Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Formulation Development and Assessment of Solid Dispersion and Hydrotropy for BCS Class II Drug Solubility Enhancement

Author(s): Neha Bajwa, Mela Singh, Srishti Naryal, Shipra Mahal, Sumit Mehta, Jitender Madan and Ashish Baldi*

Volume 21, Issue 2, 2024

Published on: 12 October, 2022

Page: [305 - 319] Pages: 15

DOI: 10.2174/1570180819666220822115049

Price: $65

Abstract

Aim: This study aimed to evaluate the potential of different hydrophilic polymers to increase Arteether's water solubility.

Background: Arteether is classified as a class II biopharmaceutical in the Biopharmaceutical Classification System (BCS), with low water solubility (17 g/mL) and dissolution rate, resulting in poor bioavailability.

Objective: The goal of this research is to improve the water solubility of Arteether (ART) by using a solid dispersion and hydrotropic approach with a variety of carriers, such as PEG-6000 PVP K-30, Poloxamer- 188, Poloxamer-407, HPMC E 15LV, HPMC K-100M, sucrose, and mannitol, sodium benzoate, sodium citrate, Urea, nicotinamide, and beta-cyclodextrin.

Methods: Melting and evaporation methods were used to make the solid dispersion. Instrumental examinations, including XRD, DSC, FTIR, and SEM, confirmed any physical changes caused by the interaction of ART and carriers.

Results: The most significant increase in water solubility of Arteether was discovered with CD: PEG600:Pol -407, and the highest enhancement in solubility was 67 times. While 37.34 times and 49 times increase in solubility was observed at 1:4.3:3.7 weight ratio of AE: PEG-6000:Poloxamer-407 40 percent mix of nicotinamide, respectively. The in vitro results show that ART's dissolution rate in the solid dispersion system was dramatically reduced compared to pure drug. This might be because of the drug's enhanced wettability, dispersion ability, and transition from crystalline to amorphous form. Compared to the ART itself, the permeability of Arteether from solid dispersion was increased up to 7 times. However, the permeability of solid cyclodextrin dispersion was extremely low, just 4.42 times. This may be due to the drug encapsulation in the cyclodextrin cavity.

Conclusion: This research successfully developed and optimized various polymer and solubility enhancement approaches for Arteether, resulting in increased water solubility, which may improve Arteether's oral bioavailability. The findings of this study might be utilized to develop an oral dosage of Arteether with enhanced bioavailability.

Keywords: Bioavailability, Cyclodextrin, Dissolution, Hydrotropy, Permeability, Solid dispersion

Graphical Abstract

[1]
Ansari, M.T.; Karim, S.; Ranjha, N.M.; Shah, N.H.; Muhammad, S. Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods. Arch. Pharm. Res., 2010, 33(6), 901-910.
[http://dx.doi.org/10.1007/s12272-010-0613-7] [PMID: 20607495]
[2]
Ansari, M.T.; Batty, K.T.; Iqbal, I.; Sunderland, V.B. Improving the solubility and bioavailability of dihydroartemisinin by solid dispersions and inclusion complexes. Arch. Pharm. Res., 2011, 34(5), 757-765.
[http://dx.doi.org/10.1007/s12272-011-0509-1] [PMID: 21656361]
[3]
Ansari, M.T.; Haneef, M.; Murtaza, G. Solid dispersions of artemisinin in polyvinyl pyrrolidone and polyethylene glycol. Adv. Clin. Exp. Med., 2010, 19(6), 745-754.
[4]
Ansari, M. T.; Hussain, A.; Nadeem, S.; Majeed, H.; Saeed-Ul-Hassan, S.; Tariq, I.; Mahmood, Q.; Khan, A. K.; Murtaza, G. Preparation and characterization of solid dispersions of artemether by freeze-dried method. BioMed Res. Int., 2015, 2015
[http://dx.doi.org/10.1155/2015/109563]
[5]
Liw, J.J.; Teoh, X-Y.; Teoh, A.X.Y.; Chan, S-Y. The effect of carrier-drug ratios on dissolution performances of poorly soluble drug in crystalline solid dispersion system. J. Pharm. Sci., 2022, 111(1), 95-101.
[http://dx.doi.org/10.1016/j.xphs.2021.06.026] [PMID: 34174289]
[6]
Ansari, M.T.; Pervez, H.; Shehzad, M.T.; Saeed-ul-Hassan, S.; Mehmood, Z.; Shah, S.N.H.; Razi, M.T.; Murtaza, G. Improved physicochemical characteristics of artemisinin using succinic acid. Acta Pol. Pharm., 2014, 71(3), 451-462.
[PMID: 25265825]
[7]
Chiou, W.L.; Riegelman, S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci., 1971, 60(9), 1281-1302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[8]
Chokshi, R.J.; Zia, H.; Sandhu, H.K.; Shah, N.H.; Malick, W.A. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: Pros and cons. Drug Deliv., 2007, 14(1), 33-45.
[http://dx.doi.org/10.1080/10717540600640278] [PMID: 17107929]
[9]
Chutimaworapan, S.; Ritthidej, G.C.; Yonemochi, E.; Oguchi, T.; Yamamoto, K. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev. Ind. Pharm., 2000, 26(11), 1141-1150.
[http://dx.doi.org/10.1081/DDC-100100985] [PMID: 11068687]
[10]
Daily, J.P. Antimalarial drug therapy: The role of parasite biology and drug resistance. J. Clin. Pharmacol., 2006, 46(12), 1487-1497.
[http://dx.doi.org/10.1177/0091270006294276] [PMID: 17101748]
[11]
Dwivedi, P.; Khatik, R.; Chaturvedi, P.; Khandelwal, K.; Taneja, I.; Raju, K.S.R.; Dwivedi, H.; Singh, S.K.; Gupta, P.K.; Shukla, P.; Tripathi, P.; Singh, S.; Tripathi, R.; Wahajuddin; Paliwal, S.K.; Dwivedi, A.K.; Mishra, P.R. Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: An approach by enhanced bioavailability. Colloids Surf. B Biointerfaces, 2015, 126, 467-475.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.052] [PMID: 25616971]
[12]
Gorajana, A.; Rajendran, A.; Yew, L.M.; Dua, K. Preparation and characterization of cefuroxime axetil solid dispersions using hydrophilic carriers. Int. J. Pharm. Investig., 2015, 5(3), 171-178.
[http://dx.doi.org/10.4103/2230-973X.160857] [PMID: 26258059]
[13]
Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: Progress, perils, and prospects for eradication. J. Clin. Invest., 2008, 118(4), 1266-1276.
[http://dx.doi.org/10.1172/JCI33996] [PMID: 18382739]
[14]
Vijaya Kumar, S.G.; Mishra, D.N. Preparation, characterization and in vitro dissolution studies of solid dispersion of meloxicam with PEG 6000. Yakugaku Zasshi, 2006, 126(8), 657-664.
[http://dx.doi.org/10.1248/yakushi.126.657] [PMID: 16880724]
[15]
Kumar, V.S.; Raja, C.; Jayakumar, C. A review on solubility enhancement using hydrotropic phenomena. Int. J. Pharm. Pharm. Sci., 2014, 6(6), 1-7.
[16]
Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm., 2000, 50(1), 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[17]
Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv., 2005, 2(2), 335-351.
[http://dx.doi.org/10.1517/17425247.2.1.335] [PMID: 16296758]
[18]
Loh, G. O. K.; Tan, Y. T. F.; Peh, K.-K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J. Pharm. Sci., 2016, 11(4), 536-546.
[19]
Maheshwari, R.K.; Rathore, A.; Agrawal, A.; Gupta, M.A. New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent. Pharm. Methods, 2011, 2(3), 184-188.
[http://dx.doi.org/10.4103/2229-4708.90359] [PMID: 23781453]
[20]
Maheshwari, R.K.; Saxena, M.; Gahlot, M.; Chaki, R.; Kinariwala, M.; Jagwani, Y. Novel application of hydrotropic solubilizing additives in the estimation of aspirin in tablets. Indian J. Pharm. Sci., 2010, 72(5), 649-651.
[http://dx.doi.org/10.4103/0250-474X.78539] [PMID: 21695002]
[21]
Maheshwari, R.; Shukla, R. S. Novel method for spectrophotometric analysis of hydrochlorothiazide tablets using niacinamide as hydrotropic solubilizing agent. Asian J. Pharm., 2014, 2(1)
[22]
Zhang, F.; Mao, J.; Tian, G.; Jiang, H.; Jin, Q. Preparation and characterization of furosemide solid dispersion with enhanced solubility and bioavailability. AAPS PharmSciTech, 2022, 23(1), 65.
[http://dx.doi.org/10.1208/s12249-022-02208-w] [PMID: 35102461]
[23]
Patel, K.; Shah, S.; Patel, J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. Daru, 2022, 30(1), 165-189.
[http://dx.doi.org/10.1007/s40199-022-00440-0] [PMID: 35437630]
[24]
Suputtamongkol, Y.; Newton, P.N.; Angus, B.; Teja-Isavadharm, P.; Keeratithakul, D.; Rasameesoraj, M.; Pukrittayakamee, S.; White, N.J. A comparison of oral artesunate and artemether antimalarial bioactivities in acute Falciparum malaria. Br. J. Clin. Pharmacol., 2001, 52(6), 655-661.
[http://dx.doi.org/10.1046/j.1365-2125.2001.01458.x] [PMID: 11736876]
[25]
Zhao, J.; Gao, P.; Mu, C.; Ning, J.; Deng, W.; Ji, D.; Sun, H.; Zhang, X.; Yang, X. Preparation and evaluation of novel supersaturated solid dispersion of magnolol: Theme: Advancements in amorphous solid dispersions to improve bioavailability. AAPS PharmSciTech, 2022, 23(4), 97.
[http://dx.doi.org/10.1208/s12249-022-02251-7] [PMID: 35332440]
[26]
Vishwas, D.V.; Pradeep, M.P. Advances in hydrotropic solutions: An updated review. St. Petersburg Polytechnic Univ. J. Phy. Math., Physics and Mathematics, 2015, 30(4), 119-138.
[27]
Kyeremateng, S.O.; Voges, K.; Dohrn, S.; Sobich, E.; Lander, U.; Weber, S.; Gessner, D.; Evans, R.C.; Degenhardt, M. A hot-melt extrusion risk assessment classification system for amorphous solid dispersion formulation development. Pharmaceutics, 2022, 14(5), 1044.
[http://dx.doi.org/10.3390/pharmaceutics14051044] [PMID: 35631630]
[28]
Banik, S.; Sato, H.; Onoue, S. Self-micellizing solid dispersion of atorvastatin with improved physicochemical stability and oral absorption. J. Drug Deliv. Sci. Technol., 2022, 68, 103065.
[http://dx.doi.org/10.1016/j.jddst.2021.103065]

© 2024 Bentham Science Publishers | Privacy Policy