Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Interaction of Nanomaterials with Protein-Peptide

Author(s): Zaved Hazarika, Surovi Saikia and Anupam Nath Jha*

Volume 23, Issue 8, 2022

Published on: 09 September, 2022

Page: [548 - 562] Pages: 15

DOI: 10.2174/1389203723666220822152141

Price: $65

Abstract

Nanomaterials have undergone rapid development in the last few decades, galvanized by the versatility of their functional attributes and many inherent advantages over bulk materials. The state of art experimental techniques to synthesize nanoparticles (NPs) from varied sources offers unprecedented opportunities for utilization and exploration of multifaceted biological activities. Such formulations demand a preliminary understanding of the interaction between NPs and biomolecules. Most of these interactions depend on the external morphology of the NPs, like the shape, size, charge and surface chemistry. In addition, most experimental techniques are limited to cellular-level data, without the atomistic details of mechanisms that lead to these interactions. Consequently, recent studies have determined these atomistic events through in-silico techniques, which provide a better understanding and integrative details of interactions between biomolecules and different NPs. Therefore, while delineating the protein-NPs interaction, it is imperative to define the consequences of nanomaterial’s introduction and derive data for the formulation of better therapeutic interventions. This review briefly discusses varied types of NPs, their potential applications and interactions with peptides and proteins.

Keywords: Protein-Nanoparticle interaction, nanomaterial, peptide surface interaction, nanoparticles, silver nanoparticle, MD simulations.

Graphical Abstract

[1]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[2]
Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev., 2013, 113(3), 1904-2074.
[http://dx.doi.org/10.1021/cr300143v] [PMID: 23432378]
[3]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[4]
Dolai, J.; Mandal, K.; Jana, N.R. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater., 2021, 4(7), 6471-6496.
[http://dx.doi.org/10.1021/acsanm.1c00987]
[5]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[6]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[7]
Tsoi, K.M.; MacParland, S.A.; Ma, X.Z.; Spetzler, V.N.; Echeverri, J.; Ouyang, B.; Fadel, S.M.; Sykes, E.A.; Goldaracena, N.; Kaths, J.M.; Conneely, J.B.; Alman, B.A.; Selzner, M.; Ostrowski, M.A.; Adeyi, O.A.; Zilman, A.; McGilvray, I.D.; Chan, W.C.W. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater., 2016, 15(11), 1212-1221.
[http://dx.doi.org/10.1038/nmat4718] [PMID: 27525571]
[8]
Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; Perera, C.O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W.M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E.M.; Toth, I. A global review on short peptides: Frontiers and perspectives. Molecules, 2021, 26(2), 430.
[http://dx.doi.org/10.3390/molecules26020430] [PMID: 33467522]
[9]
IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbolism for amino acids and peptides. Recommendations 1983. Eur. J. Biochem., 1984, 138(1), 9-37.
[http://dx.doi.org/10.1111/j.1432-1033.1984.tb07877.x] [PMID: 6692818]
[10]
Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[11]
Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[12]
Thompson, J.F.; Morris, C.J.; Smith, I.K. New naturally occurring amino acids. Annu. Rev. Biochem., 1969, 38(1), 137-158.
[http://dx.doi.org/10.1146/annurev.bi.38.070169.001033] [PMID: 4897064]
[13]
Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963, 7(1), 95-99.
[http://dx.doi.org/10.1016/S0022-2836(63)80023-6] [PMID: 13990617]
[14]
Walters, R.F.S.; DeGrado, W.F. Helix-packing motifs in membrane proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(37), 13658-13663.
[http://dx.doi.org/10.1073/pnas.0605878103] [PMID: 16954199]
[15]
Karplus, M.; Kuriyan, J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6679-6685.
[http://dx.doi.org/10.1073/pnas.0408930102] [PMID: 15870208]
[16]
Das, S.; Hazarika, Z.; Sarmah, S.; Baruah, K.; Rohman, M.A.; Paul, D.; Jha, A.N.; Singha Roy, A. Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multi-spectroscopic, docking and molecular dynamics simulation studies. J. Photochem. Photobiol. B, 2020, 205, 111825.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111825] [PMID: 32142995]
[17]
Jakhmola, S.; Hazarika, Z.; Jha, A.N.; Jha, H.C. In silico analysis of antiviral phytochemicals efficacy against Epstein-Barr virus glycopro-tein H. J. Biomol. Struct. Dyn., 2021, 1-14.
[PMID: 33438528]
[18]
Das, S.; Sarmah, S.; Hazarika, Z.; Rohman, M.A.; Sarkhel, P.; Jha, A.N.; Singha Roy, A. Targeting the heme protein hemoglobin by (−)-epigallocatechin gallate and the study of polyphenol–protein association using multi-spectroscopic and computational methods. Phys. Chem. Chem. Phys., 2020, 22(4), 2212-2228.
[http://dx.doi.org/10.1039/C9CP05301H] [PMID: 31913367]
[19]
Hazarika, Z.; Jha, A.N. A comparative evaluation of docking programs using influenza endonuclease as target protein. International Conference on Computational Performance Evaluation (ComPE 2020), 02-04 July 2020, Shillong, India, 2020.
[http://dx.doi.org/10.1109/ComPE49325.2020.9200180]
[20]
Dalby, A.R.; Tolan, D.R.; Littlechild, J.A. The structure of human liver fructose-1,6-bisphosphate aldolase. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(11), 1526-1533.
[http://dx.doi.org/10.1107/S0907444901012719] [PMID: 11679716]
[21]
Hazarika, Z.; Rajkhowa, S.; Jha, A.N. Role of force fields in protein function prediction. Homology Molecular Modeling-Perspectives and Applications; IntechOpen, 2020.
[22]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[23]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[24]
Kumar, S.; Rani, R.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Carbon nanotubes: A novel material for multifaceted applications in human healthcare. Chem. Soc. Rev., 2017, 46(1), 158-196.
[http://dx.doi.org/10.1039/C6CS00517A] [PMID: 27841412]
[25]
Zieleniewska, A.; Lodermeyer, F.; Roth, A.; Guldi, D.M. Fullerenes-How 25 years of charge transfer chemistry have shaped our under-standing of (interfacial) interactions. Chem. Soc. Rev., 2018, 47(3), 702-714.
[http://dx.doi.org/10.1039/C7CS00728K] [PMID: 29186219]
[26]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[27]
Kaushik, S. Polymeric and ceramic nanoparticles: Possible role in biomedical applications. Handbook of Polymer and Ceramic Nanotech-nology; Hussain, C.M; Thomas, S., Ed.; Springer International Publishing: Cham, 2019, pp. 1-17.
[28]
Seong, D.Y.; Kim, Y.J. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles. J. Photochem. Photobiol. B, 2015, 146, 34-43.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.02.022] [PMID: 25794464]
[29]
Liu, S.; Li, W.; Dong, S.; Gai, S.; Dong, Y.; Yang, D.; Dai, Y.; He, F.; Yang, P. Degradable calcium phosphate-coated upconversion nano-particles for highly efficient chemo-photodynamic therapy. ACS Appl. Mater. Interfaces, 2019, 11(51), 47659-47670.
[http://dx.doi.org/10.1021/acsami.9b11973] [PMID: 31713407]
[30]
Khan, M.A.; Wu, V.M.; Ghosh, S. Uskoković V. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l -lysine) as additives. J. Colloid Interface Sci., 2016, 471, 48-58.
[http://dx.doi.org/10.1016/j.jcis.2016.03.007] [PMID: 26971068]
[31]
Son, K.D.; Kim, Y.J. Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma. Biomater. Res., 2017, 21(1), 13.
[http://dx.doi.org/10.1186/s40824-017-0099-1] [PMID: 28652927]
[32]
Elbasuney, S. Green synthesis of hydroxyapatite nanoparticles with controlled morphologies and surface properties toward biomedical applications. J. Inorg. Organomet. Polym. Mater., 2020, 30(3), 899-906.
[http://dx.doi.org/10.1007/s10904-019-01247-4]
[33]
Mushtaq, A.; Zhao, R.; Luo, D.; Dempsey, E.; Wang, X.; Iqbal, M.Z.; Kong, X. Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Mater. Des., 2021, 197, 109269.
[http://dx.doi.org/10.1016/j.matdes.2020.109269]
[34]
Leonetti, B.; Perin, A.; Ambrosi, E.K.; Sponchia, G.; Sgarbossa, P.; Castellin, A.; Riello, P.; Scarso, A. Mesoporous zirconia nanoparticles as drug delivery systems: Drug loading, stability and release. J. Drug Deliv. Sci. Technol., 2021, 61, 102189.
[http://dx.doi.org/10.1016/j.jddst.2020.102189]
[35]
Bapat, R.A.; Yang, H.J.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Arora, S.; Rawal, S.; Kesharwani, P. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Advances, 2022, 12(20), 12773-12793.
[http://dx.doi.org/10.1039/D2RA00006G] [PMID: 35496329]
[36]
Al-Halifa, S.; Gauthier, L.; Arpin, D.; Bourgault, S.; Archambault, D. Nanoparticle-based vaccines against respiratory viruses. Front. Immunol., 2019, 10, 22.
[http://dx.doi.org/10.3389/fimmu.2019.00022] [PMID: 30733717]
[37]
Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co -glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseu-domonas aeruginosa lung infection: In vitro and in vivo studies. Biomacromolecules, 2019, 20(5), 1876-1888.
[http://dx.doi.org/10.1021/acs.biomac.8b01829] [PMID: 31013061]
[38]
Mahajan, S.; Tang, T. Polyethylenimine-DNA nanoparticles under endosomal acidification and implication to gene delivery. Langmuir, 2022, 38(27), 8382-8397.
[http://dx.doi.org/10.1021/acs.langmuir.2c00952] [PMID: 35759612]
[39]
Karthika, V.; AlSalhi, M.S.; Devanesan, S.; Gopinath, K.; Arumugam, A.; Govindarajan, M. Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci. Rep., 2020, 10(1), 18912.
[http://dx.doi.org/10.1038/s41598-020-76015-3] [PMID: 33144607]
[40]
Ryu, J.H.; Yoon, H.Y.; Sun, I.C.; Kwon, I.C.; Kim, K. Tumor‐targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater., 2020, 32(51), 2002197.
[http://dx.doi.org/10.1002/adma.202002197] [PMID: 33051905]
[41]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon, 2022, 8(1), e08674.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08674] [PMID: 35028457]
[42]
Smith, T.; Affram, K.; Nottingham, E.L.; Han, B.; Amissah, F.; Krishnan, S.; Trevino, J.; Agyare, E. Application of smart solid lipid nano-particles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep., 2020, 10(1), 16989.
[http://dx.doi.org/10.1038/s41598-020-73218-6] [PMID: 33046724]
[43]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[44]
Elbrink, K.; Van Hees, S.; Chamanza, R.; Roelant, D.; Loomans, T.; Holm, R.; Kiekens, F. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: In vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2021, 163, 158-170.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.004] [PMID: 33848628]
[45]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[46]
Hazarika, Z.; Jha, A.N. Computational analysis of the silver nanoparticle–human serum albumin complex. ACS Omega, 2020, 5(1), 170-178.
[http://dx.doi.org/10.1021/acsomega.9b02340] [PMID: 31956763]
[47]
Goudarzi, M.; Mir, N.; Mousavi-Kamazani, M.; Bagheri, S.; Salavati-Niasari, M. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci. Rep., 2016, 6(1), 32539.
[http://dx.doi.org/10.1038/srep32539] [PMID: 27581681]
[48]
Schwartz-Duval, A.S.; Konopka, C.J.; Moitra, P.; Daza, E.A.; Srivastava, I.; Johnson, E.V.; Kampert, T.L.; Fayn, S.; Haran, A.; Dobrucki, L.W.; Pan, D. Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat. Commun., 2020, 11(1), 4530.
[http://dx.doi.org/10.1038/s41467-020-17595-6] [PMID: 32913195]
[49]
Dong, Y.C.; Hajfathalian, M.; Maidment, P.S.N.; Hsu, J.C.; Naha, P.C.; Si-Mohamed, S.; Breuilly, M.; Kim, J.; Chhour, P.; Douek, P.; Litt, H.I.; Cormode, D.P. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep., 2019, 9(1), 14912.
[http://dx.doi.org/10.1038/s41598-019-50332-8] [PMID: 31624285]
[50]
Beer, C.; Foldbjerg, R.; Hayashi, Y.; Sutherland, D.S.; Autrup, H. Toxicity of silver nanoparticles-Nanoparticle or silver ion? Toxicol. Lett., 2012, 208(3), 286-292.
[http://dx.doi.org/10.1016/j.toxlet.2011.11.002] [PMID: 22101214]
[51]
O’Brien, M.N.; Jones, M.R.; Mirkin, C.A. The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc. Natl. Acad. Sci. USA, 2016, 113(42), 11717-11725.
[http://dx.doi.org/10.1073/pnas.1605289113] [PMID: 27671628]
[52]
Nakanishi, H.; Bishop, K.J.M.; Kowalczyk, B.; Nitzan, A.; Weiss, E.A.; Tretiakov, K.V.; Apodaca, M.M.; Klajn, R.; Stoddart, J.F.; Grzyb-owski, B.A. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature, 2009, 460(7253), 371-375.
[http://dx.doi.org/10.1038/nature08131] [PMID: 19606145]
[53]
Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev., 2015, 44(16), 5793-5805.
[http://dx.doi.org/10.1039/C4CS00362D] [PMID: 25669838]
[54]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 2008, 37(9), 2096-2126.
[http://dx.doi.org/10.1039/b707314n] [PMID: 18762848]
[55]
Jia, C.J.; Schüth, F. Colloidal metal nanoparticles as a component of designed catalyst. Phys. Chem. Chem. Phys., 2011, 13(7), 2457-2487.
[http://dx.doi.org/10.1039/c0cp02680h] [PMID: 21246127]
[56]
Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev., 2006, 35(7), 583-592.
[http://dx.doi.org/10.1039/b502142c] [PMID: 16791330]
[57]
Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess. Food Bioprocess Technol., 2013, 6(3), 628-647.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[58]
Bratovčić A.; Odobašić A.; Ćatić S.; Šestan, I. Application of polymer nanocomposite materials in food packaging. Croat. J. Food Sci. Technol., 2015, 7(2), 86-94.
[http://dx.doi.org/10.17508/CJFST.2015.7.2.06]
[59]
Lamprecht, A.; Saumet, J.L.; Roux, J.; Benoit, J.P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int. J. Pharm., 2004, 278(2), 407-414.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.018] [PMID: 15196644]
[60]
Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci., 2021, 293, 102437.
[http://dx.doi.org/10.1016/j.cis.2021.102437] [PMID: 34023566]
[61]
Khezri, K.; Saeedi, M.; Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic prepara-tions. Biomed. Pharmacother., 2018, 106, 1499-1505.
[http://dx.doi.org/10.1016/j.biopha.2018.07.084] [PMID: 30119225]
[62]
Arora, S.A.; Agarwal, S.; Murthy, R.S.R. Latest technology advances in cosmaceuticals. Inter. J. Pharm. Sci. Drug, 2012, 4, 168-182.
[63]
Westesen, K.; Bunjes, H.; Koch, M.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capac-ity and sustained release potential. J. Control. Release, 1997, 48(2-3), 223-236.
[http://dx.doi.org/10.1016/S0168-3659(97)00046-1]
[64]
Alaqad, K.; Saleh, T.A. Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs. J. Environ. Anal. Toxicol., 2016, 6, 4.
[http://dx.doi.org/10.4172/2161-0525.1000384]
[65]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2, 147-157.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[66]
Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted application of silica nanoparticles. A review. Silicon, 2020, 12(6), 1337-1354.
[http://dx.doi.org/10.1007/s12633-019-00229-y]
[67]
Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J. Environ. Sci. (China), 2019, 80, 14-34.
[http://dx.doi.org/10.1016/j.jes.2018.07.004] [PMID: 30952332]
[68]
Rogozea, E.A.; Petcu, A.R.; Olteanu, N.L.; Lazar, C.A.; Cadar, D.; Mihaly, M. Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials. Mater. Sci. Semicond. Process., 2017, 57, 1-11.
[http://dx.doi.org/10.1016/j.mssp.2016.10.006]
[69]
Kaliannan, D.; Palaninaicker, S.; Palanivel, V.; Mahadeo, M.A.; Ravindra, B.N.; Jae-Jin, S. A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application. Environ. Sci. Pollut. Res. Int., 2019, 26(6), 5305-5314.
[http://dx.doi.org/10.1007/s11356-018-3734-z] [PMID: 30446914]
[70]
Cai, Z.; Zhao, X.; Duan, J.; Zhao, D.; Dang, Z.; Lin, Z. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades. Front. Environ. Sci. Eng., 2020, 14(5), 84.
[http://dx.doi.org/10.1007/s11783-020-1263-8] [PMID: 33294248]
[71]
Singh, S.; Singh, B.K.; Yadav, S.M.; Gupta, A.K. Applications of nanotechnology in agricultural and their role in disease management. Res. J. Nanosci. Nanotechnol., 2015, 5(1), 1-5.
[http://dx.doi.org/10.3923/rjnn.2015.1.5]
[72]
Oh, J.; Feldman, M.D.; Kim, J.; Condit, C.; Emelianov, S.; Milner, T.E. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology, 2006, 17(16), 4183-4190.
[http://dx.doi.org/10.1088/0957-4484/17/16/031] [PMID: 21727557]
[73]
Liu, H.; Zhang, J.; Chen, X.; Du, X.S.; Zhang, J.L.; Liu, G.; Zhang, W.G. Application of iron oxide nanoparticles in glioma imaging and therapy: From bench to bedside. Nanoscale, 2016, 8(15), 7808-7826.
[http://dx.doi.org/10.1039/C6NR00147E] [PMID: 27029509]
[74]
Fei, Yin Z.; Wu, L.; Gui Yang, H.; Hua Su, Y. Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys., 2013, 15(14), 4844-4858.
[http://dx.doi.org/10.1039/c3cp43938k] [PMID: 23450160]
[75]
Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 2010, 28(11), 580-588.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.006] [PMID: 20724010]
[76]
Arakha, M.; Borah, S.M.; Saleem, M.; Jha, A.N.; Jha, S. Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Free Radic. Biol. Med., 2016, 101, 434-445.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.016] [PMID: 27845185]
[77]
Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal applications of fullerenes. Int. J. Nanomedicine, 2007, 2(4), 639-649.
[PMID: 18203430]
[78]
Montellano, A.; Da Ros, T.; Bianco, A.; Prato, M. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale, 2011, 3(10), 4035-4041.
[http://dx.doi.org/10.1039/c1nr10783f] [PMID: 21897967]
[79]
Mhlwatika, Z.; Aderibigbe, B. Application of dendrimers for the treatment of infectious diseases. Molecules, 2018, 23(9), 2205.
[http://dx.doi.org/10.3390/molecules23092205] [PMID: 30200314]
[80]
Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg., 2010, 3(1), 32-33.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[81]
Bhardwaj, A.; Bhardwaj, A.; Misuriya, A.; Maroli, S.; Manjula, S.; Singh, A.K. Nanotechnology in dentistry: Present and future. J. Int. Oral Health, 2014, 6(1), 121-126.
[PMID: 24653616]
[82]
Rohlfing, E.A.; Cox, D.M.; Kaldor, A. Production and characterization of supersonic carbon cluster beams. J. Chem. Phys., 1984, 81(7), 3322-3330.
[http://dx.doi.org/10.1063/1.447994]
[83]
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature, 1985, 318(6042), 162-163.
[http://dx.doi.org/10.1038/318162a0]
[84]
Saikia, N.; Jha, A.N.; Deka, R.C. Dynamics of fullerene-mediated heat-driven release of drug molecules from carbon nanotubes. J. Phys. Chem. Lett., 2013, 4(23), 4126-4132.
[http://dx.doi.org/10.1021/jz402231p]
[85]
Saikia, N.; Jha, A.N.; Deka, R.C. Interaction of pyrazinamide drug functionalized carbon and boron nitride nanotubes with pncA protein: A molecular dynamics and density functional approach. RSC Advances, 2013, 3(35), 15102-15107.
[http://dx.doi.org/10.1039/c3ra42534g]
[86]
Saikia, N.; Jha, A.N.; Deka, R.C. Molecular dynamics study on graphene-mediated pyrazinamide drug delivery onto the pncA protein. RSC Advances, 2014, 4(47), 24944-24954.
[http://dx.doi.org/10.1039/C4RA01486C]
[87]
Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2020, 2(9), 3764-3787.
[http://dx.doi.org/10.1039/D0NA00472C]
[88]
Janko, C.; Ratschker, T.; Nguyen, K.; Zschiesche, L.; Tietze, R.; Lyer, S.; Alexiou, C. Functionalized Superparamagnetic Iron Oxide Nano-particles (SPIONs) as platform for the targeted multimodal tumor therapy. Front. Oncol., 2019, 9, 59.
[http://dx.doi.org/10.3389/fonc.2019.00059] [PMID: 30815389]
[89]
Li, S.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X.; Chen, Z.; Bao, Y.; Yuan, F.; Zhou, S.; Tan, H.; Li, Y.; Li, X.; Fan, L.; Zhu, J.; Chen, A.T.; Liu, F.; Zhou, Y.; Li, M.; Zhai, X.; Zhou, J. Targeted tumour theranostics in mice via carbon quantum dots struc-turally mimicking large amino acids. Nat. Biomed. Eng., 2020, 4(7), 704-716.
[http://dx.doi.org/10.1038/s41551-020-0540-y] [PMID: 32231314]
[90]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Den-drimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[91]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[92]
Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S.J.H.; Rivera Gil, P.; Montenegro, J.M.; Braeckmans, K.; Müllen, K.; Nienhaus, G.U.; Klapper, M.; Parak, W.J. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano, 2013, 7(4), 3253-3263.
[http://dx.doi.org/10.1021/nn3059295] [PMID: 23566380]
[93]
Yang, L.; Shang, L.; Nienhaus, G.U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale, 2013, 5(4), 1537-1543.
[http://dx.doi.org/10.1039/c2nr33147k] [PMID: 23322237]
[94]
Fleischer, C.C.; Payne, C.K. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B, 2014, 118(49), 14017-14026.
[http://dx.doi.org/10.1021/jp502624n] [PMID: 24779411]
[95]
Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S.K.; Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; Maskos, M.; Schild, H.; Stauber, R.H. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano, 2011, 5(9), 7155-7167.
[http://dx.doi.org/10.1021/nn201950e] [PMID: 21866933]
[96]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14265-14270.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[97]
Nayak, P.S.; Borah, S.M.; Gogoi, H.; Asthana, S.; Bhatnagar, R.; Jha, A.N.; Jha, S. Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity. Chem. Eng. J., 2019, 361, 470-484.
[http://dx.doi.org/10.1016/j.cej.2018.12.084]
[98]
Zhang, L.; Feng, M.; Zhou, R.; Luan, B. Structural perturbations on huntingtin N17 domain during its folding on 2D-nanomaterials. Nanotechnology, 2017, 28(35), 354001.
[http://dx.doi.org/10.1088/1361-6528/aa7ba5] [PMID: 28649967]
[99]
Chatterjee, T.; Chakraborti, S.; Joshi, P.; Singh, S.P.; Gupta, V.; Chakrabarti, P. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. FEBS J., 2010, 277(20), 4184-4194.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07807.x] [PMID: 20825484]
[100]
Radic, S.; Nedumpully-Govindan, P.; Chen, R.; Salonen, E.; Brown, J.M.; Ke, P.C.; Ding, F. Effect of fullerenol surface chemistry on na-noparticle binding-induced protein misfolding. Nanoscale, 2014, 6(14), 8340-8349.
[http://dx.doi.org/10.1039/C4NR01544D] [PMID: 24934397]
[101]
Luan, B.; Huynh, T.; Zhao, L.; Zhou, R. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions. ACS Nano, 2015, 9(1), 663-669.
[http://dx.doi.org/10.1021/nn506011j] [PMID: 25494677]
[102]
Feng, M.; Bell, D.R.; Wang, Z.; Zhang, W. Length-dependent structural transformations of huntingtin PolyQ domain upon binding to 2D-nanomaterials. Front Chem., 2020, 8, 299.
[http://dx.doi.org/10.3389/fchem.2020.00299] [PMID: 32391325]
[103]
Sen, S. Vuković L.; Král, P. Computational screening of nanoparticles coupling to Aβ40 peptides and fibrils. Sci. Rep., 2019, 9(1), 17804.
[http://dx.doi.org/10.1038/s41598-019-52594-8] [PMID: 31780663]
[104]
Tang, M.; Gandhi, N.S.; Burrage, K.; Gu, Y. Interaction of gold nanosurfaces/nanoparticles with collagen-like peptides. Phys. Chem. Chem. Phys., 2019, 21(7), 3701-3711.
[http://dx.doi.org/10.1039/C8CP05191G] [PMID: 30361726]
[105]
Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2050-2055.
[http://dx.doi.org/10.1073/pnas.0608582104] [PMID: 17267609]
[106]
Zhu, W.; Kong, J.; Zhang, J.; Wang, J.; Li, W.; Wang, W. Consequences of hydrophobic nanotube binding on the functional dynamics of signaling protein calmodulin. ACS Omega, 2019, 4(6), 10494-10501.
[http://dx.doi.org/10.1021/acsomega.9b01217] [PMID: 31460146]
[107]
Ban, Z.; Yuan, P.; Yu, F.; Peng, T.; Zhou, Q.; Hu, X. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl. Acad. Sci. USA, 2020, 117(19), 10492-10499.
[http://dx.doi.org/10.1073/pnas.1919755117] [PMID: 32332167]
[108]
Asthana, S.; Hazarika, Z.; Nayak, P.S.; Roy, J.; Jha, A.N.; Mallick, B.; Jha, S. Insulin adsorption onto zinc oxide nanoparticle mediates conformational rearrangement into amyloid-prone structure with enhanced cytotoxic propensity. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 153-166.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.004] [PMID: 30315849]
[109]
Mu, Q.; Jiang, G.; Chen, L.; Zhou, H.; Fourches, D.; Tropsha, A.; Yan, B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev., 2014, 114(15), 7740-7781.
[http://dx.doi.org/10.1021/cr400295a] [PMID: 24927254]
[110]
Zhang, X.; Yang, S. Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: Real-time monitoring by quartz crystal microbalance with dissipation. Langmuir, 2011, 27(6), 2528-2535.
[http://dx.doi.org/10.1021/la104449y] [PMID: 21294560]
[111]
Tsogas, I.; Tsiourvas, D.; Nounesis, G.; Paleos, C.M. Modeling cell membrane transport: Interaction of guanidinylated poly(propylene imine) dendrimers with a liposomal membrane consisting of phosphate-based lipids. Langmuir, 2006, 22(26), 11322-11328.
[http://dx.doi.org/10.1021/la0620861] [PMID: 17154621]
[112]
Wnek, G.; Bowlin, G. The Encyclopedia of Biomaterials and Bioengineering; Taylor & Francis: New York, 2008, p. 3552.
[http://dx.doi.org/10.1201/9780429154065]
[113]
Dee, Kay.C.; Puleo, David .A.; Bizios, Rena. An Introduction to Tissue-Biomaterial Interactions; Wiley: Hoboken, 2002, pp. 45-49.
[114]
Khan, S.; Nandi, C.K. Optimizing the underlying parameters for protein-nanoparticle interaction: Advancement in theoretical simulation. Nanotechnol. Rev., 2014, 3(4)
[http://dx.doi.org/10.1515/ntrev-2014-0002]
[115]
Makrodimitris, K.; Masica, D.L.; Kim, E.T.; Gray, J.J. Structure prediction of protein-solid surface interactions reveals a molecular recog-nition motif of statherin for hydroxyapatite. J. Am. Chem. Soc., 2007, 129(44), 13713-13722.
[http://dx.doi.org/10.1021/ja074602v] [PMID: 17929924]
[116]
Morra, M. On the molecular basis of fouling resistance. J. Biomater. Sci. Polym. Ed., 2000, 11(6), 547-569.
[http://dx.doi.org/10.1163/156856200743869] [PMID: 10981673]
[117]
Latour, R.A., Jr; Rini, C.J. Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality. J. Biomed. Mater. Res., 2002, 60(4), 564-577.
[http://dx.doi.org/10.1002/jbm.10052] [PMID: 11948515]
[118]
Di Felice, R.; Corni, S. Simulation of peptide surface recognition. J. Phys. Chem. Lett., 2011, 2(13), 1510-1519.
[http://dx.doi.org/10.1021/jz200297k]
[119]
Hong, G.; Heinz, H.; Naik, R.R.; Farmer, B.L.; Pachter, R. Toward understanding amino acid adsorption at metallic interfaces: A density functional theory study. ACS Appl. Mater. Interfaces, 2009, 1(2), 388-392.
[http://dx.doi.org/10.1021/am800099z] [PMID: 20353228]
[120]
Verde, A.V.; Acres, J.M.; Maranas, J.K. Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. Biomacromolecules, 2009, 10(8), 2118-2128.
[http://dx.doi.org/10.1021/bm9002464] [PMID: 19621884]
[121]
Ghiringhelli, L.M.; Hess, B.; van der Vegt, N.F.A.; Delle Site, L. Competing adsorption between hydrated peptides and water onto metal surfaces: From electronic to conformational properties. J. Am. Chem. Soc., 2008, 130(40), 13460-13464.
[http://dx.doi.org/10.1021/ja804350v] [PMID: 18788811]
[122]
Calzolari, A.; Cicero, G.; Cavazzoni, C.; Di Felice, R.; Catellani, A.; Corni, S. Hydroxyl-rich beta-sheet adhesion to the gold surface in water by first-principle simulations. J. Am. Chem. Soc., 2010, 132(13), 4790-4795.
[http://dx.doi.org/10.1021/ja909823n] [PMID: 20225820]
[123]
Feng, J.; Slocik, J.M.; Sarikaya, M.; Naik, R.R.; Farmer, B.L.; Heinz, H. Influence of the shape of nanostructured metal surfaces on ad-sorption of single peptide molecules in aqueous solution. Small, 2012, 8(7), 1049-1059.
[http://dx.doi.org/10.1002/smll.201102066] [PMID: 22323430]
[124]
Hoefling, M.; Iori, F.; Corni, S.; Gottschalk, K.E. The conformations of amino acids on a gold(111) surface. ChemPhysChem, 2010, 11(8), 1763-1767.
[http://dx.doi.org/10.1002/cphc.200900990] [PMID: 20301176]
[125]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[126]
Dumas, A.; Lercher, L.; Spicer, C.D.; Davis, B.G. Designing logical codon reassignment-Expanding the chemistry in biology. Chem. Sci. (Camb.), 2015, 6(1), 50-69.
[http://dx.doi.org/10.1039/C4SC01534G] [PMID: 28553457]
[127]
Ståhl, S.; Gräslund, T.; Eriksson Karlström, A.; Frejd, F.Y.; Nygren, P.Å.; Löfblom, J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol., 2017, 35(8), 691-712.
[http://dx.doi.org/10.1016/j.tibtech.2017.04.007] [PMID: 28514998]
[128]
Chen, S.; Bertoldo, D.; Angelini, A.; Pojer, F.; Heinis, C. Peptide ligands stabilized by small molecules. Angew. Chem. Int. Ed., 2014, 53(6), 1602-1606.
[http://dx.doi.org/10.1002/anie.201309459] [PMID: 24453110]
[129]
Parolo, C.; de la Escosura-Muñiz, A.; Polo, E.; Grazú, V.; de la Fuente, J.M.; Merkoçi, A. Design, preparation, and evaluation of a fixed-orientation antibody/gold-nanoparticle conjugate as an immunosensing label. ACS Appl. Mater. Interfaces, 2013, 5(21), 10753-10759.
[http://dx.doi.org/10.1021/am4029153] [PMID: 24095174]
[130]
Bechara, C.; Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett., 2013, 587(12), 1693-1702.
[131]
Yang, Q.; Lai, S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 655-677.
[http://dx.doi.org/10.1002/wnan.1339] [PMID: 25707913]
[132]
Sun, L.; Fan, Z.; Wang, Y.; Huang, Y.; Schmidt, M.; Zhang, M. Tunable synthesis of self-assembled cyclic peptide nanotubes and nano-particles. Soft Matter, 2015, 11(19), 3822-3832.
[http://dx.doi.org/10.1039/C5SM00533G] [PMID: 25858105]
[133]
Vidu, R.; Rahman, M.; Mahmoudi, M.; Enachescu, M.; Poteca, T.D.; Opris, I. Nanostructures: A platform for brain repair and augmenta-tion. Front. Syst. Neurosci., 2014, 8, 91.
[http://dx.doi.org/10.3389/fnsys.2014.00091] [PMID: 24999319]
[134]
Gavilán, H.; Simeonidis, K.; Myrovali, E.; Mazarío, E.; Chubykalo-Fesenko, O.; Chantrell, R.; Balcells, L.; Angelakeris, M.; Morales, M.P.; Serantes, D. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale, 2021, 13(37), 15631-15646.
[http://dx.doi.org/10.1039/D1NR03484G] [PMID: 34596185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy