics/btv325] [PMID: 26002886]
[20]
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010; 5(9): e12776.
[http://dx.doi.org/10.1371/journal.pone.0012776] [PMID: 20927193]
[21]
Zheng X, Huang Y, Zou X. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data. PLOS Comput Biol 2020; 16(7): e1007471.
[http://dx.doi.org/10.1371/journal.pcbi.1007471] [PMID: 32716923]
[22]
Jiao Y, Jin Q, Lu X, Wang W. Preconditioned alternating direction method of multipliers for inverse problems with constraints. Inverse Probl 2017; 33(2): 25004.
[http://dx.doi.org/10.1088/1361-6420/33/2/025004]
[23]
Matsumoto H, Kiryu H. SCOUP: A probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation. BMC Bioinformatics 2016; 17(1): 232.
[http://dx.doi.org/10.1186/s12859-016-1109-3] [PMID: 27277014]
[24]
Das S, Pandey P, Rai A, Mohapatra C. A computational system biology approach to construct gene regulatory networks for salinity response in rice (Oryza sativa). Indian J Agric Sci 2015; 85: 1546-52.
[25]
Papili Gao N, Ud-Dean SMM, Gandrillon O, Gunawan R. Sincerities: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 2018; 34(2): 258-66.
[http://dx.doi.org/10.1093/bioinformatics/btx575] [PMID: 28968704]
[26]
Deshpande A, Chu L-F, Stewart R, Gitter A. Network inference with Granger causality ensembles on single-cell transcriptomics. Cell Rep 2022; 38(6): 110333.
[http://dx.doi.org/10.1016/j.celrep.2022.110333] [PMID: 35139376]
[27]
Das S, Rai A, Mishra DC, Rai SN. Statistical approach for selection of biologically informative genes. Gene 2018; 655: 71-83.
[http://dx.doi.org/10.1016/j.gene.2018.02.044] [PMID: 29458166]
[28]
Specht AT, Li J. LEAP: Constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 2017; 33(5): 764-6.
[http://dx.doi.org/10.1093/bioinformatics/btw729] [PMID: 27993778]
[29]
Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 2017; 5(3): 251-267.e3.
[http://dx.doi.org/10.1016/j.cels.2017.08.014] [PMID: 28957658]
[30]
Liu H, Li P, Zhu M, Wang X, Lu J, Yu T. Nonlinear network reconstruction from gene expression data using marginal dependencies measured by DCOL. PLoS One 2016; 11(7): e0158247.
[http://dx.doi.org/10.1371/journal.pone.0158247] [PMID: 27380516]
[31]
Sohn I, Owzar K, George SL, Kim S, Jung SH. A permutation-based multiple testing method for time-course microarray experiments. BMC Bioinformatics 2009; 10(1): 336.
[http://dx.doi.org/10.1186/1471-2105-10-336] [PMID: 19832992]
[32]
Das S, Rai SN. Statistical approach for biologically relevant gene selection from high-throughput gene expression data. Entropy (Basel) 2020; 22(11): E1205.
[http://dx.doi.org/10.3390/e22111205] [PMID: 33286973]
[33]
Knijnenburg TA, Wessels LFA, Reinders MJT, Shmulevich I. Fewer permutations, more accurate P-values. Bioinformatics 2009; 25(12): i161-8.
[http://dx.doi.org/10.1093/bioinformatics/btp211] [PMID: 19477983]
[34]
Cordero P, Stuart JM. Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories. Pac Symp Biocomput 2017; 22: 576-87.
[http://dx.doi.org/10.1142/9789813207813_0053] [PMID: 27897008]
[35]
Aibar S, González-Blas CB, Moerman T, et al. SCENIC: Single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083-6.
[http://dx.doi.org/10.1038/nmeth.4463] [PMID: 28991892]
[36]
Hartmann K, Seweryn M, Handelman SK. Rempała GA, Sadee W. Non-linear interactions between candidate genes of myocardial infarction revealed in mRNA expression profiles. BMC Genomics 2016; 17(1): 738.
[http://dx.doi.org/10.1186/s12864-016-3075-6] [PMID: 27640124]
[37]
Faith JJ, Hayete B, Thaden JT, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007; 5(1): e8.
[http://dx.doi.org/10.1371/journal.pbio.0050008] [PMID: 17214507]
[38]
Kim J. T Jakobsen S, Natarajan KN, Won KJ. TENET: Gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res 2021; 49(1): e1-1.
[http://dx.doi.org/10.1093/nar/gkaa1014] [PMID: 33170214]
[39]
Yu T, Peng H. Hierarchical clustering of high-throughput expression data based on general dependences. IEEE/ACM Trans Comput Biol Bioinformatics 2013; 10(4): 1080-5.
[http://dx.doi.org/10.1109/TCBB.2013.99] [PMID: 24334400]
[40]
Woodhouse S, Piterman N, Wintersteiger CM, Göttgens B, Fisher J. SCNS: A graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst Biol 2018; 12(1): 59.
[http://dx.doi.org/10.1186/s12918-018-0581-y] [PMID: 29801503]
[41]
Moignard V, Woodhouse S, Haghverdi L, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 2015; 33(3): 269-76.
[http://dx.doi.org/10.1038/nbt.3154] [PMID: 25664528]
[42]
Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Göttgens B. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci USA 2017; 114(23): 5822-9.
[http://dx.doi.org/10.1073/pnas.1610609114] [PMID: 28584094]
[43]
Lim CY, Wang H, Woodhouse S, et al. BTR: Training asynchronous Boolean models using single-cell expression data. BMC Bioinformatics 2016; 17(1): 355.
[http://dx.doi.org/10.1186/s12859-016-1235-y] [PMID: 27600248]
[44]
Yuan Y, Bar-Joseph Z. Deep learning for inferring gene relationships from single-cell expression data. Proc Natl Acad Sci USA 2019; 116(52): 27151-8.
[http://dx.doi.org/10.1073/pnas.1911536116] [PMID: 31822622]
[45]
Osorio D, Zhong Y, Li G, Huang JZ, Cai JJ. Sctenifoldnet: A machine learning workflow for constructing and comparing transcriptome-wide gene regulatory networks from single-cell data. Patterns 2020; 1(9): 100139.
[http://dx.doi.org/10.1016/j.patter.2020.100139] [PMID: 33336197]
[46]
Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biol 2020; 21(1): 190.
[http://dx.doi.org/10.1186/s13059-020-02100-5] [PMID: 32746932]
[47]
Fan Y, Ma X. Gene regulatory network inference using 3D convolutional neural network. Thirty-Fifth AAAI Conf Artif Intell 2021; 99-106.
[48]
Shu H, Zhou J, Lian Q, et al. Modeling gene regulatory networks using neural network architectures. Nat Comput Sci 2021; 1(7): 491-501.
[http://dx.doi.org/10.1038/s43588-021-00099-8]
[49]
Osorio D, Zhong Y, Li G, et al. scTenifoldKnk: A machine learning workflow performing virtual knockout experiments on single-cell gene regulatory networks. Patterns 2022; 3(3): 100434.
[http://dx.doi.org/10.1016/j.patter.2022.100434] [PMID: 35510185]
[50]
Glazko GV, Emmert-Streib F. Unite and conquer: Univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics 2009; 25(18): 2348-54.
[http://dx.doi.org/10.1093/bioinformatics/btp406] [PMID: 19574285]
[51]
Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 2010; 5(10): e13397.
[http://dx.doi.org/10.1371/journal.pone.0013397] [PMID: 21049040]
[52]
Das S, McClain CJ, Rai SN. Fifteen years of gene set analysis for high-throughput genomic data: A review of statistical approaches and future challenges. Entropy (Basel) 2020; 22(4): 427.
[http://dx.doi.org/10.3390/e22040427] [PMID: 33286201]
[53]
Das S, Rai SN. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data. Genomics 2021; 113(3): 1308-24.
[http://dx.doi.org/10.1016/j.ygeno.2021.02.014] [PMID: 33662531]
[54]
Hou W, Ji Z, Ji H, Hicks SC. A systematic evaluation of single-cell RNA-sequencing imputation methods. Genome Biol 2020; 21(1): 218.
[http://dx.doi.org/10.1186/s13059-020-02132-x] [PMID: 32854757]
[55]
Ye C, Speed TP, Salim A. DECENT: Differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data. Bioinformatics 2019; 35(24): 5155-62.
[http://dx.doi.org/10.1093/bioinformatics/btz453] [PMID: 31197307]
[56]
Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 2019; 20(5): 273-82.
[http://dx.doi.org/10.1038/s41576-018-0088-9] [PMID: 30617341]
[57]
Wang Y, Wu H, Yu T. Differential gene network analysis from single cell RNA-seq. J Genet Genomics 2017; 44(6): 331-4.
[http://dx.doi.org/10.1016/j.jgg.2017.03.001] [PMID: 28642063]
[58]
Sulaimanov N, Kumar S, Burdet F, Ibberson M, Pagni M, Koeppl H. Inferring gene expression networks with hubs using a degree weighted Lasso approach. Bioinformatics 2019; 35(6): 987-94.
[http://dx.doi.org/10.1093/bioinformatics/bty716] [PMID: 30165436]
[59]
Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLOS Comput Biol 2008; 4(8): e1000117.
[http://dx.doi.org/10.1371/journal.pcbi.1000117] [PMID: 18704157]
[60]
Kang Y, Thieffry D, Cantini L. Evaluating the reproducibility of single-cell gene regulatory network inference algorithms. Front Genet 2021; 12: 617282.
[http://dx.doi.org/10.3389/fgene.2021.617282] [PMID: 33828580]
[61]
Hill SM, Heiser LM, Cokelaer T, et al. Inferring causal molecular networks: Empirical assessment through a community-based effort. Nat Methods 2016; 13(4): 310-8.
[http://dx.doi.org/10.1038/nmeth.3773] [PMID: 26901648]
[62]
Miao Z, Zhang X. Differential expression analyses for single-cell RNA-Seq: Old questions on new data. Quant Biol 2016; 4(4): 243-60.
[http://dx.doi.org/10.1007/s40484-016-0089-7]
[63]
Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform 2017; 18(5): 735-43.
[http://dx.doi.org/10.1093/bib/bbw057] [PMID: 27373736]
[64]
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol Syst Biol 2019; 15(6): e8746.
[http://dx.doi.org/10.15252/msb.20188746] [PMID: 31217225]
[65]
Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 2017; 14(9): 865-8.
[http://dx.doi.org/10.1038/nmeth.4380] [PMID: 28759029]
[66]
Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 2019; 37(12): 1452-7.
[http://dx.doi.org/10.1038/s41587-019-0290-0] [PMID: 31611697]
[67]
Cao J, Cusanovich DA, Ramani V, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 2018; 361(6409): 1380-5.
[http://dx.doi.org/10.1126/science.aau0730] [PMID: 30166440]
[68]
Mimitou EP, Lareau CA, Chen KY, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol 2021; 39(10): 1246-58.
[http://dx.doi.org/10.1038/s41587-021-00927-2] [PMID: 34083792]
[69]
Cui C, Shu W, Li P. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Front Cell Dev Biol 2016; 4: 89.
[http://dx.doi.org/10.3389/fcell.2016.00089] [PMID: 27656642]
[70]
Chen X, Litzenburger UM, Wei Y, et al. Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. Nat Commun 2018; 9(1): 4590.
[http://dx.doi.org/10.1038/s41467-018-07115-y] [PMID: 30389926]
[71]
Bendall SC, Davis KL, Amir AD, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014; 157(3): 714-25.
[http://dx.doi.org/10.1016/j.cell.2014.04.005] [PMID: 24766814]
[72]
Moris N, Pina C, Arias AM. Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 2016; 17(11): 693-703.
[http://dx.doi.org/10.1038/nrg.2016.98] [PMID: 27616569]
[73]
Iqbal J, Sun L, Zaidi M. Complexity in signal transduction. Ann N Y Acad Sci 2010; 1192(1): 238-44.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05388.x] [PMID: 20392242]
[74]
Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 1998; 392(6679): 933-6.
[http://dx.doi.org/10.1038/31960] [PMID: 9582075]
[75]
Gilman AG, Simon MI, Bourne HR, et al. Overview of the alliance for cellular signaling. Nature 2002; 420(6916): 703-6.
[http://dx.doi.org/10.1038/nature01304] [PMID: 12478301]
[76]
Chan TE, Pallaseni AV, Babtie AC, McEwen KR, Stumpf MPH. Empirical bayes meets information theoretical network reconstruction from single cell data. bioRxiv 2018.
[http://dx.doi.org/10.1101/264853]
[77]
Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: A pipeline for single-cell RNA-seq profiling analysis. PLOS Comput Biol 2015; 11(11): e1004575.
[http://dx.doi.org/10.1371/journal.pcbi.1004575] [PMID: 26600239]
[78]
Gan Y, Xin Y, Hu X, Zou G. Inferring gene regulatory network from single-cell transcriptomic data by integrating multiple prior networks. Comput Biol Chem 2021; 93: 107512.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107512] [PMID: 34044202]
[79]
Van de Sande B, Flerin C, Davie K, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc 2020; 15(7): 2247-76.
[http://dx.doi.org/10.1038/s41596-020-0336-2] [PMID: 32561888]
[80]
Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 2018; 34(6): 964-70.
[http://dx.doi.org/10.1093/bioinformatics/btx605] [PMID: 29028984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy