Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

Role of Oxidative Stress in Pathophysiological Progression of Schizophrenia

Author(s): Shvetank Bhatt*, Tanuj Upadhyay, CR Patil, K. Sreedhara R. Pai, Dinesh Kumar Chellappan and Kamal Dua

Volume 19, Issue 1, 2023

Published on: 09 September, 2022

Page: [11 - 27] Pages: 17

DOI: 10.2174/2666082218666220822154558

Price: $65

Abstract

Background: Oxidative Stress (OS) is a chief contributing factor to the pathological advancement of Schizophrenia (SCZ). In recent years, OS has emerged as an important aspect in SCZ research and provides abundant opportunities and expectations for a better understanding of its pathophysiology, which may lead to novel treatment strategies.

Introduction: The increased OS and formation of Reactive Oxygen Species (ROS) leads to damage to cellular macromolecules. The excessive OS is associated with several physiological processes, such as dysfunction of mitochondria and neuroglia, inflammation, underactive Nmethyl- D-aspartate (NMDA) receptors, and the abnormalities of fast-spiking Gamma- Aminobutyric Acid (GABA) interneurons.

Methods: The methods adopted for the study are mainly based on the secondary search through a systemic literature review. The role of various anti-oxidants, including vitamins, is discussed in the reduction of SCZ.

Results: Various preclinical and clinical studies suggest the involvement of OS and ROS in the progression of the disease. Recent human trials have shown the treatment with antioxidants to be effective in ameliorating symptoms and delaying the progression of SCZ pathology. The studies have demonstrated that innate and dietary antioxidants exert beneficial effects by reducing the severity of Positive Symptoms (PS) and/or Negative Symptoms (NS) of SCZ.

Conclusion: The present review critically evaluates the effect of antioxidants and highlights the role of OS in SCZ.

Keywords: Catalase, cytokines, NMDA, reactive oxygen species, resveratrol, schizophrenia.

Graphical Abstract

[1]
National Institute of Mental Health (NIMH); Schizophrenia. Available from: nimh.nih.gov/health/topics/schizophrenia (Accessed 22 November 2021).
[2]
Schizophrenia in adults: Epidemiology and pathogenesis. Available from: uptodate.com/contents/schizophrenia-in-adultsepidemiology-and-pathogenesis (Accessed 22 November 2021).
[3]
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: Overview and treatment options. P&T 2014; 39(9): 638-45.
[PMID: 25210417]
[4]
Schmidt CW. Environmental connections: A deeper look into mental illness Environ Health Perspect 2007; 115(8): A404-A410, A406-A410.
[http://dx.doi.org/10.1289/ehp.115-a404] [PMID: 17687431]
[5]
Harrison PJ. Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol 2015; 29(2): 85-96.
[http://dx.doi.org/10.1177/0269881114553647] [PMID: 25315827]
[6]
Dale MM, Rang HP. Edinburgh Churchill Livingstone 9th ed Rang & Dale's Pharmacology. 2007.
[7]
Tamminga CA, Medoff DR. The biology of schizophrenia. Dialogues Clin Neurosci 2000; 2(4): 339-48.
[http://dx.doi.org/10.31887/DCNS.2000.2.4/ctamminga] [PMID: 22033552]
[8]
Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49(1-2): 1-52.
[http://dx.doi.org/10.1016/S0920-9964(01)00163-3] [PMID: 11343862]
[9]
Woody RC, Bolyard K, Eisenhauer G, Altschuler L. CT scan and MRI findings in a child with schizophrenia. J Child Neurol 1987; 2(2): 105-10.
[http://dx.doi.org/10.1177/088307388700200205] [PMID: 3598138]
[10]
Buckley PF. Neuroimaging of schizophrenia: Structural abnormalities and pathophysiological implications. Neuropsychiatr Dis Treat 2005; 1(3): 193-204.
[PMID: 18568069]
[11]
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 2012; 17(12): 1206-27.
[http://dx.doi.org/10.1038/mp.2012.47] [PMID: 22584864]
[12]
Brisch R, Saniotis A, Wolf R, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry 2014; 5: 47.
[PMID: 24904434]
[13]
Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry 2004; 12(6): 305-20.
[http://dx.doi.org/10.1080/10673220490910844] [PMID: 15764467]
[14]
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies. Ann N Y Acad Sci 2015; 1338(1): 38-57.
[http://dx.doi.org/10.1111/nyas.12547] [PMID: 25315318]
[15]
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 2019; 73(5): 204-15.
[http://dx.doi.org/10.1111/pcn.12823] [PMID: 30666759]
[16]
Meltzer HY. The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999; 21(2): 106S-15S.
[http://dx.doi.org/10.1016/S0893-133X(99)00046-9] [PMID: 10432496]
[17]
Scarr E. Muscarinic receptors: Their roles in disorders of the central nervous system and potential as therapeutic targets. CNS Neurosci Ther 2012; 18(5): 369-79.
[http://dx.doi.org/10.1111/j.1755-5949.2011.00249.x] [PMID: 22070219]
[18]
Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry 2015; 2(3): 258-70.
[http://dx.doi.org/10.1016/S2215-0366(14)00122-9] [PMID: 26359903]
[19]
Pearlson GD, Folley BS. Schizophrenia, psychiatric genetics, and Darwinian psychiatry: An evolutionary framework. Schizophr Bull 2008; 34(4): 722-33.
[http://dx.doi.org/10.1093/schbul/sbm130] [PMID: 18033774]
[20]
Lakhan SE, Vieira KF. Schizophrenia pathophysiology: Are we any closer to a complete model? Ann Gen Psychiatry 2009; 8: 12.
[http://dx.doi.org/10.1186/1744-859X-8-12] [PMID: 19445674]
[21]
Schiavone S, Jaquet V, Trabace L, Krause KH. Severe life stress and oxidative stress in the brain: From animal models to human pathology. Antioxid Redox Signal 2013; 18(12): 1475-90.
[http://dx.doi.org/10.1089/ars.2012.4720] [PMID: 22746161]
[22]
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: An integrative view. Antioxid Redox Signal 2011; 15(7): 2011-35.
[http://dx.doi.org/10.1089/ars.2010.3603] [PMID: 21126177]
[23]
Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull 2009; 35(2): 383-402.
[http://dx.doi.org/10.1093/schbul/sbn135] [PMID: 19011234]
[24]
Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 2021; 28(7): 2029-44.
[http://dx.doi.org/10.1038/s41418-021-00814-y] [PMID: 34099897]
[25]
Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today 2020; 25(7): 1270-6.
[http://dx.doi.org/10.1016/j.drudis.2020.05.001] [PMID: 32404275]
[26]
Ng A, Tam WW, Zhang MW, et al. IL-1β IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis. Sci Rep 2018; 8(1): 12050.
[http://dx.doi.org/10.1038/s41598-018-30487-6] [PMID: 30104698]
[27]
Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun 2020; 87: 901-9.
[http://dx.doi.org/10.1016/j.bbi.2020.02.010] [PMID: 32113908]
[28]
Correll CU, Schooler NR. Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat 2020; 16: 519-34.
[http://dx.doi.org/10.2147/NDT.S225643] [PMID: 32110026]
[29]
Mitra S, Mahintamani T, Kavoor AR, Nizamie SH. Negative symptoms in schizophrenia. Ind Psychiatry J 2016; 25(2): 135-44.
[http://dx.doi.org/10.4103/ipj.ipj_30_15] [PMID: 28659691]
[30]
Maj M, van Os J, De Hert M, et al. The clinical characterization of the patient with primary psychosis aimed at personalization of management. World Psychiatry 2021; 20(1): 4-33.
[http://dx.doi.org/10.1002/wps.20809] [PMID: 33432763]
[31]
Elis O, Caponigro JM, Kring AM. Psychosocial treatments for negative symptoms in schizophrenia: Current practices and future directions. Clin Psychol Rev 2013; 33(8): 914-28.
[http://dx.doi.org/10.1016/j.cpr.2013.07.001] [PMID: 23988452]
[32]
American Psychiatric Association. Schizophrenia and other psychotic disorders. In: Diagnostic and Statistical Manual of Mental Disorders. 5th ed., Washington, DC 2013; pp. 89-122.
[33]
Byrne P. Managing the acute psychotic episode. BMJ 2007; 334(7595): 686-92.
[http://dx.doi.org/10.1136/bmj.39148.668160.80] [PMID: 17395949]
[34]
Table 3.22, DSM-IV to DSM-5 Schizophrenia Comparison - Impact of the DSM-IV to DSM-5 Changes on the National Survey on Drug Use and Health - NCBI Bookshelf. Available from: nlm.nih.gov (Accessed November 23, 2021).
[35]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[36]
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[37]
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev 2021; 2021: 8881770.
[http://dx.doi.org/10.1155/2021/8881770] [PMID: 33552387]
[38]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[39]
Raichle ME, Gusnard DA. Appraising the brain’s energy budget. Proc Natl Acad Sci USA 2002; 99(16): 10237-9.
[http://dx.doi.org/10.1073/pnas.172399499] [PMID: 12149485]
[40]
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016; 2016: 1245049.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[41]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[42]
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24(10): R453-62.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[43]
Rosen BM, Percec V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem Rev 2009; 109(11): 5069-119.
[http://dx.doi.org/10.1021/cr900024j] [PMID: 19817375]
[44]
Sato A, Okada M, Shibuya K, et al. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res (Amst) 2014; 12(1): 119-31.
[http://dx.doi.org/10.1016/j.scr.2013.09.012] [PMID: 24185179]
[45]
Frei B. Reactive oxygen species and antioxidant vitamins: Mechanisms of action. Am J Med 1994; 97(3A) (Suppl. 1): 5S-13S.
[http://dx.doi.org/10.1016/0002-9343(94)90292-5] [PMID: 8085584]
[46]
Mahadik SP, Mukherjee S. Free radical pathology and antioxidant defense in schizophrenia: A review. Schizophr Res 1996; 19(1): 1-17.
[http://dx.doi.org/10.1016/0920-9964(95)00049-6] [PMID: 9147491]
[47]
Jorgensen A, Broedbaek K, Fink-Jensen A, et al. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia. Psychiatry Res 2013; 209(3): 417-23.
[http://dx.doi.org/10.1016/j.psychres.2013.01.033] [PMID: 23465294]
[48]
Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol 2011; 9(2): 301-12.
[http://dx.doi.org/10.2174/157015911795596595] [PMID: 22131939]
[49]
Chowdari KV, Bamne MN, Nimgaonkar VL. Genetic association studies of antioxidant pathway genes and schizophrenia. Antioxid Redox Signal 2011; 15(7): 2037-45.
[http://dx.doi.org/10.1089/ars.2010.3508] [PMID: 20673164]
[50]
Gravina P, Spoletini I, Masini S, et al. Genetic polymorphisms of glutathione S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia. Psychiatry Res 2011; 187(3): 454-6.
[http://dx.doi.org/10.1016/j.psychres.2010.10.008] [PMID: 21093063]
[51]
Gysin R, Kraftsik R, Sandell J, et al. Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence. Proc Natl Acad Sci USA 2007; 104(42): 16621-6.
[http://dx.doi.org/10.1073/pnas.0706778104] [PMID: 17921251]
[52]
Xin L, Mekle R, Fournier M, et al. Genetic polymorphism associated prefrontal glutathione and its coupling with brain glutamate and peripheral redox status in early psychosis. Schizophr Bull 2016; 42(5): 1185-96.
[http://dx.doi.org/10.1093/schbul/sbw038] [PMID: 27069063]
[53]
Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013; 381(9875): 1371-9.
[http://dx.doi.org/10.1016/S0140-6736(12)62129-1] [PMID: 23453885]
[54]
Michels S, Wöhr M, Schwarting RK, Culmsee C. Psychiatric risk gene Cacna1c determines mitochondrial resilience against oxidative stress in neurons. Cell Death Dis 2018; 9(6): 645.
[http://dx.doi.org/10.1038/s41419-018-0676-9] [PMID: 29844355]
[55]
Lazo-de-la-Vega-Monroy ML, Fernandez-Mejia C. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions. In: Morales- Gonzalez JA, Ed. Oxidative Stress and Chronic Degenerative Diseases. London: IntechOpen 2013; pp. 209-32.
[http://dx.doi.org/10.5772/51788]
[56]
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 2018; 63(1): 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[57]
Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 2009; 55(1): 1-23.
[http://dx.doi.org/10.1007/s12013-009-9054-7] [PMID: 19548119]
[58]
Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr 2004; 134(3): 489-92.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[59]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[60]
Brown HE, Roffman JL. Vitamin supplementation in the treatment of schizophrenia. CNS Drugs 2014; 28(7): 611-22.
[http://dx.doi.org/10.1007/s40263-014-0172-4] [PMID: 24846474]
[61]
Bošković M, Vovk T, Koprivšek J, Plesničar BK, Grabnar I. Vitamin E and essential polyunsaturated fatty acids supplementation in schizophrenia patients treated with haloperidol. Nutr Neurosci 2016; 19(4): 156-61.
[http://dx.doi.org/10.1179/1476830514Y.0000000139] [PMID: 25056532]
[62]
Maguire Á, Hargreaves A, Gill M. Coenzyme Q10 and neuropsychiatric and neurological disorders: Relevance for schizophrenia. Nutr Neurosci 2020; 23(10): 756-69.
[http://dx.doi.org/10.1080/1028415X.2018.1556481] [PMID: 30537908]
[63]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr S 2016; 15: 71.
[64]
Yao JK, Leonard S, Reddy R. Altered glutathione redox state in schizophrenia. Dis Markers 2006; 22(1-2): 83-93.
[http://dx.doi.org/10.1155/2006/248387] [PMID: 16410648]
[65]
Kumar J, Liddle EB, Fernandes CC, et al. Glutathione and glutamate in schizophrenia: A 7T MRS study. Mol Psychiatry 2020; 25(4): 873-82.
[http://dx.doi.org/10.1038/s41380-018-0104-7] [PMID: 29934548]
[66]
Takeda A, Tamano H. Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 2009; 62(1): 33-44.
[http://dx.doi.org/10.1016/j.brainresrev.2009.09.003] [PMID: 19747942]
[67]
Petrilli MA, Kranz TM, Kleinhaus K, et al. The emerging role for Zinc in depression and psychosis. Front Pharmacol 2017; 8: 414.
[http://dx.doi.org/10.3389/fphar.2017.00414] [PMID: 28713269]
[68]
Joe P, Petrilli M, Malaspina D, Weissman J. Zinc in schizophrenia: A meta-analysis. Gen Hosp Psychiatry 2018; 53: 19-24.
[http://dx.doi.org/10.1016/j.genhosppsych.2018.04.004] [PMID: 29727763]
[69]
Kuyumcu F, Aycan A. Evaluation of oxidative stress levels and antioxidant enzyme activities in burst fractures. Med Sci Monit 2018; 24: 225-34.
[http://dx.doi.org/10.12659/MSM.908312] [PMID: 29324724]
[70]
Dadheech G, Mishra S, Gautam S, Sharma P. Evaluation of antioxidant deficit in schizophrenia. Indian J Psychiatry 2008; 50(1): 16-20.
[http://dx.doi.org/10.4103/0019-5545.39753] [PMID: 19771301]
[71]
Shao X, Yan C, Sun D, et al. Association between glutathione peroxidase-1 (GPx-1) polymorphisms and schizophrenia in the Chinese han population. Neuropsychiatr Dis Treat 2020; 16: 2297-305.
[http://dx.doi.org/10.2147/NDT.S272278] [PMID: 33116528]
[72]
Baumann PS, Griffa A, Fournier M, et al. Impaired fornix-hippocampus integrity is linked to peripheral glutathione peroxidase in early psychosis. Transl Psychiatry 2016; 6(7): e859.
[http://dx.doi.org/10.1038/tp.2016.117] [PMID: 27459724]
[73]
Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: The potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2003; 8(6): 365-70.
[http://dx.doi.org/10.1179/135100003225003393] [PMID: 14980069]
[74]
Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 2004; 19(2): 89-95.
[http://dx.doi.org/10.1097/00004850-200403000-00006] [PMID: 15076017]
[75]
Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011; 15(6): 1583-606.
[http://dx.doi.org/10.1089/ars.2011.3999] [PMID: 21473702]
[76]
Rukmini MS, D’Souza B, D’Souza V. Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. Indian J Clin Biochem 2004; 19(2): 114-8.
[http://dx.doi.org/10.1007/BF02894268] [PMID: 23105467]
[77]
Đorđević VV, Lazarević D, Ćosić V, Knežević M, Đorđević VB. Age-related changes of superoxide dismutase activity in patients with schizophrenia. Vojnosanit Pregl 2017; 74(1): 31-7.
[http://dx.doi.org/10.2298/VSP141202142D] [PMID: 29350504]
[78]
Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004; 61(2): 192-208.
[http://dx.doi.org/10.1007/s00018-003-3206-5] [PMID: 14745498]
[79]
Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev 2019; 2019: 9613090.
[http://dx.doi.org/10.1155/2019/9613090] [PMID: 31827713]
[80]
Bhatt S, Mahesh R, Jindal A, Devadoss T. Neuropharmacological effect of novel 5-HT3 receptor antagonist, N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n) on chronic unpredictable mild stress-induced molecular and cellular response: Behavioural and biochemical evidences. Pharmacol Rep 2014; 66(5): 804-10.
[http://dx.doi.org/10.1016/j.pharep.2014.05.002] [PMID: 25149984]
[81]
Masukawa T, Sai M, Tochino Y. Methods for depleting brain glutathione. Life Sci 1989; 44(6): 417-24.
[http://dx.doi.org/10.1016/0024-3205(89)90266-X] [PMID: 2918812]
[82]
Dean O, Bush AI, Berk M, Copolov DL, van den Buuse M. Glutathione depletion in the brain disrupts short-term spatial memory in the Y-maze in rats and mice. Behav Brain Res 2009; 198(1): 258-62.
[http://dx.doi.org/10.1016/j.bbr.2008.11.017] [PMID: 19061918]
[83]
Cabungcal JH, Preissmann D, Delseth C, Cuénod M, Do KQ, Schenk F. Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia. Neurobiol Dis 2007; 26(3): 634-45.
[http://dx.doi.org/10.1016/j.nbd.2007.03.001] [PMID: 17459716]
[84]
das Neves Duarte JM. Kulak A, Gholam-Razaee MM, Cuenod M, Gruetter R, Do KQ. N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biol Psychiatry 2012; 71(11): 1006-14.
[http://dx.doi.org/10.1016/j.biopsych.2011.07.035] [PMID: 21945305]
[85]
Kulak A, Cuenod M, Do KQ. Behavioral phenotyping of glutathione-deficient mice: Relevance to schizophrenia and bipolar disorder. Behav Brain Res 2012; 226(2): 563-70.
[http://dx.doi.org/10.1016/j.bbr.2011.10.020] [PMID: 22033334]
[86]
Steullet P, Cabungcal JH, Coyle J, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 2017; 22(7): 936-43.
[http://dx.doi.org/10.1038/mp.2017.47] [PMID: 28322275]
[87]
Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74(6): 400-9.
[http://dx.doi.org/10.1016/j.biopsych.2013.03.018] [PMID: 23683390]
[88]
Reddy R, Sahebarao MP, Mukherjee S, Murthy JN. Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 1991; 30(4): 409-12.
[http://dx.doi.org/10.1016/0006-3223(91)90298-Z] [PMID: 1912133]
[89]
Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC. The effect of risperidone treatment on superoxide dismutase in schizophrenia. J Clin Psychopharmacol 2003; 23(2): 128-31.
[http://dx.doi.org/10.1097/00004714-200304000-00004] [PMID: 12640213]
[90]
Mukerjee S, Mahadik SP, Scheffer R, Correnti EE, Kelkar H. Impaired antioxidant defense at the onset of psychosis. Schizophr Res 1996; 19(1): 19-26.
[http://dx.doi.org/10.1016/0920-9964(95)00048-8] [PMID: 9147492]
[91]
Ranjekar PK, Hinge A, Hegde MV, et al. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 2003; 121(2): 109-22.
[http://dx.doi.org/10.1016/S0165-1781(03)00220-8] [PMID: 14656446]
[92]
Yao JK, Reddy R, McElhinny LG, van Kammen DP. Effects of haloperidol on antioxidant defense system enzymes in schizophrenia. J Psychiatr Res 1998; 32(6): 385-91.
[http://dx.doi.org/10.1016/S0022-3956(98)00028-4] [PMID: 9844955]
[93]
Yao JK, Reddy R, McElhinny LG, van Kammen DP. Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophr Res 1998; 32(1): 1-8.
[http://dx.doi.org/10.1016/S0920-9964(98)00030-9] [PMID: 9690328]
[94]
Raffa M, Mechri A, Othman LB, Fendri C, Gaha L, Kerkeni A. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(7): 1178-83.
[http://dx.doi.org/10.1016/j.pnpbp.2009.06.018] [PMID: 19576938]
[95]
Padurariu M, Ciobica A, Dobrin I, Stefanescu C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 2010; 479(3): 317-20.
[http://dx.doi.org/10.1016/j.neulet.2010.05.088] [PMID: 20561936]
[96]
Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2010; 16: 1-8.
[PMID: 20633320]
[97]
Reddy R, Keshavan M, Yao JK. Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 2003; 62(3): 205-12.
[http://dx.doi.org/10.1016/S0920-9964(02)00407-3] [PMID: 12837516]
[98]
Brondino N, De Silvestri A, Re S, et al. A systematic review and meta-analysis of ginkgo biloba in neuropsychiatric disorders: From ancient tradition to modern- day medicine: Evidence-based complementary and alternative medicine. eCAM 2013; 915691.
[99]
Atmaca M, Tezcan E, Kuloglu M, Ustundag B, Kirtas O. The effect of extract of ginkgo biloba addition to olanzapine on therapeutic effect and antioxidant enzyme levels in patients with schizophrenia. Psychiatry Clin Neurosci 2005; 59(6): 652-6.
[http://dx.doi.org/10.1111/j.1440-1819.2005.01432.x] [PMID: 16401239]
[100]
Tharoor H, Mara S, Gopal S. Role of novel dietary supplement N-acetyl cysteine in treating negative symptoms in schizophrenia: A 6-month follow-up study. Indian J Psychol Med 2018; 40(2): 139-42.
[http://dx.doi.org/10.4103/IJPSYM.IJPSYM_322_17] [PMID: 29962570]
[101]
Willborn RJ, Hall CP, Fuller MA. Recycling N-acetylcysteine: A review of evidence for adjunctive therapy in schizophrenia. Ment Health Clin 2019; 9(3): 116-23.
[http://dx.doi.org/10.9740/mhc.2019.05.116] [PMID: 31123658]
[102]
Ghaderi A, Banafshe HR, Mirhosseini N. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019; 19: 77.
[http://dx.doi.org/10.1186/s12888-019-2059-x]
[103]
Dusso A, Arcidiacono MV, Yang J, Tokumoto M. Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. J Steroid Biochem Mol Biol 2010; 121(1-2): 193-8.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.064] [PMID: 20359533]
[104]
Shinpo K, Kikuchi S, Sasaki H, Moriwaka F, Tashiro K. Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J Neurosci Res 2000; 62(3): 374-82.
[http://dx.doi.org/10.1002/1097-4547(20001101)62:3<374:AID-JNR7>3.0.CO;2-7] [PMID: 11054806]
[105]
Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018; 10(10): 1531.
[106]
Cornish S, Mehl-Madrona L. The role of vitamins and minerals in psychiatry. Integr Med Insights 2008; 3: 33-42.
[http://dx.doi.org/10.4137/117863370800300003] [PMID: 21614157]
[107]
Ahmed T, Javed S, Javed S, et al. Resveratrol and Alzheimer’s disease: Mechanistic insights. Mol Neurobiol 2017; 54(4): 2622-35.
[http://dx.doi.org/10.1007/s12035-016-9839-9] [PMID: 26993301]
[108]
Kennedy DO, Wightman EL, Reay JL, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr 2010; 91(6): 1590-7.
[http://dx.doi.org/10.3945/ajcn.2009.28641] [PMID: 20357044]
[109]
Magaji MG, Iniaghe LO, Abolarin M, Abdullahi OI, Magaji RA. Neurobehavioural evaluation of resveratrol in murine models of anxiety and schizophrenia. Metab Brain Dis 2017; 32(2): 437-42.
[http://dx.doi.org/10.1007/s11011-016-9927-6] [PMID: 27878417]
[110]
Zortea K, Franco VC, Guimarães P, Belmonte-de-Abreu PS. Resveratrol supplementation did not improve cognition in patients with schizophrenia: Results from a randomized clinical trial. Front Psychiatry 2016; 7: 159.
[http://dx.doi.org/10.3389/fpsyt.2016.00159] [PMID: 27695423]
[111]
Samaei A, Moradi K, Bagheri S, et al. Resveratrol adjunct therapy for negative symptoms in patients with stable schizophrenia: A double-blind, randomized placebo-controlled trial. Int J Neuropsychopharmacol 2020; 23(12): 775-82.
[http://dx.doi.org/10.1093/ijnp/pyaa006] [PMID: 33372679]
[112]
Miodownik C, Lerner V, Kudkaeva N, et al. Curcumin as add-on to antipsychotic treatment in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled study. Clin Neuropharmacol 2019; 42(4): 117-22.
[http://dx.doi.org/10.1097/WNF.0000000000000344] [PMID: 31045590]
[113]
Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: Possible mechanisms. Lipids Health Dis 2020; 19(1): 159.
[http://dx.doi.org/10.1186/s12944-020-01337-0]
[114]
Peet M, Brind J, Ramchand CN, Shah S, Vankar GK. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 2001; 49(3): 243-51.
[http://dx.doi.org/10.1016/S0920-9964(00)00083-9] [PMID: 11356585]
[115]
Peet M, Horrobin DF. A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatr Res 2002; 36(1): 7-18.
[http://dx.doi.org/10.1016/S0022-3956(01)00048-6] [PMID: 11755456]
[116]
Takahata K, Shimazu S, Katsuki H, Yoneda F, Akaike A. Effects of selegiline on antioxidant systems in the nigrostriatum in rat. J Neural Transm (Vienna) 2006; 113(2): 151-8.
[http://dx.doi.org/10.1007/s00702-005-0309-1] [PMID: 15959853]
[117]
Gupta S, Droney T, Kyser A, Keller P. Selegiline augmentation of antipsychotics for the treatment of negative symptoms in schizophrenia. Compr Psychiatry 1999; 40(2): 148-50.
[http://dx.doi.org/10.1016/S0010-440X(99)90119-0] [PMID: 10080262]
[118]
Akhondzadeh S, Safarcherati A, Amini H. Beneficial antipsychotic effects of allopurinol as add-on therapy for schizophrenia: A double blind, randomized and placebo controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29(2): 253-9.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.008] [PMID: 15694232]
[119]
McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends Neurosci 2019; 42(3): 205-20.
[http://dx.doi.org/10.1016/j.tins.2018.12.004] [PMID: 30621912]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy