Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Effect of Substitution at the Di- and Trivalent Sites of {N[n- C4H9]4]FeIIFeIII[C2O4]3]} on the Nature of Solid State Decomposition Reaction Leading to Various Metal Oxides

Author(s): Debasis Roy, Maciej Zubko, Joachim Kusz and Ashis Bhattacharjee*

Volume 12, Issue 3, 2022

Published on: 13 September, 2022

Page: [216 - 232] Pages: 17

DOI: 10.2174/1877946812666220820162805

Price: $65

Abstract

Background: Oxalate ligand-based metal complexes have long been used for the thermal synthesis of metal oxides. Polymeric homo/heterometallic oxalate-based molecular materials of the general formula, {A]MIIMIII[C2O4]3]}, [A = organic cation, MII/MIII: di/trivalent transition metal ion; C2O4: oxalate ligand] provides a molecular source to prepare metal oxides through solid state thermal decomposition primarily due to the potential to tune the materials’ outcome by adjusting the molecular stoichiometry and composition.

Objective: The study aims to explore the effect of mixing at the di- and trivalent metal sites of {N[n-C4H9]4]FeIIFeIII[C2O4]3]} which decomposes to hematite, on the nature of thermal decomposition reaction as well as the nature of the obtained decomposed materials.

Methods: Two series of materials {N[n-C4H9]4]FeII1-xZnII xFeIII[C2O4]3]} and {N[n- C4H9]4]FeIIFeIII1-xCrIIIx[C2O4]3]} were prepared as precursors for non-isothermal thermogravimetry [TG] study. Model-free integral isoconversional method is employed to calculate the activation energy of decomposition, and hence the most probable reaction mechanism, as well as the reaction rate of thermal decomposition, was determined. Based on the kinetic parameters, the important thermodynamic parameters such as the changes of entropy, enthalpy, and Gibbs free energy are estimated for the activated complex formation from the precursors. Powder X-ray diffraction studies were made to identify the decomposed materials.

Results: For materials with 0 < x ≤ 1 well-defined two-step and one-step decomposition process were observed for {N[n-C4H9]4]FeII1-xZnII xFeIII[C2O4]3]} and {N[n- C4H9]4]FeIIFeIII1-xCrIIIx[C2O4]3]}, respectively. For each series of materials, a systematic dependence of the activation energy on the extent of conversion indicates a systematic change in the reactivity. The thermal decomposition strongly depends on the extent of mixing at the di- and trivalent sites and proceeds through different reaction mechanisms at different rates. On the decomposition of these series of materials, a range of metal oxides was obtained. Possibly, during such extent of mixing dependent reactions, the reactant particles go through modifications in their reactivity by several factors.

Conclusion: Present work may invoke interest in solid state synthesis of different metal oxides under controlled thermal decomposition by identifying the rate controlling the process through reaction kinetics study for better synthesis and manoeuvring.

Keywords: Thermal decomposition, oxalate-based molecular materials, thermogravimetry, kinetic calculations, iso-conversional method, XRD.

Graphical Abstract

[1]
Srivastava, M.; Ojha, A.K.; Chaubey, S.; Materny, A. Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloys Compd., 2009, 481(1–2), 515-519.
[http://dx.doi.org/10.1016/j.jallcom.2009.03.027]
[2]
Wang, X.; Wang, L.; Lim, I-I.S.; Bao, K.; Mott, D.; Park, H-Y.; Luo, J.; Hao, S.; Zhong, C.J. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles. J. Nanosci. Nanotechnol., 2009, 9(5), 3005-3012.
[http://dx.doi.org/10.1166/jnn.2009.206] [PMID: 19452962]
[3]
Mouli, K.C.; Joseph, T.; Ramam, K. Synthesis and magnetic studies of Co-Ni-Zn ferrite nano crystals. J. Nanosci. Nanotechnol., 2009, 9(9), 5596-5599.
[http://dx.doi.org/10.1166/jnn.2009.1133] [PMID: 19928271]
[4]
Kmita, A.; Holtzer, M.; Pribulova, A.; Futas, P.; Roczniak, A. Use of specific properties of zinc ferrite in innovative technologies. Arch. Metall. Mater., 2016, 61(4), 2141-2146.
[http://dx.doi.org/10.1515/amm-2016-0289]
[5]
Lebourgeois, R.; Coillot, C. Mn–Zn ferrites for magnetic sensor in space applications. J. Appl. Phys., 2008, 103(7), 07E510-1-07E510-3.
[6]
Hossain, A.K.M.A.; Biswas, T.S.; Yanagida, T.; Tanaka, H.; Tabata, H.; Kawai, T. Investigation of structural and mag-netic properties of polycrystalline Ni0.50Zn0.50−xMgxFe2O4 spinel ferrites. Mater. Chem. Phys., 2010, 120(2–3), 461-467.
[http://dx.doi.org/10.1016/j.matchemphys.2009.11.040]
[7]
Yaghmour, S.J.; Hafez, M.; Ali, K.; Elshirbeeny, W. The influence of zinc ferrites nanoparticles on the thermal, mechan-ical, and magnetic properties of rubber nanocomposites. Polym. Compos., 2012, 33(10), 1672-1677.
[http://dx.doi.org/10.1002/pc.22300]
[8]
Neo, K.E.; Ong, Y.Y.; Huynh, H.V.; Hor, T.S.A. A single-molecular pathway from heterometallic MM′(M= BaII, MnII; M′= CrIII) oxalato complexes to intermetallic composite oxides. J. Mater. Chem., 2007, 17(10), 1002-1006.
[http://dx.doi.org/10.1039/B609630A]
[9]
Schuele, W.J. Preparation of fine particles from bimetal oxalates. J. Phys. Chem., 1959, 63(1), 83-86.
[http://dx.doi.org/10.1021/j150571a021]
[10]
Dollimore, D. The thermal decomposition of oxalates. A review. Thermochim. Acta, 1987, 117, 331-363.
[http://dx.doi.org/10.1016/0040-6031(87)88127-3]
[11]
Coetzee, A.; Brown, M.; Eve, D.; Strydom, C. Kinetics of the thermal dehydrations and decompositions of some mixed metal oxalates. J. Therm. Anal. Calorim., 1994, 41(2–3), 357-385.
[http://dx.doi.org/10.1007/BF02549321]
[12]
Diefallah, E-H.; Gabal, M.A.; El-Bellihi, A.A.; Eissa, N.A. Nonisothermal decomposition of CdC2O4–FeC2O4 mixtures in air. Thermochim. Acta, 2001, 376(1), 43-50.
[http://dx.doi.org/10.1016/S0040-6031(01)00535-4]
[13]
Gabal, M.A.; El-Bellihi, A.A.; Ata-Allah, S.S. Effect of calcination temperature on Co(II) oxalate dihydrate–iron (II) oxalate dihydrate mixture: DTA–TG, XRD, Mössbauer, FT-IR and SEM studies (Part II). Mater. Chem. Phys., 2003, 81(1), 84-92.
[http://dx.doi.org/10.1016/S0254-0584(03)00137-8]
[14]
Gabal, M.A. Non-isothermal decomposition of lead oxalate-iron (II) oxalate mixture. DTA-TG, XRD, FT-IR and Möss-bauer studies. J. Mater. Res. Technol., 2021, 15, 5841-5848.
[http://dx.doi.org/10.1016/j.jmrt.2021.11.012]
[15]
Bhattacharjee, A. A legendary molecular magnetic system: A M(II)M(III)(C2O4)3. Curr. Inorg. Chem., 2016, 6(3), 162-180.
[http://dx.doi.org/10.2174/1877944107666161208120622]
[16]
Bhattacharjee, A.; Roy, D.; Roy, M.; Chakraborty, S.; De, A.; Kusz, J.; Hofmeister, W. Rod-like ferrites obtained through thermal degradation of a molecular ferrimagnet. J. Alloys Compd., 2010, 503(2), 449-453.
[http://dx.doi.org/10.1016/j.jallcom.2010.05.031]
[17]
Mathonière, C.; Nuttall, C.J.; Carling, S.G.; Day, P. Ferrimagnetic mixed-valency and mixed-metal Tris(oxalato)iron(III) compounds: Synthesis, structure, and magnetism. Inorg. Chem., 1996, 35(5), 1201-1206.
[http://dx.doi.org/10.1021/ic950703v] [PMID: 11666309]
[18]
Okawa, H.; Matsumoto, N.; Tamaki, H.; Aakiohba, M. Ferrimagnetic mixed-metal assemblies {NBu4[MFe(ox)3]}∞. Mol Cryst Liq Cryst Sci Technol Sect. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 1993, 233(1), 257-262.
[http://dx.doi.org/10.1080/10587259308054965]
[19]
Tamaki, H.; Matsumoto, N.; Koikawa, M.; Achiwa, N.; Okawa, H.; Zhong, Z.J. Design of metal-complex magnets. syn-theses and magnetic properties of mixed-metal assemblies {NBu4[MCr(ox)3]}∞ (NBu4+ = Tetra(n-butyl) Ammonium Ion; ox2- = Oxalate Ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). J. Am. Chem. Soc., 1992, 114(18), 6974-6979.
[http://dx.doi.org/10.1021/ja00044a004]
[20]
Bhattacharjee, A.; Iijima, S.; Mizutani, F.; Katsura, T.; Matsumoto, N.; Okawa, H. Magnetic susceptibility of some mixed-metal compounds: NBu4{Zn(II)xFe(II)1-x. Jpn. J. Appl. Phys., 1995, 34(3R), 1521-1525.
[http://dx.doi.org/10.1143/JJAP.34.1521]
[21]
Decurtins, S.; Schmalle, H.W.; Oswald, H.R.; Linden, A.; Ensling, J.; Gütlich, P.; Hauser, A. A polymeric two-dimensional mixed-metal network. Crystal structure and magnetic properties of {[P(Ph)4][MnCr(ox)3]}. Inorg. Chim. Acta, 1994, 216(1–2), 65-73.
[http://dx.doi.org/10.1016/0020-1693(93)03711-I]
[22]
Bhattacharjee, A.; Iijima, S.; Mizutani, F. Magnetic susceptibility of some mixed-metal compounds NBu4{Fe(II)Fe(III)x Cr(III)(1-x)}. J. Magn. Magn. Mater., 1996, 153(1-2), 235-240.
[http://dx.doi.org/10.1016/0304-8853(95)00485-8]
[23]
Bhattacharjee, A.; Roy, D.; Roy, M. Thermal decomposition of molecular materials {N(n-C4H9)4[MIIFeIII(C2O4)3]}∞, MII = Zn, Co, Fe. Int. J. Thermophys., 2012, 33(12), 2351-2365.
[http://dx.doi.org/10.1007/s10765-012-1293-y]
[24]
Roy, D.; Roy, M.; Zubko, M.; Kusz, J.; Bhattacharjee, A. Solid-state thermal reaction of a molecular material and sol-ventless synthesis of iron oxide. Int. J. Thermophys., 2016, 37(9), 93-117.
[http://dx.doi.org/10.1007/s10765-016-2099-0]
[25]
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 1993, 192(1–2), 55-69.
[http://dx.doi.org/10.1016/0921-4526(93)90108-I]
[26]
Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520(1–2), 1-19.
[http://dx.doi.org/10.1016/j.tca.2011.03.034]
[27]
Rooj, A.; Roy, M.; Bhattacharjee, A. Thermal decomposition reaction of ferrocene in the presence of oxalic acid. Int. J. Chem. Kinet., 2017, 49(5), 319-332.
[http://dx.doi.org/10.1002/kin.21077]
[28]
Dey, A.; Zubko, M.; Kusz, J.; Bhattacharjee, A. Kinetics study of the solid state reaction of Iron(III)citrate leading to hematite nanoparticles. Curr. Phys. Chem., 2018, 8(4), 290-302.
[http://dx.doi.org/10.2174/1877946809666190201131731]
[29]
Das, B.; Bhattacharjee, A. Effect of co-precursor maliec anhydride on the thermal decomposition of acetyl ferrocene: A reaction kinetic analysis. Curr. Phys. Chem., 2019, 9(1), 22-35.
[http://dx.doi.org/10.2174/1877946809666190201142153]
[30]
Das, B.; Bhattacharjee, A. Kinetic analysis of nonisothermal decomposition of acetyl ferrocene. Int. J. Chem. Kinet., 2018, 50(4), 259-272.
[http://dx.doi.org/10.1002/kin.21155]
[31]
Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem., 2001, 22(2), 178-183.
[http://dx.doi.org/10.1002/1096-987X(20010130)22:2<178:AID-JCC5>3.0.CO;2-#]
[32]
Cai, J.; Yao, F.; Yi, W.; He, F. New temperature integral approximation for nonisothermal kinetics. AIChE J., 2006, 52(4), 1554-1557.
[http://dx.doi.org/10.1002/aic.10732]
[33]
Vlaev, L.; Nedelchev, N.; Gyurova, K.; Zagorcheva, M. A comparative study of non-isothermal kinetics of decomposi-tion of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis, 2008, 81(2), 253-262.
[http://dx.doi.org/10.1016/j.jaap.2007.12.003]
[34]
Málek, J. The kinetic analysis of non-isothermal data. Thermochim. Acta, 1992, 200, 257-269.
[http://dx.doi.org/10.1016/0040-6031(92)85118-F]
[35]
Bhattacharjee, A.; Roy, D.; Roy, M.; Adhikari, A. Thermal decomposition of a molecular material {N(n-C4H9)4[FeIIFeIII(C2O4)3]}∞ leading to ferrite: A reaction kinetics study. J. Serb. Chem. Soc., 2013, 78(4), 523-536.
[http://dx.doi.org/10.2298/JSC120519145B]
[36]
Fujita, J.; Nakamoto, K.; Kobayashi, M. Infrared spectra of metallic complexes. III. The infrared spectra of metallic oxalates. J. Phys. Chem., 1957, 61(7), 1014-1015.
[http://dx.doi.org/10.1021/j150553a045]
[37]
Dollimore, D.; Griffiths, D.L.; Nicholson, D. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J. Chem. Soc., 1963, 2617-2623.
[http://dx.doi.org/10.1039/jr9630002617]
[38]
Fatemi, N.S.; Dollimore, D.; Heal, G.R. Thermal decomposition of oxalates. Part 16. Thermal decomposition studies on cadmium oxalate. Thermochim. Acta, 1982, 54(1–2), 167-180.
[http://dx.doi.org/10.1016/0040-6031(82)85076-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy