Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design

Author(s): Sagar Salave, Kedar Prayag, Dhwani Rana, Prakash Amate, Rupali Pardhe, Ajinkya Jadhav, Anil B Jindal and Derajram Benival*

Volume 16, Issue 3, 2022

Published on: 05 September, 2022

Page: [170 - 191] Pages: 22

DOI: 10.2174/2667387816666220819124605

Price: $65

Abstract

Background: The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances.

Objective: The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain.

Methods: The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications.

Results: HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations.

Conclusion: HME remains an adaptable and differentiated technique for overall formulation development.

Keywords: Hot melt extrusion, solvent-free processing, sustained release, implants, films, 3D printing, nanotechnology, PAT technology.

Graphical Abstract

[1]
Xi L, Song H, Wang Y, Gao H, Fu Q. Lacidipine amorphous solid dispersion based on hot melt extrusion: Good miscibility, enhanced dissolution, and favorable stability. AAPS PharmSciTech 2018; 19(7): 3076-84.
[http://dx.doi.org/10.1208/s12249-018-1134-9] [PMID: 30094722]
[2]
Vasoya JM, Desai HH, Gumaste SG, et al. Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for increasing dissolution rate of a poorly soluble drug model. J Pharm Sci 2019; 108(2): 888-96.
[http://dx.doi.org/10.1016/j.xphs.2018.09.019] [PMID: 30257196]
[3]
Maniruzzaman M, Douroumis D, Boateng JS, Snowden MJ. Hot-melt extrusion (HME): From process to pharmaceutical applications Recent Adv Nov Drug Carr Syst. 2012 Available from:https://www.intechopen.com/chapters/40644
[4]
Karna S, Chaturvedi S, Agrawal V, Alim M. Formulation approaches for sustained release dosage forms: A review. Asian J Pharm Clin Res 2015; 8(5): 34-41.
[5]
Fan W, Zhu W, Zhang X, Di L. The preparation of curcumin sustained-release solid dispersion by hot melt extrusion-Ⅰ. Optimization of the formulation. J Pharm Sci 2020; 109(3): 1242-52.
[http://dx.doi.org/10.1016/j.xphs.2019.11.019] [PMID: 31809744]
[6]
Kipping T, Rein H. Continuous production of controlled release dosage forms based on hot-melt extruded gum arabic: Formulation development, in vitro characterization and evaluation of potential application fields. Int J Pharm 2016; 497(1-2): 36-53.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.021] [PMID: 26617317]
[7]
Vo AQ, Feng X, Morott JT, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm 2016; 98: 108-21.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.015] [PMID: 26643801]
[8]
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: Classification, limitations and therapeutic applications. Pharmaceut Develop Technol 2020; 25: 116-32.
[9]
Loxley A. Devices and Implants Prepared Using Hot Melt Extrusion. NY: Springer 2013; pp. 281-98.
[10]
Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO III. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res 2008; 25(6): 1450-9.
[http://dx.doi.org/10.1007/s11095-008-9543-1] [PMID: 18288449]
[11]
Aitken-Nichol C, Zhang F, McGinity JW. Hot melt extrusion of acrylic films. Pharm Res 1996; 13(5): 804-8.
[http://dx.doi.org/10.1023/A:1016076306279] [PMID: 8860442]
[12]
Fukuda M, Peppas NA, McGinity JW. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release 2006; 115(2): 121-9.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.018] [PMID: 16959356]
[13]
Almutairy BK, Alshetaili AS, Ashour EA, et al. Development of a floating drug delivery system with superior buoyancy in gastric fluid using hot-melt extrusion coupled with pressurized CO&#8322. Pharmazie 2016; 71(3): 128-33.
[PMID: 27183706]
[14]
Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm 1999; 25(5): 625-33.
[http://dx.doi.org/10.1081/DDC-100102218] [PMID: 10219532]
[15]
Gajda M, Nartowski KP, Pluta J, Karolewicz B. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: A case of theophylline-nicotinamide cocrystal. Int J Pharm 2019; 569: 118579.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118579] [PMID: 31362095]
[16]
Rana D, Salave S, Benival D. Emerging trends in abuse-deterrent formulations: Technological insights and regulatory considerations. Curr Drug Deliv 2021; 18: 19.
[http://dx.doi.org/10.2174/1567201818666211208101035] [PMID: 34879799]
[17]
Baumgartner R, Eitzlmayr A, Matsko N, Tetyczka C, Khinast J, Roblegg E. Nano-extrusion: A promising tool for continuous manufacturing of solid nano-formulations. Int J Pharm 2014; 477(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.008] [PMID: 25304093]
[18]
Dumpa NR, Sarabu S, Bandari S, Zhang F, Repka MA. Chronotherapeutic drug delivery of ketoprofen and ibuprofen for improved treatment of early morning stiffness in arthritis using hot-melt extrusion technology. AAPS PharmSciTech 2018; 19(6): 2700-9.
[http://dx.doi.org/10.1208/s12249-018-1095-z] [PMID: 29968041]
[19]
Ye X, Patil H, Feng X, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: A novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech 2016; 17(1): 78-88.
[http://dx.doi.org/10.1208/s12249-015-0389-7] [PMID: 26283197]
[20]
Repka MA, Bandari S, Kallakunta VR, et al. Melt extrusion with poorly soluble drugs - An integrated review. Int J Pharm 2018; 535(1-2): 68-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.056] [PMID: 29102700]
[21]
Simões MF, Pinto RMA, Simões S. Hot-melt extrusion in the pharmaceutical industry: Toward filing a new drug application. Drug Discov Today 2019; 24(9): 1749-68.
[http://dx.doi.org/10.1016/j.drudis.2019.05.013] [PMID: 31132415]
[22]
Genina N, Hadi B, Löbmann K. Hot melt extrusion as solvent-free technique for a continuous manufacturing of drug-loaded mesoporous silica. J Pharm Sci 2018; 107(1): 149-55.
[http://dx.doi.org/10.1016/j.xphs.2017.05.039] [PMID: 28603020]
[23]
Islam MT, Scoutaris N, Maniruzzaman M, et al. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Eur J Pharm Biopharm 2015; 96: 106-16.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.021] [PMID: 26209124]
[24]
Matić J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. Developing HME-based drug products using emerging science: A fast-track roadmap from concept to clinical batch. AAPS PharmSciTech 2020; 21: pp. 1-18.
[25]
Schlindwein W, Bezerra M, Almeida J, Berghaus A, Owen M, Muirhead G. In-line uv-vis spectroscopy as a fast-working process analytical technology (Pat) during early phase product development using hot melt extrusion (hme). Pharmaceutics 2018; 10(4): 1-25.
[26]
Almeida J, Bezerra M, Markl D, Berghaus A, Borman P, Schlindwein W. Development and validation of an in-line API quantification method using AQbD principles based on UV-vis spectroscopy to monitor and optimise continuous hot melt extrusion process. Pharmaceutics 2020; 12(2): E150.
[http://dx.doi.org/10.3390/pharmaceutics12020150] [PMID: 32059445]
[27]
Wesholowski J, Prill S, Berghaus A, Thommes M. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion. Drug Deliv Transl Res 2018; 8(6): 1595-603.
[http://dx.doi.org/10.1007/s13346-017-0465-5] [PMID: 29327264]
[28]
Kelly AL, Gough T, Isreb M, et al. In-process rheometry as a PAT tool for hot melt extrusion. Drug Dev Ind Pharm 2018; 44(4): 670-6.
[http://dx.doi.org/10.1080/03639045.2017.1408641] [PMID: 29161918]
[29]
Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm 2011; 77(1): 158-63.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.015] [PMID: 20933084]
[30]
Parineeta BN. A raman spectroscopic study of solid dispersions and co-crystals during the pharmaceutical hot melt extrusion process PhD Thesis, University of Bradford, Bradford, UK 2015.
[31]
Saerens L, Vervaet C, Remon JP, De Beer T. Visualization and process understanding of material behavior in the extrusion barrel during a hot-melt extrusion process using raman spectroscopy. Anal Chem 2013; 85(11): 5420-9.
[http://dx.doi.org/10.1021/ac400097t] [PMID: 23662854]
[32]
Kelly AL, Halsey SA, Bottom RA, Korde S, Gough T, Paradkar A. A novel transflectance near infrared spectroscopy technique for monitoring hot melt extrusion. Int J Pharm 2015; 496(1): 117-23.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.025] [PMID: 26188315]
[33]
Evans RC, Bochmann ES, Kyeremateng SO, Gryczke A, Wagner KG. Holistic QbD approach for hot-melt extrusion process design space evaluation: Linking materials science, experimentation and process modeling. Eur J Pharm Biopharm 2019; 141: 149-60.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.021] [PMID: 31132400]
[34]
Islam MT, Maniruzzaman M, Halsey SA, Chowdhry BZ, Douroumis D. Development of sustained-release formulations processed by hot-melt extrusion by using a quality-by-design approach. Drug Deliv Transl Res 2014; 4(4): 377-87.
[http://dx.doi.org/10.1007/s13346-014-0197-8] [PMID: 25787069]
[35]
Thiry J, Lebrun P, Vinassa C, et al. Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination. Int J Pharm 2016; 515(1-2): 114-24.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.003] [PMID: 27720874]
[36]
Korte C, Quodbach J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol 2018; 23(10): 1117-27.
[http://dx.doi.org/10.1080/10837450.2018.1433208] [PMID: 29368974]
[37]
Creating personalized medicine with hot melt extrusion and 3d printing - advancing materials. Available from: https://www. thermofisher.com/blog/materials/creating-personalized-medicine-with-hot-melt-extrusion-and-3d-printing/ (Accessed on: 2022 Apr 1).
[38]
Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm 2021; 600: 120501.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120501] [PMID: 33746011]
[39]
Cunha-Filho M, Araújo MR, Gelfuso GM, Gratieri T. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: A new approach for individualized therapy. Ther Deliv 2017; 8(11): 957-66.
[http://dx.doi.org/10.4155/tde-2017-0067] [PMID: 29061104]
[40]
Repka MA, Shah S, Lu J, et al. Melt extrusion: Process to product. Expert Opin Drug Deliv 2012; 9(1): 105-25.
[http://dx.doi.org/10.1517/17425247.2012.642365] [PMID: 22145932]
[41]
Li Y, Pang H, Guo Z, et al. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol 2014; 66(2): 148-66.
[http://dx.doi.org/10.1111/jphp.12183] [PMID: 24325738]
[42]
Gupta SS, Solanki N, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol™ HPMC HME polymers. AAPS PharmSciTech 2016; 17(1): 148-57.
[http://dx.doi.org/10.1208/s12249-015-0426-6] [PMID: 26511936]
[43]
Jadhav NR, Gaikwad VL, Nair KJ, Kadam HM. Glass transition temperature: Basics and application in pharmaceutical sector. Asian J Pharm 2009; 3(2): 82-9.
[http://dx.doi.org/10.4103/0973-8398.55043]
[44]
Thakur VK, Thakur MK. Handbook of Polymers for Pharmaceutical Technologies, Volume 2, Processing and Applications. NY: USA, John Wiley & Sons, Inc.2015.
[45]
Chokshi RJ, Shah NH, Sandhu HK, Malick AW, Zia H. Stabilization of low glass transition temperature indomethacin formulations: Impact of polymer-type and its concentration. J Pharm Sci 2008; 97(6): 2286-98.
[http://dx.doi.org/10.1002/jps.21174] [PMID: 17879977]
[46]
Verreck G. The influence of plasticizers in hot-melt extrusion. Hot-Melt Extrus Pharm Appl 2012; pp. 93-112.
[http://dx.doi.org/10.1002/9780470711415.ch5]
[47]
Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: Selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm 2007; 328(2): 119-29.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.010] [PMID: 16968659]
[48]
Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 1995; 12(6): 799-806.
[http://dx.doi.org/10.1023/A:1016292416526] [PMID: 7667182]
[49]
Aho J, Boetker JP, Baldursdottir S, Rantanen J. Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int J Pharm 2015; 494(2): 623-42.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.009] [PMID: 25666026]
[50]
Yang F, Su Y, Zhang J, et al. Rheology guided rational selection of processing temperature to prepare copovidone-nifedipine amorphous solid dispersions via hot melt extrusion (HME). Mol Pharm 2016; 13(10): 3494-505.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00516] [PMID: 27602878]
[51]
Korolkovas A, Prévost S, Kawecki M, et al. The viscoelastic signature underpinning polymer deformation under shear flow. Soft Matter 2019; 15(3): 371-80.
[http://dx.doi.org/10.1039/C8SM02255K] [PMID: 30519692]
[52]
Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics 2020; 12(9): 795.
[http://dx.doi.org/10.3390/pharmaceutics12090795] [PMID: 32842703]
[53]
Vynckier AK, Dierickx L, Voorspoels J, Gonnissen Y, Remon JP, Vervaet C. Hot-melt co-extrusion: Requirements, challenges and opportunities for pharmaceutical applications. J Pharm Pharmacol 2014; 66(2): 167-79.
[http://dx.doi.org/10.1111/jphp.12091] [PMID: 24433421]
[54]
Alshetaili A, Alshahrani SM, Almutairy BK, Repka MA. Hot-melt extrusion with BASF pharma polymers. Processes 2020; 8(11): 1516.
[55]
Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Technol 2021; 63: 102452.
[http://dx.doi.org/10.1016/j.jddst.2021.102452]
[56]
Hancock BZG. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci Technol 2021; 75(4): 357-73.
[57]
Feng X, Vo A, Patil H, et al. The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions. J Pharm Pharmacol 2016; 68(5): 692-704.
[http://dx.doi.org/10.1111/jphp.12488] [PMID: 26589107]
[58]
Kachrimanis K, Nikolakakis I. Polymers as formulation excipients for hot-melt extrusion processing of pharmaceuticals In: Thakur VK, Thakur MK, Eds Handbook of Polymers for Pharmaceutical Technologies NY: USA, John Wiley & Sons, Inc 2015; pp. 121- 49.
[http://dx.doi.org/10.1002/9781119041412.ch5]
[59]
Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur J Pharm Sci 2013; 48(3): 371-84.
[http://dx.doi.org/10.1016/j.ejps.2012.12.012] [PMID: 23267847]
[60]
Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 2001; 226(1-2): 147-61.
[http://dx.doi.org/10.1016/S0378-5173(01)00801-8] [PMID: 11532578]
[61]
DeBoyace K, Wildfong PLD. The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J Pharm Sci 2018; 107(1): 57-74.
[http://dx.doi.org/10.1016/j.xphs.2017.03.029] [PMID: 28389266]
[62]
Pajula K, Taskinen M, Lehto VP, Ketolainen J, Korhonen O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol Pharm 2010; 7(3): 795-804.
[http://dx.doi.org/10.1021/mp900304p] [PMID: 20361760]
[63]
Simões MF, Pereira A, Cardoso S, et al. Five-stage approach for a systematic screening and development of etravirine amorphous solid dispersions by hot-melt extrusion. Mol Pharm 2020; 17(2): 554-68.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00996] [PMID: 31774685]
[64]
Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. Rubber Chem Technol 1952; 26(2): 323-35.
[http://dx.doi.org/10.5254/1.3539818]
[65]
Brostow W, Chiu R, Kalogeras IM, Vassilikou-dova A. Prediction of glass transition temperatures: Binary blends and copolymers. Mater Lett 2008; 62(17-18): 3152-5.
[http://dx.doi.org/10.1016/j.matlet.2008.02.008]
[66]
Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech 2016; 17(1): 20-42.
[http://dx.doi.org/10.1208/s12249-015-0360-7] [PMID: 26159653]
[67]
Cheremisinoff NP. Guidebook to extrusion technology. New Jersey, USA: Prentice Hall 1993.
[68]
Moseson D. Critical quality attributes of hot melt extruded amorphous solid dispersions 2020; 1-228.
[69]
Alshetaili A, Alshahrani SM, Almutairy BK, Repka MA. Hot melt extrusion processing parameters optimization. processes. Processes (Basel) 2020; 8(11): 1516.
[http://dx.doi.org/10.3390/pr8111516]
[70]
Patwardhan K, Asgarzadeh F, Dassinger T, Albers J, Repka MA. A quality by design approach to understand formulation and process variability in pharmaceutical melt extrusion processes. J Pharm Pharmacol 2015; 67(5): 673-84.
[http://dx.doi.org/10.1111/jphp.12370] [PMID: 25615235]
[71]
Shadambikar G, Marathe S, Ji N, et al. Formulation development of itraconazole PEGylated nano-lipid carriers for pulmonary aspergillosis using hot-melt extrusion technology. Int J Pharm X 2021; 3: 100074.
[http://dx.doi.org/10.1016/j.ijpx.2021.100074] [PMID: 33748741]
[72]
Zhao M, You D, Yin J, et al. Quaternary enteric solid dispersion prepared by hot-melt extrusion to mask the bitter taste and enhance drug stability. Int J Pharm 2021; 597: 120279.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120279] [PMID: 33540020]
[73]
Kallakunta VR, Sarabu S, Bandari S, et al. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: Effect of formulation and process parameters for a low glass transition temperature drug. J Drug Deliv Sci Technol 2020; 58: 101395.
[http://dx.doi.org/10.1016/j.jddst.2019.101395] [PMID: 32905375]
[74]
Monschke M, Kayser K, Wagner KG. Processing of polyvinyl acetate phthalate in hot-melt extrusion-preparation of amorphous solid dispersions. Pharmaceutics 2020; 12(4): 337.
[http://dx.doi.org/10.3390/pharmaceutics12040337] [PMID: 32283725]
[75]
Butreddy A, Sarabu S, Bandari S, Dumpa N, Zhang F, Repka MA. Polymer-assisted aripiprazole-adipic acid cocrystals produced by hot melt extrusion techniques. Cryst Growth Des 2020; 20(7): 4335-45.
[http://dx.doi.org/10.1021/acs.cgd.0c00020] [PMID: 33935595]
[76]
Sarabu S, Kallakunta VR, Bandari S, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: Effect of drug physicochemical properties. Carbohydr Polym 2020; 233: 115828.
[http://dx.doi.org/10.1016/j.carbpol.2020.115828] [PMID: 32059882]
[77]
Jadhav P, Gokarna V, Deshpande V, Vavia P. Bioavailability enhancement of olmesartan medoxomil using hot-melt extrusion: In-silico, in-vitro, and in-vivo evaluation. AAPS PharmSciTech 2020; 21(7): 1-7.
[78]
Vo AQ, Zhang J, Nyavanandi D, Bandari S, Repka MA. Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym 2020; 246: 116519.
[http://dx.doi.org/10.1016/j.carbpol.2020.116519] [PMID: 32747229]
[79]
Chauhan G, Shaik AA, Kulkarni NS, Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov Today 2020; 25(11): 1930-43.
[http://dx.doi.org/10.1016/j.drudis.2020.07.025] [PMID: 32835807]
[80]
Xu P, Zhang J, Bandari S, Repka MA. A novel acetaminophen soft-chew formulation produced via hot-melt extrusion with in-line near-infrared monitoring as a process analytical technology tool. AAPS PharmSciTech 2020; 21(2): 37.
[http://dx.doi.org/10.1208/s12249-019-1596-4] [PMID: 31897804]
[81]
Farinha S, Moura C, Afonso MD, Henriques J. Production of lysozyme-PLGA-loaded microparticles for controlled release using hot-melt extrusion. AAPS PharmSciTech 2020; 21(7): 274.
[http://dx.doi.org/10.1208/s12249-020-01816-8] [PMID: 33033873]
[82]
Shi X, Fan N, Zhang G, Sun J, He Z, Li J. Quercetin amorphous solid dispersions prepared by hot melt extrusion with enhanced solubility and intestinal absorption. Pharm Dev Technol 2020; 25(4): 472-81.
[http://dx.doi.org/10.1080/10837450.2019.1709502] [PMID: 31909684]
[83]
Srinivasan P, Almutairi M, Dumpa N, et al. Theophylline-nicotinamide pharmaceutical co-crystals generated using hot melt extrusion technology: Impact of polymeric carriers on processability. J Drug Deliv Sci Technol 2021; 61: 102128.
[http://dx.doi.org/10.1016/j.jddst.2020.102128] [PMID: 33717231]
[84]
Jung F, Thurn M, Krollik K, et al. Sustained-release hot melt extrudates of the weak acid TMP-001: A case study using PBB modelling. Eur J Pharm Biopharm 2021; 160: 23-34.
[http://dx.doi.org/10.1016/j.ejpb.2021.01.007] [PMID: 33484866]
[85]
Butreddy A, Sarabu S, Dumpa N, Bandari S, Repka MA. Extended release pellets prepared by hot melt extrusion technique for abuse deterrent potential: Category-1 in-vitro evaluation. Int J Pharm 2020; 587: 119624.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119624] [PMID: 32653597]
[86]
Alqahtani F, Belton P, Ward A, Asare-Addo K, Qi S. An investigation into the use of low quantities of functional additives to control drug release from hot melt extruded solid dispersions for poorly soluble drug delivery. Int J Pharm 2020; 579: 119172.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119172] [PMID: 32097683]
[87]
Pimparade MB, Vo A, Maurya AS, et al. Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology. Eur J Pharm Biopharm 2017; 119: 81-90.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.004] [PMID: 28596037]
[88]
Palem CR, Dudhipala NR, Battu SK, Repka MA, Rao Yamsani M. Development, optimization and in vivo characterization of domperidone-controlled release hot-melt-extruded films for buccal delivery. Drug Dev Ind Pharm 2016; 42(3): 473-84.
[http://dx.doi.org/10.3109/03639045.2015.1104346] [PMID: 26530127]
[89]
Regev G, Patel SK, Moncla BJ, Twist J, Devlin B, Rohan LC. Novel application of hot melt extrusion for the manufacturing of vaginal films containing microbicide candidate dapivirine. AAPS PharmSciTech 2019; 20(6): 239.
[http://dx.doi.org/10.1208/s12249-019-1442-8] [PMID: 31243640]
[90]
Park JB, Prodduturi S, Morott J, et al. Development of an antifungal denture adhesive film for oral candidiasis utilizing hot melt extrusion technology. Expert Opin Drug Deliv 2015; 12(1): 1-13.
[http://dx.doi.org/10.1517/17425247.2014.949235] [PMID: 25169007]
[91]
Musazzi UM, Selmin F, Ortenzi MA, et al. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm 2018; 551(1-2): 52-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.013] [PMID: 30205128]
[92]
Koutsamanis I, Spoerk M, Arbeiter F, Eder S, Roblegg E. Development of porous polyurethane implants manufactured via hot-melt extrusion. Polymers (Basel) 2020; 12(12): 1-22.
[http://dx.doi.org/10.3390/polym12122950] [PMID: 33321876]
[93]
Kelley RA, Ghaffari A, Wang Y, et al. Manufacturing of dexamethasone-poly(d,l-lactide-co-glycolide) implants using hot-melt extrusion: Within- and between-batch product performance comparisons. J Ocul Pharmacol Ther 2020; 36(5): 290-7.
[http://dx.doi.org/10.1089/jop.2019.0074] [PMID: 32330403]
[94]
Dharmayanti C, Gillam TA, Williams DB, Blencowe A. Drug-eluting biodegradable implants for the sustained release of bisphosphonates. Polymers (Basel) 2020; 12(12): 1-14.
[http://dx.doi.org/10.3390/polym12122930] [PMID: 33297466]
[95]
Fanous M, Bitar M, Gold S, et al. Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution. Int J Pharm 2021; 599: 120417.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120417] [PMID: 33647418]
[96]
Viidik L, Vesala J, Laitinen R, et al. Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets. Eur J Pharm Sci 2021; 158: 105619.
[http://dx.doi.org/10.1016/j.ejps.2020.105619] [PMID: 33115676]
[97]
Than YM, Titapiwatanakun V. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int J Pharm 2021; 599: 120402.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120402] [PMID: 33640426]
[98]
Khinast J, Baumgartner R, Roblegg E. Nano-extrusion: A one-step process for manufacturing of solid nanoparticle formulations directly from the liquid phase. AAPS PharmSciTech 2013; 14(2): 601-4.
[http://dx.doi.org/10.1208/s12249-013-9946-0] [PMID: 23463263]
[99]
Alshetaili A, Almutairy BK, Alshehri SM, Repka MA. Development and characterization of sustained-released donepezil hydrochloride solid dispersions using hot melt extrusion technology. Pharmaceutics 2021; 13(2): 213.
[http://dx.doi.org/10.3390/pharmaceutics13020213] [PMID: 33557076]
[100]
Zhang P, Shadambikar G, Almutairi M, Bandari S, Repka MA. Approaches for developing acyclovir gastro-retentive formulations using hot melt extrusion technology. J Drug Deliv Sci Technol 2020; 60: 102002.
[http://dx.doi.org/10.1016/j.jddst.2020.102002]
[101]
Bagde A, Patel N, Patel K, Nottingham E, Singh M. Sustained release dosage form of noscapine HCl using hot melt extrusion (HME) technique: Formulation and pharmacokinetics. Drug Deliv Transl Res 2021; 11(3): 1156-65.
[http://dx.doi.org/10.1007/s13346-020-00838-w] [PMID: 32880879]
[102]
Albarahmieh E, Qi S, Craig DQM. Hot melt extruded transdermal films based on amorphous solid dispersions in Eudragit RS PO: The inclusion of hydrophilic additives to develop moisture-activated release systems. Int J Pharm 2016; 514(1): 270-81.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.137] [PMID: 27863672]
[104]
Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers (Basel) 2018; 10(12): 1379.
[http://dx.doi.org/10.3390/polym10121379] [PMID: 30961303]
[105]
Fialho SL, da Silva Cunha A. Manufacturing techniques of biodegradable implants intended for intraocular application. Drug Deliv 2005; 12(2): 109-16.
[http://dx.doi.org/10.1080/10717540590921432] [PMID: 15824036]
[106]
Kamel R, Abbas H. PLGA-based monolithic filaments prepared by hot-melt extrusion: In-vitro comparative study. Ann Pharm Fr 2018; 76(2): 97-106.
[http://dx.doi.org/10.1016/j.pharma.2017.09.002] [PMID: 29145995]
[107]
Lehner E, Gündel D, Liebau A, Plontke S, Mäder K. Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions. Int J Pharm X 2019; 1: 100015.
[http://dx.doi.org/10.1016/j.ijpx.2019.100015] [PMID: 31517280]
[108]
Tan DK, Maniruzzaman M, Nokhodchi A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics 2018; 10(4): E203.
[http://dx.doi.org/10.3390/pharmaceutics10040203] [PMID: 30356002]
[109]
Samiei N. Recent trends on applications of 3D printing technology on the design and manufacture of pharmaceutical oral formulation: A mini review. Beni Suef Univ J Basic Appl Sci 2020; 9(1): 1-2.
[110]
Cui M, Pan H, Su Y, et al. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B 2021; 11(8): 2488-504.
[http://dx.doi.org/10.1016/j.apsb.2021.03.015] [PMID: 34567958]
[111]
Gaurav HN, Hasan N, Malik AK, et al. Recent update of 3D printing technology in pharmaceutical formulation development. Polymer Edition. 2021; 32(17): 2306-30.
[http://dx.doi.org/10.1080/09205063.2021.1967702] [PMID: 34387541]
[112]
Johannesson J, Khan J, Hubert M, Teleki A, Bergström CAS. 3D-printing of solid lipid tablets from emulsion gels. Int J Pharm 2021; 597: 120304.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120304] [PMID: 33540029]
[113]
Fitzgerald S. FDA approves first 3D-printed epilepsy drug experts assess the benefits and caveats. Neurol Today 2015; 15(18): 26-7.
[http://dx.doi.org/10.1097/01.NT.0000472137.66046.b5]
[114]
Zhang J, Vo AQ, Feng X, Bandari S, Repka MA. Pharmaceutical additive manufacturing: A novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech 2018; 19(8): 3388-402.
[http://dx.doi.org/10.1208/s12249-018-1097-x] [PMID: 29943281]
[115]
Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 2014; 476(1-2): 88-92.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.044] [PMID: 25275937]
[116]
Maniruzzaman M. Pharmaceutical applications of hot-melt extrusion: Continuous manufacturing, twin-screw granulations, and 3D printing. Pharmaceutics 2019; 11(5): 218.
[http://dx.doi.org/10.3390/pharmaceutics11050218] [PMID: 31067649]
[117]
Grymonpré W, Bostijn N, Herck SV, et al. Downstream processing from hot-melt extrusion towards tablets: A quality by design approach. Int J Pharm 2017; 531(1): 235-45.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.077] [PMID: 28823887]
[118]
Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 2016; 514(1): 290-5.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.021] [PMID: 27863674]
[119]
Ponsar H, Wiedey R, Quodbach J. Hot-melt extrusion process fluctuations and their impact on critical quality attributes of filaments and 3d-printed dosage forms. Pharmaceutics 2020; 12(6): 511.
[http://dx.doi.org/10.3390/pharmaceutics12060511] [PMID: 32503216]
[120]
Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 2016; 509(1-2): 255-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.036] [PMID: 27215535]
[121]
Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm 2015; 494(2): 657-63.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.069] [PMID: 25934428]
[122]
Goyanes A, Chang H, Sedough D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 2015; 496(2): 414-20.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.039] [PMID: 26481468]
[123]
Ghanizadeh Tabriz A, Nandi U, Hurt AP, et al. 3D printed bilayer tablet with dual controlled drug release for tuberculosis treatment. Int J Pharm 2021; 593: 120147.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120147] [PMID: 33278493]
[124]
Sadia M, Isreb A, Abbadi I, et al. From ‘fixed dose combinations’ to ‘a dynamic dose combiner’: 3D printed bi-layer antihypertensive tablets. Eur J Pharm Sci 2018; 123: 484-94.
[http://dx.doi.org/10.1016/j.ejps.2018.07.045] [PMID: 30041029]
[125]
Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 2016; 33(11): 2704-12.
[http://dx.doi.org/10.1007/s11095-016-1995-0] [PMID: 27506424]
[126]
Prasad E, Islam MT, Goodwin DJ, et al. Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing. Addit Manuf 2019; 29: 100776.
[http://dx.doi.org/10.1016/j.addma.2019.06.027]
[127]
Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr Polym 2017; 177: 49-57.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.058] [PMID: 28962795]
[128]
Kadry H, Al-Hilal TA, Keshavarz A, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption. Int J Pharm 2018; 544(1): 285-96.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.010] [PMID: 29680281]
[129]
Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm 2018; 539(1-2): 75-82.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.036] [PMID: 29366944]
[130]
Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci 2016; 90: 53-63.
[http://dx.doi.org/10.1016/j.ejps.2015.11.005] [PMID: 26545484]
[131]
Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res 2018; 35(9): 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x] [PMID: 29998405]
[132]
Patil H, Feng X, Ye X, Majumdar S, Repka MA. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: A systematic study based on a quality by design approach. AAPS J 2015; 17(1): 194-205.
[http://dx.doi.org/10.1208/s12248-014-9674-8] [PMID: 25344439]
[133]
Gajera BY, Shah DA, Dave RH. Investigating a novel hot melt extrusion-based drying technique to solidify an amorphous nanosuspension using design of experiment methodology. AAPS PharmSciTech 2018; 19(8): 3778-90.
[http://dx.doi.org/10.1208/s12249-018-1189-7] [PMID: 30280356]
[134]
Azad MOK, Kim WW, Jin CW, Kang WS, Park CH, Cho DH. Development of a polymer-mediated soybean nanocomposite by hot melt extrusion to improve its functionality and antioxidant properties. Foods 2019; 8(2): 41.
[http://dx.doi.org/10.3390/foods8020041] [PMID: 30682821]
[135]
Azad MOK, Kang WS, Lim JD, Park CH. Bio-fortification of angelica gigas nakai nano-powder using bio-polymer by hot melt extrusion to enhance the bioaccessibility and functionality of nutraceutical compounds. Pharmaceuticals (Basel) 2019; 13(1): 3.
[http://dx.doi.org/10.3390/ph13010003] [PMID: 31881704]
[136]
Kallakunta VR, Sarabu S, Bandari S, Tiwari R, Patil H, Repka MA. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: Part I. Expert Opin Drug Deliv 2019; 16(5): 539-50.
[http://dx.doi.org/10.1080/17425247.2019.1609448] [PMID: 31007090]
[137]
Hinz DC. Process analytical technologies in the pharmaceutical industry: The FDA’s PAT initiative. Anal Bioanal Chem 2006; 384(5): 1036-42.
[http://dx.doi.org/10.1007/s00216-005-3394-y] [PMID: 16079977]
[138]
CDMO Division. Webinars and presentations. Available from: https://lubrizolcdmo.com/resource-center/presentations/
[139]
Dadou SM, Senta-Loys Z, Almajaan A, et al. The development and validation of a quality by design based process analytical tool for the inline quantification of Ramipril during hot-melt extrusion. Int J Pharm 2020; 584: 119382.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119382] [PMID: 32360547]
[140]
Andrews GP, Jones DS, Senta-Loys Z, et al. The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products. Int J Pharm 2019; 566: 476-87.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.029] [PMID: 31085253]
[141]
Becker W, Guschin V, Mikonsaari I, Teipel U, Kölle S, Weiss P. Turbidimetric method for the determination of particle sizes in polypropylene/clay-composites during extrusion. Anal Bioanal Chem 2017; 409(3): 741-51.
[http://dx.doi.org/10.1007/s00216-016-0038-3] [PMID: 27858123]
[142]
Tahir F, Islam MT, Mack J, Robertson J, Lovett D. Process monitoring and fault detection on a hot-melt extrusion process using in-line Raman spectroscopy and a hybrid soft sensor. Comput Chem Eng 2019; 125: 400-14.
[http://dx.doi.org/10.1016/j.compchemeng.2019.03.019]
[143]
Harting J, Kleinebudde P. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Eur J Pharm Biopharm 2018; 125: 169-81.
[http://dx.doi.org/10.1016/j.ejpb.2018.01.015] [PMID: 29408520]
[144]
Netchacovitch L, Thiry J, De Bleye C, et al. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process. Talanta 2017; 171: 45-52.
[http://dx.doi.org/10.1016/j.talanta.2017.04.060] [PMID: 28551152]
[145]
Nagy B, Farkas A, Gyürkés M, et al. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process. Int J Pharm 2017; 530(1-2): 21-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.041] [PMID: 28723408]
[146]
Krier F, Mantanus J, Sacré PY, et al. PAT tools for the control of co-extrusion implants manufacturing process. Int J Pharm 2013; 458(1): 15-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.040] [PMID: 24148661]
[147]
Zhang L, Mao S. Application of quality by design in the current drug development. Asian J Pharm Sci 2017; 12(1): 1-8.
[http://dx.doi.org/10.1016/j.ajps.2016.07.006] [PMID: 32104308]
[148]
Express Pharma. Quality by design (QbD) and its implementation in pharma industry. Available from: https://www.expresspharma. in/quality-by-design-qbd-and-its-implementation-in-pharma-industry/
[149]
FDA. CFR code of federal regulations title 21. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=210.3
[150]
FDA. PAT a framework for innovative pharmaceutical development, manufacturing, and quality assurance. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
[151]
Censi R, Gigliobianco MR, Casadidio C, Di Martino P. Hot melt extrusion: Highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharmaceutics 2018; 10(3): 89.
[http://dx.doi.org/10.3390/pharmaceutics10030089] [PMID: 29997332]
[152]
Agrawal AM, Dudhedia MS, Zimny E. Hot melt extrusion: Development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech 2016; 17(1): 133-47.
[http://dx.doi.org/10.1208/s12249-015-0425-7] [PMID: 26729533]
[153]
Gupta A, Khan MA. Hot-melt extrusion: An FDA perspective on product and process understanding. Hot-Melt Extrus Pharm Appl 2012; pp. 323-31.
[154]
Drake AC, Lee Y, Burgess EM, Karlsson JOM, Eroglu A, Higgins AZ. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer. PLoS One 2018; 13(1): e0190713.
[http://dx.doi.org/10.1371/journal.pone.0190713] [PMID: 29304068]
[155]
Rahman Z, Siddiqui A, Gupta A, Khan M. Regulatory considerations in development of amorphous solid dispersions In: Shah N, Sandhu H, Choi D, Chokshi H, Malick A, Eds; Amorphous Solid Dispersions Advances in Delivery Science and Technology New York: NY, Springer 2014.
[http://dx.doi.org/10.1007/978-1-4939-1598-9_17]
[156]
Gupta A, Khan MA. Consistency of pharmaceutical products: An FDA perspective on hot-melt extrusion process. New York: Springer 2013; pp. 435-45.
[157]
FDA. Highlights of prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204569s000lbledt.pdf
[158]
Kesisoglou F, Hermans A, Neu C, Yee KL, Palcza J, Miller J. Development of in vitro-in vivo correlation for amorphous solid dispersion immediate-release suvorexant tablets and application to clinically relevant dissolution specifications and in-process controls. J Pharm Sci 2015; 104(9): 2913-22.
[http://dx.doi.org/10.1002/jps.24362] [PMID: 25611455]
[159]
Harmon PA, Variankaval N. Solid dosage formulations of an orexin receptor antagonist Patent US10098892B2 2013.
[160]
FDA. Center for drug evaluation and research. Application no. 204569Orig1s000. 2014. Available from: vhttps://www.accessdata. fda.gov/drugsatfda_docs/nda/2014/204569Orig1s000ChemR.pdf
[161]
FDA. Center for drug evaluation and research. Application no. 204569Orig1s000. 2014, Available from: https://www.accessdata. fda.gov/drugsatfda_docs/nda/2014/204569Orig1s000MedR.pdf
[162]
European Medicines Agency. Viekirax. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/viekirax
[163]
FDA. Center for drug evaluation and research. Application no. 206619Orig1s000. Available from: https://www.accessdata.fda. gov/drugsatfda_docs/nda/2014/206619Orig1s000ClinPharmR.pdf
[164]
FDA. Center for drug evaluation and research. Application no. 207931Orig1s000. Available from: https://www.accessdata. fda.gov/drugsatfda_docs/nda/2015/207931Orig1s000ClinPharmR.pdf
[165]
National Liberary of Medicine Melt-extruded solid dispersions containing an apoptosis-inducing agent Patent US20120108590 A1 2012.
[166]
Eurpeons Medicines Agency. CHMP. Committee for medicinal products for human use (CHMP) assessment report. 2016. Available from: https://www.ema.europa.eu/en/documents/assessment-report/venclyxto-epar-public-assessment-report_en.pdf
[167]
FDA. Center for drug evaluation and research. Application no. 208573Orig1s000. 2016, Available from: https://www.accessdata. fda.gov/drugsatfda_docs/nda/2016/208573Orig1s000ClinPharmR.pdf
[168]
FDA. Center for drug evaluation and research. Application no. 208573Orig1s000. Available from: https://www.accessdata. fda.gov/drugsatfda_docs/nda/2016/208573Orig1s000ChemR.pdf
[169]
Emami Riedmaier A, Lindley DJ, Hall JA, et al. Mechanistic physiologically based pharmacokinetic modeling of the dissolution and food effect of a biopharmaceutics classification system IV compound-the venetoclax story. J Pharm Sci 2018; 107(1): 495-502.
[http://dx.doi.org/10.1016/j.xphs.2017.09.027] [PMID: 28993217]
[170]
Eurpeon Medicines Agency. Committee for medicinal products for human use (CHMP). Assessment report 2017. Available from: https://www.ema.europa.eu/en/documents/assessment-report/maviret-epar-public-assessment-report_en.pdf
[171]
FDA. Center for drug evaluation and research. Application no. 209394Orig1s000 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209394Orig1s000ClinPharmR.pdf

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy