Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

ABCG1 is Expressed in an LXR-Independent Manner in Patients with Type 2 Diabetes Mellitus

Author(s): Hui-Juan Wang, Ji-Hong Wang, Xin-Na Xu, Xing-Shan Zhao and Wei Liu*

Volume 23, Issue 8, 2023

Published on: 09 September, 2022

Page: [815 - 824] Pages: 10

DOI: 10.2174/1566524023666220822150820

Price: $65

Abstract

Background: Patients with type 2 diabetes mellitus have a high cardiovascular risk due, in part, to abnormalities of high-density lipoprotein mediated cholesterol efflux. The ATP-binding cassette A1 and G1 play a pivotal role in the regulation of cholesterol efflux. However, the regulation of these transporters in type 2 diabetes mellitus remains obscure.

Objectives: This study aimed to investigate the expression of ATP-binding cassette A1 and G1 and their regulation by Liver X receptors in monocyte-derived macrophages in type 2 diabetes mellitus, and to determine whether the alteration of these transporters might affect cholesterol efflux from macrophages.

Methods: Blood was collected from type 2 diabetic patients and healthy controls. Peripheral monocytes were differentiated into macrophages. Quantitative real-time PCR, western blots, and cholesterol efflux assays were performed. The Liver X receptor and Liver X receptor element complex in the ATP-binding cassette G1 gene promoter were detected by electrophoretic mobility supershift assay.

Results: Macrophage ATP-binding cassette G1 expression and high density lipoproteininduced cholesterol efflux were significantly reduced in type 2 diabetic patients. However, the mRNA expression of ATP-binding cassette G1 in type 2 diabetic patients was not inhibited by Liver X receptor siRNA and the Liver X receptor- Liver X receptor element complexes remain unchanged similarly.

Conclusion: The study suggested that the expression of ATP-binding cassette G1 and high density lipoprotein-induced cholesterol efflux in macrophages were reduced in type 2 diabetes mellitus. Impairment of cholesterol efflux and ATP-binding cassette G1 gene expression in type 2 diabetes mellitus might be regulated by a Liver X receptorindependent pathway.

Keywords: Cholesterol efflux, high-density lipoprotein, ATP binding cassette transporter G1, diabetes mellitus, liver X receptors, macrophages.

[1]
Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res 2019; 124(10): 1505-18.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.312617] [PMID: 31071007]
[2]
Marques LR, Diniz TA, Antunes BM, et al. Reverse cholesterol transport: Molecular mechanisms and the non medical approach to enhance HDL cholesterol. Front Physiol 2018; 9: 526.
[http://dx.doi.org/10.3389/fphys.2018.00526] [PMID: 29867567]
[3]
Shen WJ, Azhar S, Kraemer FB. SR-B1: A unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol 2018; 80(1): 95-116.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121550] [PMID: 29125794]
[4]
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2010; 30(2): 139-43.
[http://dx.doi.org/10.1161/ATVBAHA.108.179283] [PMID: 19797709]
[5]
Adorni MP, Zimetti F, Billheimer JT, et al. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 2007; 48(11): 2453-62.
[http://dx.doi.org/10.1194/jlr.M700274-JLR200] [PMID: 17761631]
[6]
Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 2007; 117(8): 2216-24.
[http://dx.doi.org/10.1172/JCI32057] [PMID: 17657311]
[7]
Tan KCB. Reverse cholesterol transport in type 2 diabetes mellitus. Diabetes Obes Metab 2009; 11(6): 534-43.
[http://dx.doi.org/10.1111/j.1463-1326.2008.01012.x] [PMID: 19175378]
[8]
Uehara Y, Miura S, von Eckardstein A, et al. Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element. Atherosclerosis 2007; 191(1): 11-21.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.04.018] [PMID: 16730733]
[9]
Tavoosi Z, Moradi SH, Saidijam M, et al. Cholesterol transporters ABCA1 and ABCG1 gene expression in peripheral blood mononuclear cells in patients with metabolic syndrome. Cholesterol 2015; 2015: 1-6.
[http://dx.doi.org/10.1155/2015/682904] [PMID: 26788366]
[10]
Hussein MA, Shrestha E, Ouimet M, et al. LXR Mediated ABCA1 expression and function are modulated by high glucose and PRMT2. PLoS One 2015; 10(8): e0135218.
[http://dx.doi.org/10.1371/journal.pone.0135218] [PMID: 26288135]
[11]
Ochoa-Rosales C, Portilla FE, Nano J, et al. Epigenetic link between statin therapy and type 2 diabetes. Diabetes Care 2020; 43(4): 875-84.
[http://dx.doi.org/10.2337/dc19-1828] [PMID: 32033992]
[12]
Mauldin JP, Nagelin MH, Wojcik AJ, et al. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation 2008; 117(21): 2785-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.741314] [PMID: 18490524]
[13]
Zhou H, Tan KCB, Shiu SWM, Wong Y. Determinants of leukocyte adenosine triphosphate–binding cassette transporter G1 gene expression in type 2 diabetes mellitus. Metabolism 2008; 57(8): 1135-40.
[http://dx.doi.org/10.1016/j.metabol.2008.03.020] [PMID: 18640393]
[14]
Bilotta MT, Petillo S, Santoni A, Cippitelli M, Liver X. Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol 2020; 11: 584303.
[http://dx.doi.org/10.3389/fimmu.2020.584303] [PMID: 33224146]
[15]
Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 2018; 14(8): 452-63.
[http://dx.doi.org/10.1038/s41574-018-0037-x] [PMID: 29904174]
[16]
World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. Geneva: World Health Organization 2006.
[17]
Nieland TJF, Penman M, Dori L, Krieger M, Kirchhausen T. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci USA 2002; 99(24): 15422-7.
[http://dx.doi.org/10.1073/pnas.222421399] [PMID: 12438696]
[18]
Sabol SL, Brewer HBJ, Santamarina FS. The human ABCG1 gene: Identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res 2005; 46(10): 2151-67.
[http://dx.doi.org/10.1194/jlr.M500080-JLR200] [PMID: 16024918]
[19]
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 2018; 17(1): 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[20]
Wang S, Smith JD. ABCA1 and nascent HDL biogenesis. Biofactors 2014; 40(6): 547-54.
[http://dx.doi.org/10.1002/biof.1187] [PMID: 25359426]
[21]
Zhao GJ, Yin K, Fu Y, Tang CK. The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Mol Med 2012; 18(2): 149-58.
[http://dx.doi.org/10.2119/molmed.2011.00183] [PMID: 22064972]
[22]
Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 2006; 26(3): 534-40.
[http://dx.doi.org/10.1161/01.ATV.0000200082.58536.e1] [PMID: 16357317]
[23]
Zhu Y, Wang HJ, Chen LF, Fang Q, Yan XW. Study of ATP-binding cassette transporter A1 (ABCA1)-mediated cellular cholesterol efflux in diabetic golden hamsters. J Int Med Res 2007; 35(4): 508-16.
[http://dx.doi.org/10.1177/147323000703500410] [PMID: 17697528]
[24]
Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res 2010; 51(7): 1719-28.
[http://dx.doi.org/10.1194/jlr.M003525] [PMID: 19965614]
[25]
Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem 2002; 277(7): 5692-7.
[http://dx.doi.org/10.1074/jbc.M109977200] [PMID: 11741998]
[26]
Duong M, Collins HL, Jin W, Zanotti I, Favari E, Rothblat GH. Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler Thromb Vasc Biol 2006; 26(3): 541-7.
[http://dx.doi.org/10.1161/01.ATV.0000203515.25574.19] [PMID: 16410457]
[27]
Ignatova ID, Angdisen J, Moran E, Schulman IG. Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading. Mol Endocrinol 2013; 27(7): 1036-47.
[http://dx.doi.org/10.1210/me.2013-1051] [PMID: 23686114]
[28]
Jun H, Hoang MH, Yeo SK, Jia Y, Lee SJ. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorg Med Chem Lett 2013; 23(2): 579-83.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.012] [PMID: 23246324]
[29]
Kaplan R, Gan X, Menke JG, Wright SD, Cai TQ. Bacterial lipopolysaccharide induces expression of ABCA1 but not ABCG1 via an LXR-independent pathway. J Lipid Res 2002; 43(6): 952-9.
[http://dx.doi.org/10.1016/S0022-2275(20)30470-3] [PMID: 12032171]
[30]
Isoda K, Folco EJ, Shimizu K, Libby P. AGE-BSA decreases ABCG1 expression and reduces macrophage cholesterol efflux to HDL. Atherosclerosis 2007; 192(2): 298-304.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.07.023] [PMID: 17005185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy