Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Current Trends, Advances, and Challenges of Tissue Engineering-Based Approaches of Tooth Regeneration: A Review of the Literature

Author(s): Parham Hazrati, Mohammad Hassan Mirtaleb, Helia Sadat Haeri Boroojeni, Amir Ali Yousefi Koma and Hanieh Nokhbatolfoghahaei*

Volume 19, Issue 4, 2024

Published on: 14 October, 2022

Page: [473 - 496] Pages: 24

DOI: 10.2174/1574888X17666220818103228

Price: $65

Abstract

Introduction: Tooth loss is a significant health issue. Currently, this situation is often treated with the use of synthetic materials such as implants and prostheses. However, these treatment modalities do not fully meet patients' biological and mechanical needs and have limited longevity. Regenerative medicine focuses on the restoration of patients' natural tissues via tissue engineering techniques instead of rehabilitating with artificial appliances. Therefore, a tissue-engineered tooth regeneration strategy seems like a promising option to treat tooth loss.

Objective: This review aims to demonstrate recent advances in tooth regeneration strategies and discoveries about underlying mechanisms and pathways of tooth formation.

Results and Discussion: Whole tooth regeneration, tooth root formation, and dentin-pulp organoid generation have been achieved by using different seed cells and various materials for scaffold production. Bioactive agents are critical elements for the induction of cells into odontoblast or ameloblast lineage. Some substantial pathways enrolled in tooth development have been figured out, helping researchers design their experiments more effectively and aligned with the natural process of tooth formation.

Conclusion: According to current knowledge, tooth regeneration is possible in case of proper selection of stem cells, appropriate design and manufacturing of a biocompatible scaffold, and meticulous application of bioactive agents for odontogenic induction. Understanding innate odontogenesis pathways play a crucial role in accurately planning regenerative therapeutic interventions in order to reproduce teeth.

Keywords: Tooth regeneration, Stem Cell, Scaffold, Tissue engineering, Regenerative therapy, Odontogenesis

Graphical Abstract

[1]
Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ 2005; 83(9): 661-9.
[PMID: 16211157]
[2]
Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NHJ. Tooth loss and oral health-related quality of life: A systematic review and meta-analysis. Health Qual Life Outcomes 2010; 8: 126.
[http://dx.doi.org/10.1186/1477-7525-8-126] [PMID: 21050499]
[3]
Henry PJ. Tooth loss and implant replacement. Aust Dent J 2000; 45(3): 150-72.
[http://dx.doi.org/10.1111/j.1834-7819.2000.tb00552.x] [PMID: 11062933]
[4]
McCord F, Smales R. Oral diagnosis and treatment planning: Part 7. Treatment planning for missing teeth. Br Dent J 2012; 213(7): 341-51.
[http://dx.doi.org/10.1038/sj.bdj.2012.889] [PMID: 23059670]
[5]
Zlatarić DK, Celebić A. Factors related to patients’ general satisfaction with removable partial dentures: A stepwise multiple regression analysis. Int J Prosthodont 2008; 21(1): 86-8.
[PMID: 18350954]
[6]
Yu J, Shi J, Jin Y. Current approaches and challenges in making a bio-tooth. Tissue Eng Part B Rev 2008; 14(3): 307-19.
[http://dx.doi.org/10.1089/ten.teb.2008.0165] [PMID: 18665759]
[7]
Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987; 32(2): 123-7.
[http://dx.doi.org/10.1016/0003-9969(87)90055-0] [PMID: 3478009]
[8]
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J 2014; 59(1): 55-80.
[http://dx.doi.org/10.1111/adj.12130]
[9]
Hu B, Liu Y, Wang S. Tooth tissue engineering: From cells to organ, an odyssey far from finished. Shanghai Journal of Stomatology 2005; 14(2): 99-102.
[10]
Yang B, Chen G, Li J, et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix - based scaffold. Biomaterials 2012; 33(8): 2449-61.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.074] [PMID: 22192537]
[11]
Yuan Z, Nie H, Wang S, et al. Biomaterial selection for tooth regeneration. Tissue Eng Part B Rev 2011; 17(5): 373-88.
[http://dx.doi.org/10.1089/ten.teb.2011.0041] [PMID: 21699433]
[12]
Alghutaimel H, Yang X, Drummond B, Nazzal H, Duggal M, Raïf E. Investigating the vascularization capacity of a decellularized dental pulp matrix seeded with human dental pulp stem cells: In vitro and preliminary in vivo evaluations. Int Endod J 2021; 54(8): 1300-16.
[http://dx.doi.org/10.1111/iej.13510] [PMID: 33709438]
[13]
Nakahara T. Potential feasibility of dental stem cells for regenerative therapies: Stem cell transplantation and whole-tooth engineering. Odontology 2011; 99(2): 105-11.
[http://dx.doi.org/10.1007/s10266-011-0037-y] [PMID: 21805289]
[14]
Jazayeri HE, Lee S-M, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2020; 36(2): e47-58.
[http://dx.doi.org/10.1016/j.dental.2019.11.005] [PMID: 31791734]
[15]
Mao JJ, Prockop DJ. Stem cells in the face: Tooth regeneration and beyond. Cell Stem Cell 2012; 11(3): 291-301.
[http://dx.doi.org/10.1016/j.stem.2012.08.010] [PMID: 22958928]
[16]
Li Q, Zhang S, Sui Y, Fu X, Li Y, Wei S. Sequential stimulation with different concentrations of BMP4 promotes the differentiation of human embryonic stem cells into dental epithelium with potential for tooth formation. Stem Cell Res Ther 2019; 10(1): 276.
[http://dx.doi.org/10.1186/s13287-019-1378-7] [PMID: 31464646]
[17]
Otsu K, Kishigami R, Oikawa-Sasaki A, et al. Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev 2012; 21(7): 1156-64.
[http://dx.doi.org/10.1089/scd.2011.0210] [PMID: 22085204]
[18]
Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int J Oral Sci 2019; 11(3): 23.
[http://dx.doi.org/10.1038/s41368-019-0060-3] [PMID: 31423011]
[19]
Lei M, Li K, Li B, Gao L-N, Chen F-M, Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 2014; 35(24): 6332-43.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.071] [PMID: 24824581]
[20]
Nada OA, El Backly RM. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol 2018; 6: 103.
[http://dx.doi.org/10.3389/fbioe.2018.00103] [PMID: 30087893]
[21]
Li X, Zhang S, Zhang Z, Guo W, Chen G, Tian W. Development of immortalized Hertwig’s epithelial root sheath cell lines for cementum and dentin regeneration. Stem Cell Res Ther 2019; 10(1): 3.
[http://dx.doi.org/10.1186/s13287-018-1106-8] [PMID: 30606270]
[22]
Zhou T, Pan J, Wu P, et al. Dental follicle cells: Roles in development and beyond. Stem Cells Int 2019; 2019: 9159605.
[http://dx.doi.org/10.1155/2019/9159605] [PMID: 31636679]
[23]
Fraser GJ, Hamed SS, Martin KJ, Hunter KD. Shark tooth regeneration reveals common stem cell characters in both human rested lamina and ameloblastoma. Sci Rep 2019; 9(1): 15956.
[http://dx.doi.org/10.1038/s41598-019-52406-z] [PMID: 31685919]
[24]
Hu X, Lin C, Shen B, et al. Conserved odontogenic potential in embryonic dental tissues. J Dent Res 2014; 93(5): 490-5.
[http://dx.doi.org/10.1177/0022034514523988] [PMID: 24554539]
[25]
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26: 11-21.
[http://dx.doi.org/10.1016/j.semcdb.2014.01.007] [PMID: 24487243]
[26]
Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000; 127(8): 1671-9.
[http://dx.doi.org/10.1242/dev.127.8.1671] [PMID: 10725243]
[27]
Zhang Q, Nguyen PD, Shi S, et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats. Mol Neurobiol 2018; 55(8): 6965-83.
[http://dx.doi.org/10.1007/s12035-018-0913-3] [PMID: 29372546]
[28]
Niibe K, Zhang M, Nakazawa K, et al. The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry. Jpn Dent Sci Rev 2017; 53(2): 25-33.
[http://dx.doi.org/10.1016/j.jdsr.2016.09.001] [PMID: 28479933]
[29]
Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural crest stem cells from dental tissues: A new hope for dental and neural regeneration. Stem Cells Int 2012; 2012: 103503.
[http://dx.doi.org/10.1155/2012/103503] [PMID: 23093977]
[30]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[31]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[32]
Lee G, Kim H, Elkabetz Y, et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 2007; 25(12): 1468-75.
[http://dx.doi.org/10.1038/nbt1365] [PMID: 18037878]
[33]
Liu Q, Spusta SC, Mi R, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: Induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 2012; 1(4): 266-78.
[http://dx.doi.org/10.5966/sctm.2011-0042] [PMID: 23197806]
[34]
Arakaki M, Ishikawa M, Nakamura T, et al. Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 2012; 287(13): 10590-601.
[http://dx.doi.org/10.1074/jbc.M111.285874] [PMID: 22298769]
[35]
Abdullah AN, Miyauchi S, Onishi A, Tanimoto K, Kato K. Differentiation of mouse-induced pluripotent stem cells into dental epithelial- like cells in the absence of added serum. in vitro Cell Dev Biol Anim. 2019; 55(2): 130-7.
[http://dx.doi.org/10.1007/s11626-019-00320-z] [PMID: 30659476]
[36]
Liu L, Liu Y-F, Zhang J, Duan Y-Z, Jin Y. Ameloblasts serum-free conditioned medium: Bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells. J Tissue Eng Regen Med 2016; 10(6): 466-74.
[http://dx.doi.org/10.1002/term.1742] [PMID: 23606575]
[37]
Seki D, Takeshita N, Oyanagi T, et al. Differentiation of odontoblast-like cells from mouse induced pluripotent stem cells by Pax9 and Bmp4 transfection. Stem Cells Transl Med 2015; 4(9): 993-7.
[http://dx.doi.org/10.5966/sctm.2014-0292] [PMID: 26136503]
[38]
Kawai R, Ozeki N, Yamaguchi H, et al. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method. Oral Dis 2014; 20(4): 395-403.
[http://dx.doi.org/10.1111/odi.12134] [PMID: 23731055]
[39]
Zhang M, Zhang X, Luo J, et al. Investigate the odontogenic differentiation and dentin-pulp tissue regeneration potential of neural crest cells. Front Bioeng Biotechnol 2020; 8: 475.
[http://dx.doi.org/10.3389/fbioe.2020.00475] [PMID: 32582651]
[40]
Kidwai FK, Movahednia MM, Iqbal K, Jokhun DS, Cao T, Fawzy AS. Human embryonic stem cell differentiation into odontoblastic lineage: An in vitro study. Int Endod J 2014; 47(4): 346-55.
[http://dx.doi.org/10.1111/iej.12150] [PMID: 24033427]
[41]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[42]
Tsutsui TW. Dental pulp stem cells: Advances to applications. Stem Cells Cloning 2020; 13: 33-42.
[http://dx.doi.org/10.2147/SCCAA.S166759] [PMID: 32104005]
[43]
Liu S, Sun J, Yuan S, et al. Treated dentin matrix induces odontogenic differentiation of dental pulp stem cells via regulation of Wnt/β-catenin signaling. Bioact Mater 2021; 7: 85-97.
[http://dx.doi.org/10.1016/j.bioactmat.2021.05.026] [PMID: 34466719]
[44]
Chang C-C, Lin T-A, Wu S-Y, Lin C-P, Chang H-H. Regeneration of tooth with allogenous, autoclaved treated dentin matrix with dental pulpal stem cells: An in vivo study. J Endod 2020; 46(9): 1256-64.
[http://dx.doi.org/10.1016/j.joen.2020.05.016] [PMID: 32505637]
[45]
Young KJ, Yang L, Phillips MJ, Zhang L. Donor-lymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood 2002; 100(9): 3408-14.
[http://dx.doi.org/10.1182/blood-2002-01-0235] [PMID: 12384444]
[46]
Zheng L, Yang F, Shen H, et al. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials 2011; 32(29): 7053-9.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.004] [PMID: 21722953]
[47]
Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 2005; 31(10): 711-8.
[http://dx.doi.org/10.1097/01.don.0000164138.49923.e5] [PMID: 16186748]
[48]
Jeong SY, Lee S, Choi WH, Jee JH, Kim H-R, Yoo J. Fabrication of dentin-pulp-like organoids using dental-pulp stem cells. Cells 2020; 9(3): E642.
[http://dx.doi.org/10.3390/cells9030642] [PMID: 32155898]
[49]
Li X, Wang L, Su Q, et al. Highly proliferative immortalized human dental pulp cells retain the odontogenic phenotype when combined with a beta-tricalcium phosphate scaffold and BMP2. Stem Cells Int 2020; 2020: 4534128.
[http://dx.doi.org/10.1155/2020/4534128] [PMID: 32148517]
[50]
Yang K-C, Kitamura Y, Wu C-C, Chang H-H, Ling T-Y, Kuo T-F. Tooth germ-like construct transplantation for whole-tooth regeneration: An in vivo study in the miniature pig. Artif Organs 2016; 40(4): E39-50.
[http://dx.doi.org/10.1111/aor.12630] [PMID: 26582651]
[51]
Wang L, Cheng L, Wang H, et al. Glycometabolic reprogramming associated with the initiation of human dental pulp stem cell differentiation. Cell Biol Int 2016; 40(3): 308-17.
[http://dx.doi.org/10.1002/cbin.10568] [PMID: 26634800]
[52]
Jeon SM, Lim JS, Kim H-R, Lee J-H. PFK activation is essential for the odontogenic differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 2021; 544: 52-9.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.059] [PMID: 33516882]
[53]
Wang J, Qi G, Qu X, Ling X, Zhang Z, Jin Y. Molecular profiling of dental pulp stem cells during cell differentiation by surface enhanced raman spectroscopy. Anal Chem 2020; 92(5): 3735-41.
[http://dx.doi.org/10.1021/acs.analchem.9b05026] [PMID: 32011124]
[54]
Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 2004; 83(7): 523-8.
[http://dx.doi.org/10.1177/154405910408300703] [PMID: 15218040]
[55]
Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin North Am 2006; 50(2): 191-203. [viii].
[http://dx.doi.org/10.1016/j.cden.2005.11.005] [PMID: 16530057]
[56]
Yang K-C, Wang C-H, Chang H-H, Chan WP, Chi C-H, Kuo T-F. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med 2012; 6(10): 777-85.
[http://dx.doi.org/10.1002/term.483] [PMID: 22034398]
[57]
Oh JE, Yi J-K. Isolation and characterization of dental follicle-derived Hertwig’s epithelial root sheath cells. Clin Oral Investig 2021; 25(4): 1787-96.
[http://dx.doi.org/10.1007/s00784-020-03481-4] [PMID: 32749551]
[58]
Duan Y, Li X, Zhang S, et al. Therapeutic potential of HERS spheroids in tooth regeneration. Theranostics 2020; 10(16): 7409-21.
[http://dx.doi.org/10.7150/thno.44782] [PMID: 32642002]
[59]
Huang X, Bringas P Jr, Slavkin HC, Chai Y. Fate of HERS during tooth root development. Dev Biol 2009; 334(1): 22-30.
[http://dx.doi.org/10.1016/j.ydbio.2009.06.034] [PMID: 19576204]
[60]
Li J, Parada C, Chai Y. Cellular and molecular mechanisms of tooth root development. Development 2017; 144(3): 374-84.
[http://dx.doi.org/10.1242/dev.137216] [PMID: 28143844]
[61]
Sonoyama W, Seo B-M, Yamaza T, Shi S. Human Hertwig’s epithelial root sheath cells play crucial roles in cementum formation. J Dent Res 2007; 86(7): 594-9.
[http://dx.doi.org/10.1177/154405910708600703] [PMID: 17586703]
[62]
Chen J, Chen G, Yan Z, et al. TGF-β1 and FGF2 stimulate the epithelial-mesenchymal transition of HERS cells through a MEK-dependent mechanism. J Cell Physiol 2014; 229(11): 1647-59.
[http://dx.doi.org/10.1002/jcp.24610] [PMID: 24610459]
[63]
Huang X, Xu X, Bringas PJ, Hung YP, Chai Y. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development. J bone Miner Res Off J Am Soc Bone Miner Res 2010; 25(5): 1167-78.
[64]
Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med 2019; 13(2): 152-9.
[http://dx.doi.org/10.1007/s11684-018-0628-x] [PMID: 29971640]
[65]
Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis 2018; 24(5): 696-705.
[http://dx.doi.org/10.1111/odi.12703] [PMID: 28636235]
[66]
Cheng N-C, Wang S, Young T-H. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 2012; 33(6): 1748-58.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.049] [PMID: 22153870]
[67]
Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 2015; 360(2): 297-307.
[http://dx.doi.org/10.1007/s00441-014-2055-x] [PMID: 25749992]
[68]
Yamamoto T, Domon T, Takahashi S, Anjuman KAY, Fukushima C, Wakita M. Mineralization process during acellular cementogenesis in rat molars: A histochemical and immunohistochemical study using fresh-frozen sections. Histochem Cell Biol 2007; 127(3): 303-11.
[http://dx.doi.org/10.1007/s00418-006-0242-x] [PMID: 17043865]
[69]
Yamamoto T, Yamada T, Yamamoto T, et al. Hertwig’s epithelial root sheath fate during initial cellular cementogenesis in rat molars. Acta Histochem Cytochem 2015; 48(3): 95-101.
[http://dx.doi.org/10.1267/ahc.15006] [PMID: 26160988]
[70]
Yamamoto T, Takahashi S. Hertwig’s epithelial root sheath cells do not transform into cementoblasts in rat molar cementogenesis. Ann Anat Gesellschaft 2009; 191(6): 547-55.
[http://dx.doi.org/10.1016/j.aanat.2009.07.004]
[71]
Diekwisch TG. The developmental biology of cementum. Int J Dev Biol 2001; 45(5-6): 695-706.
[PMID: 11669371]
[72]
Xiong H, Chen K. Multipotent stem cells from apical pulp of human deciduous teeth with immature apex. Tissue Cell 2021; 71: 101556.
[http://dx.doi.org/10.1016/j.tice.2021.101556] [PMID: 34082260]
[73]
Saraswathi P, Saravanakumar S. A simple method of tooth regeneration by bone marrow mesenchymal stem cells in albino rats. Eur J Anat 2010; 14(3): 121-6. [Available from] https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856066166partnerID=40md5=365b2987d7eee294719e6ec1cc839e9e]
[74]
Valenzuela MJ, Dean SK, Sachdev P, Tuch BE, Sidhu KS. Neural precursors from canine skin: A new direction for testing autologous cell replacement in the brain. Stem Cells Dev 2008; 17(6): 1087-94.
[http://dx.doi.org/10.1089/scd.2008.0008] [PMID: 18513165]
[75]
Crigler L, Kazhanie A, Yoon T-J, et al. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 2007; 21(9): 2050-63.
[http://dx.doi.org/10.1096/fj.06-5880com] [PMID: 17384147]
[76]
Chen FG, Zhang WJ, Bi D, et al. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 2007; 120(Pt 16): 2875-83.
[http://dx.doi.org/10.1242/jcs.03478] [PMID: 17652163]
[77]
Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol 2003; 262(2): 195-205.
[http://dx.doi.org/10.1016/S0012-1606(03)00325-7] [PMID: 14550785]
[78]
Liu Y, Jiang M, Hao W, et al. Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. J Tissue Eng Regen Med 2013; 7(12): 934-43.
[http://dx.doi.org/10.1002/term.1485] [PMID: 22700316]
[79]
Huo N, Tang L, Yang Z, et al. Differentiation of dermal multipotent cells into odontogenic lineage induced by embryonic and neonatal tooth germ cell-conditioned medium. Stem Cells Dev 2010; 19(1): 93-104.
[http://dx.doi.org/10.1089/scd.2009.0048] [PMID: 19469666]
[80]
Can A, Karahuseyinoglu S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25(11): 2886-95.
[http://dx.doi.org/10.1634/stemcells.2007-0417] [PMID: 17690177]
[81]
Hsieh J-Y, Fu Y-S, Chang S-J, Tsuang Y-H, Wang H-W. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 2010; 19(12): 1895-910.
[http://dx.doi.org/10.1089/scd.2009.0485] [PMID: 20367285]
[82]
Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells 2007; 25(2): 319-31.
[http://dx.doi.org/10.1634/stemcells.2006-0286] [PMID: 17053211]
[83]
Gong W, Han Z, Zhao H, et al. Banking human umbilical cord-derived mesenchymal stromal cells for clinical use. Cell Transplant 2012; 21(1): 207-16.
[http://dx.doi.org/10.3727/096368911X586756] [PMID: 21929848]
[84]
Butler MG, Menitove JE. Umbilical cord blood banking: An update. J Assist Reprod Genet 2011; 28(8): 669-76.
[http://dx.doi.org/10.1007/s10815-011-9577-x] [PMID: 21617932]
[85]
Forraz N, McGuckin CP. The umbilical cord: A rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 2011; 44(1): 60-9.
[http://dx.doi.org/10.1111/j.1365-2184.2010.00729.x]
[86]
Li TX, Yuan J, Chen Y, et al. Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. BioMed Res Int 2013; 2013: 218543.
[http://dx.doi.org/10.1155/2013/218543] [PMID: 23762828]
[87]
Chen Y, Yu Y, Chen L, et al. Human umbilical cord mesenchymal stem cells: A new therapeutic option for tooth regeneration. Stem Cells Int 2015; 2015: 549432.
[http://dx.doi.org/10.1155/2015/549432] [PMID: 26136785]
[88]
Buchtová M, Stembírek J, Glocová K, Matalová E, Tucker AS. Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 2012; 91(5): 491-8.
[http://dx.doi.org/10.1177/0022034512442896] [PMID: 22442052]
[89]
Hauschild J, Petersen B, Santiago Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 2011; 108(29): 12013-7.
[http://dx.doi.org/10.1073/pnas.1106422108] [PMID: 21730124]
[90]
Groenen MA, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012; 491(7424): 393-8.
[http://dx.doi.org/10.1038/nature11622] [PMID: 23151582]
[91]
Ekser B, Ezzelarab M, Hara H, et al. Clinical xenotransplantation: The next medical revolution? Lancet 2012; 379(9816): 672-83.
[http://dx.doi.org/10.1016/S0140-6736(11)61091-X] [PMID: 22019026]
[92]
Wang F, Xiao J, Cong W, et al. Morphology and chronology of diphyodont dentition in miniature pigs. Sus Scrofa Oral Dis 2014; 20(4): 367-79.
[http://dx.doi.org/10.1111/odi.12126] [PMID: 23679230]
[93]
Wang F, Xiao J, Cong W, et al. Stage-specific differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs, Sus Scrofa. BMC Genomics 2014; 15: 103.
[http://dx.doi.org/10.1186/1471-2164-15-103] [PMID: 24498892]
[94]
Wu Z, Wang F, Fan Z, et al. Whole-tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng Part A 2019; 25(17-18): 1202-12.
[http://dx.doi.org/10.1089/ten.tea.2018.0243] [PMID: 30648470]
[95]
Morrison SJ, Spradling AC. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598-611.
[http://dx.doi.org/10.1016/j.cell.2008.01.038] [PMID: 18295578]
[96]
Belinsky GS, Antic SD. Mild hypothermia inhibits differentiation of human embryonic and induced pluripotent stem cells. Biotechniques 2013; 55(2): 79-82.
[http://dx.doi.org/10.2144/000114065] [PMID: 23931596]
[97]
Saito K, Fukuda N, Matsumoto T, et al. Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein. Brain Res 2010; 1358: 20-9.
[http://dx.doi.org/10.1016/j.brainres.2010.08.048] [PMID: 20735994]
[98]
Song Y, Wang B, Li H, et al. Low temperature culture enhances ameloblastic differentiation of human keratinocyte stem cells. J Mol Histol 2019; 50(5): 417-25.
[http://dx.doi.org/10.1007/s10735-019-09837-9] [PMID: 31278616]
[99]
Hu X, Lee J-W, Zheng X, et al. Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Res Ther 2018; 9(1): 126.
[http://dx.doi.org/10.1186/s13287-018-0822-4] [PMID: 29720250]
[100]
Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 2006; 12(8): 2069-75.
[http://dx.doi.org/10.1089/ten.2006.12.2069] [PMID: 16968149]
[101]
Yu J-H, Shi J-N, Deng Z-H, et al. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006; 346(1): 116-24.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.096] [PMID: 16750168]
[102]
Nakao K, Morita R, Saji Y, et al. The development of a bioengineered organ germ method. Nat Methods 2007; 4(3): 227-30.
[http://dx.doi.org/10.1038/nmeth1012] [PMID: 17322892]
[103]
Yu J, Wang Y, Deng Z, et al. Odontogenic capability: Bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007; 99(8): 465-74.
[http://dx.doi.org/10.1042/BC20070013] [PMID: 17371295]
[104]
Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002; 81(10): 695-700.
[http://dx.doi.org/10.1177/154405910208101008] [PMID: 12351668]
[105]
Young CS, Abukawa H, Asrican R, et al. Tissue-engineered hybrid tooth and bone. Tissue Eng 2005; 11(9-10): 1599-610.
[http://dx.doi.org/10.1089/ten.2005.11.1599] [PMID: 16259613]
[106]
Du C, Moradian-Oldak J. Tooth regeneration: Challenges and opportunities for biomedical material research. Biomed Mater 2006; 1(1): R10-7.
[http://dx.doi.org/10.1088/1748-6041/1/1/R02] [PMID: 18458377]
[107]
Goldberg M, Septier D, Bourd K, Menashi S. Role of matrix proteins in signalling and in dentin and enamel mineralisation. C R Palevol 2004; 3(6): 573-81.
[http://dx.doi.org/10.1016/j.crpv.2004.07.005]
[108]
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 2001; 10(2): 96-101.
[109]
Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 263-73.
[http://dx.doi.org/10.1016/j.addr.2007.03.013] [PMID: 17507111]
[110]
Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized tooth bud scaffolds for tooth regeneration. J Dent Res 2017; 96(5): 516-23.
[http://dx.doi.org/10.1177/0022034516689082] [PMID: 28118552]
[111]
Kim I-H, Jeon M, Cheon K, Kim SH, Jung H-S, Shin Y. In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration. Appl Sci (Basel) 2021; 11(18)
[http://dx.doi.org/10.3390/app11188472]
[112]
Guo H, Li B, Wu M, et al. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth. Biomaterials 2021; 279: 121223.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121223] [PMID: 34736149]
[113]
Li X, Yuan Y, Liu L, Leung Y-S, Chen Y, Guo Y. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Biodes Manuf 2020; 3(1): 15-29. [Available from]. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077594727&doi=10.1007%2Fs42242-019-00056-5&partnerID=40&md5=732dba386f1aea504b593cfd639af790]
[114]
Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008; 60(2): 184-98.
[http://dx.doi.org/10.1016/j.addr.2007.08.041] [PMID: 18045729]
[115]
Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010; 31(21): 5536-44.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.064] [PMID: 20417964]
[116]
Catón J, Tucker AS. Current knowledge of tooth development: Patterning and mineralization of the murine dentition. J Anat 2009; 214(4): 502-15.
[http://dx.doi.org/10.1111/j.1469-7580.2008.01014.x] [PMID: 19422427]
[117]
Smith EE, Yelick PC, Khademhosseini A. Optimization of a biomimetic model for tooth regeneration. 40th Annual Northeast Bioengineering Conference, NEBEC .
[http://dx.doi.org/10.1109/NEBEC.2014.6972943]
[118]
Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater 2011; 22: 43-55.
[http://dx.doi.org/10.22203/eCM.v022a04] [PMID: 21761391]
[119]
Durst CA, Cuchiara MP, Mansfield EG, West JL, Grande-Allen KJ. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater 2011; 7(6): 2467-76.
[http://dx.doi.org/10.1016/j.actbio.2011.02.018] [PMID: 21329770]
[120]
Poshusta AK, Anseth KS. Photopolymerized biomaterials for application in the temporomandibular joint. Cells Tissues Organs 2001; 169(3): 272-8.
[http://dx.doi.org/10.1159/000047891] [PMID: 11455123]
[121]
Burdick JA, Mason MN, Hinman AD, Thorne K, Anseth KS. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Control Release 2002; 83(1): 53-63.
[http://dx.doi.org/10.1016/S0168-3659(02)00181-5] [PMID: 12220838]
[122]
Jaramillo L, Briceño I, Durán C. Odontogenic cell culture in PEGDA hydrogel scaffolds for use in tooth regeneration protocols. Acta Odontol Latinoam 2012; 25(3): 243-54.
[PMID: 23798070]
[123]
Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012; 57(2): 109-21.
[http://dx.doi.org/10.1016/j.archoralbio.2011.07.008] [PMID: 21855856]
[124]
Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res 2008; 87(8): 745-50.
[http://dx.doi.org/10.1177/154405910808700811] [PMID: 18650546]
[125]
Ji B, Sheng L, Chen G, et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing. Tissue Eng Part A 2015; 21(1-2): 26-34.
[http://dx.doi.org/10.1089/ten.tea.2014.0043] [PMID: 25111570]
[126]
Meng H, Hu L, Zhou Y, et al. A sandwich structure of human dental pulp stem cell sheet, treated dentin matrix, and matrigel for tooth root regeneration. Stem Cells Dev 2020; 29(8): 521-32.
[http://dx.doi.org/10.1089/scd.2019.0162] [PMID: 32089088]
[127]
Yang F, Cui W, Xiong Z, Liu L, Bei J, Wang S. Poly(l,l-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polym Degrad Stabil 2006; 91(12): 3065-73. [Available from]. https://www.sciencedirect.com/science/article/pii/S0141391006002503
[128]
Xu W-P, Zhang W, Asrican R, Kim H-J, Kaplan DL, Yelick PC. Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A 2008; 14(4): 549-57.
[http://dx.doi.org/10.1089/tea.2007.0227] [PMID: 18352829]
[129]
Ho H-O, Lin L-H, Sheu M-T. Characterization of collagen isolation and application of collagen gel as a drug carrier. J Control Release 1997; 44(2): 103-12.
[http://dx.doi.org/10.1016/S0168-3659(96)01513-1]
[130]
Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010; 47(1): 1-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.03.015] [PMID: 20361991]
[131]
Teng S-H, Lee E-J, Wang P, Shin D-S, Kim H-E. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B Appl Biomater 2008; 87(1): 132-8.
[http://dx.doi.org/10.1002/jbm.b.31082] [PMID: 18395825]
[132]
Patel N, Padera R, Sanders GH, et al. Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB J 1998; 12(14): 1447-54.
[http://dx.doi.org/10.1096/fasebj.12.14.1447] [PMID: 9806753]
[133]
van Kooten TG, Whitesides JF, von Recum A. Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J Biomed Mater Res 1998; 43(1): 1-14.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199821)43:1<1:AID-JBM1>3.0.CO;2-T] [PMID: 9509339]
[134]
Ilyas K, Qureshi SW, Afzal S, et al. Microwave-assisted synthesis and evaluation of type 1 collagen-apatite composites for dental tissue regeneration. J Biomater Appl 2018; 33(1): 103-15.
[http://dx.doi.org/10.1177/0885328218773220] [PMID: 29720018]
[135]
Woodfield TBF, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 2005; 11(9-10): 1297-311.
[http://dx.doi.org/10.1089/ten.2005.11.1297] [PMID: 16259586]
[136]
Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89(8): 842-7.
[http://dx.doi.org/10.1177/0022034510370803] [PMID: 20448245]
[137]
Li R, Guo W, Yang B, et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials 2011; 32(20): 4525-38.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.008] [PMID: 21458067]
[138]
Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28(25): 3587-93.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.043] [PMID: 17524477]
[139]
Chen G, Chen J, Yang B, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015; 52: 56-70.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.011] [PMID: 25818413]
[140]
Wang F, Wu Z, Fan Z, et al. The cell re-association-based whole-tooth regeneration strategies in large animal, Sus scrofa. Cell Prolif 2018; 51(4): e12479.
[http://dx.doi.org/10.1111/cpr.12479] [PMID: 30028040]
[141]
Stutz C, Clauss F, Huck O, Schulz G, Benkirane-Jessel N, Bornert F, et al. Eruption of bioengineered teeth: A new approach based on a polycaprolactone biomembrane Nanomater (Basel, Switzerland) 2021; 11(5)
[http://dx.doi.org/10.3390/nano11051315]
[142]
Zhang W, Ahluwalia IP, Yelick PC. Three dimensional dental epithelial-mesenchymal constructs of predetermined size and shape for tooth regeneration. Biomaterials 2010; 31(31): 7995-8003.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.020] [PMID: 20682455]
[143]
Trainor PA. Neural crest cells : Evolution, development and disease. Amsterdam: Elsevier. 2014. Available from: http://lib.ugent.be/catalog/ebk01:2550000001166667
[144]
Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 2003; 116(Pt 9): 1647-8.
[http://dx.doi.org/10.1242/jcs.00410] [PMID: 12665545]
[145]
Jia S, Zhou J, Gao Y, et al. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development 2013; 140(2): 423-32.
[http://dx.doi.org/10.1242/dev.081927] [PMID: 23250216]
[146]
Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res 2003; 82(3): 172-6.
[http://dx.doi.org/10.1177/154405910308200305] [PMID: 12598544]
[147]
Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 1997; 210(4): 383-96.
[http://dx.doi.org/10.1002/(SICI)1097-0177(199712)210:4<383:AID-AJA3>3.0.CO;2-C] [PMID: 9415424]
[148]
Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 1993; 75(1): 45-58.
[http://dx.doi.org/10.1016/S0092-8674(05)80083-2] [PMID: 8104708]
[149]
Bennett JH, Hunt P, Thorogood P. Bone morphogenetic protein-2 and -4 expression during murine orofacial development. Arch Oral Biol 1995; 40(9): 847-54.
[http://dx.doi.org/10.1016/0003-9969(95)00047-S] [PMID: 8651889]
[150]
Hosoya A, Kim J-Y, Cho S-W, Jung H-S. BMP4 signaling regulates formation of Hertwig’s epithelial root sheath during tooth root development. Cell Tissue Res 2008; 333(3): 503-9.
[http://dx.doi.org/10.1007/s00441-008-0655-z] [PMID: 18629540]
[151]
Huang XF, Chai Y. TGF-ß signalling and tooth development. Chin J Dent Res 2010; 13(1): 7-15.
[PMID: 20936186]
[152]
Mackenzie A, Leeming GL, Jowett AK, Ferguson MW, Sharpe PT. The homeobox gene Hox 7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development 1991; 111(2): 269-85.
[http://dx.doi.org/10.1242/dev.111.2.269] [PMID: 1680043]
[153]
Harvey NT, Hughes JN, Lonic A, et al. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 2010; 123(Pt 10): 1796-804.
[http://dx.doi.org/10.1242/jcs.047530] [PMID: 20427322]
[154]
Kim E-J, Mai HN, Lee D-J, Kim K-H, Lee S-J, Jung H-S. Strategies for differentiation of hiPSCs into dental epithelial cell lineage. Cell Tissue Res 2021; 386(2): 415-21.
[http://dx.doi.org/10.1007/s00441-021-03512-w] [PMID: 34302527]
[155]
Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002; 217: 93-135.
[http://dx.doi.org/10.1016/S0074-7696(02)17013-6] [PMID: 12019566]
[156]
Vaahtokari A, Vainio S, Thesleff I. Associations between transforming growth factor beta 1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development 1991; 113(3): 985-94.
[http://dx.doi.org/10.1242/dev.113.3.985] [PMID: 1726565]
[157]
Cohn MJ, Izpisúa-Belmonte JC, Abud H, Heath JK, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995; 80(5): 739-46.
[http://dx.doi.org/10.1016/0092-8674(95)90352-6] [PMID: 7889567]
[158]
Nosrat A, Ryul Kim J, Verma P. S Chand P. Tissue engineering considerations in dental pulp regeneration. Iran Endod J 2014; 9(1): 30-9.
[PMID: 24396373]
[159]
Kuo T-F, Lin H-C, Yang K-C, et al. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artif Organs 2011; 35(2): 113-21.
[PMID: 21083830]
[160]
Yu J, Deng Z, Shi J, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006; 12(11): 3097-105.
[http://dx.doi.org/10.1089/ten.2006.12.3097] [PMID: 17518625]
[161]
Wang Y-X, Ma Z-F, Huo N, et al. Porcine tooth germ cell conditioned medium can induce odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med 2011; 5(5): 354-62.
[http://dx.doi.org/10.1002/term.321] [PMID: 20799278]
[162]
Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89(8): 791-6.
[http://dx.doi.org/10.1177/0022034510368647] [PMID: 20395410]
[163]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[164]
Jing W, Wu L, Lin Y, Liu L, Tang W, Tian W. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: Necessity, possibility, and strategy. Med Hypotheses 2008; 70(3): 540-2.
[http://dx.doi.org/10.1016/j.mehy.2007.07.010] [PMID: 17703893]
[165]
Cao Y, Song M, Kim E, et al. Pulp-dentin regeneration: Current state and future prospects. J Dent Res 2015; 94(11): 1544-51.
[http://dx.doi.org/10.1177/0022034515601658] [PMID: 26310721]
[166]
Sharpe PT. Dental mesenchymal stem cells. Development 2016; 143(13): 2273-80.
[http://dx.doi.org/10.1242/dev.134189] [PMID: 27381225]
[167]
Zhou C, Yang G, Chen M, et al. Lhx6 and Lhx8: Cell fate regulators and beyond. FASEB J 2015; 29(10): 4083-91.
[http://dx.doi.org/10.1096/fj.14-267500] [PMID: 26148970]
[168]
Arany PR, Cho A, Hunt TD, et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 2014; 6(238): 238ra69.
[http://dx.doi.org/10.1126/scitranslmed.3008234] [PMID: 24871130]
[169]
Feng J, Jing J, Li J, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development 2017; 144(14): 2560-9.
[http://dx.doi.org/10.1242/dev.150136] [PMID: 28576771]
[170]
Nakashima M, Toyono T, Akamine A, Joyner A. Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev 1999; 80(2): 185-9.
[http://dx.doi.org/10.1016/S0925-4773(98)00205-6] [PMID: 10072786]
[171]
Pepinsky B, Gong B-J, Gao Y, et al. A prodomain fragment from the proteolytic activation of growth differentiation factor 11 remains associated with the mature growth factor and keeps it soluble. Biochemistry 2017; 56(33): 4405-18.
[http://dx.doi.org/10.1021/acs.biochem.7b00302] [PMID: 28715204]
[172]
Qi X, Xiao Q, Sheng R, Jiang S, Yuan Q, Liu W. Endogenous GDF11 regulates odontogenic differentiation of dental pulp stem cells. J Cell Mol Med 2020; 24(19): 11457-64.
[http://dx.doi.org/10.1111/jcmm.15754] [PMID: 32845070]
[173]
Liu J, Jin T, Ritchie HH, Smith AJ, Clarkson BH. in vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. in vitro Cell Dev Biol Anim. 2005; 41(7): 232-8.
[http://dx.doi.org/10.1290/0502014.1] [PMID: 16223338]
[174]
Chun SY, Lee HJ, Choi YA, et al. Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration. Tissue Eng Part A 2011; 17(1-2): 181-91.
[http://dx.doi.org/10.1089/ten.tea.2010.0121] [PMID: 20695775]
[175]
Sharma R, Ottenhof T, Rzeczkowska PA, Niles LP. Epigenetic targets for melatonin: Induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res 2008; 45(3): 277-84.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00587.x] [PMID: 18373554]
[176]
Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation effects of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol 2019; 234(2): 1008-15.
[http://dx.doi.org/10.1002/jcp.27090] [PMID: 30145787]
[177]
Deng P, Chen Q-M, Hong C, Wang C-Y. Histone methyltransferases and demethylases: Regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells. Int J Oral Sci 2015; 7(4): 197-204.
[http://dx.doi.org/10.1038/ijos.2015.41] [PMID: 26674421]
[178]
Rodas-Junco BA, Canul-Chan M, Rojas-Herrera RA, De-la-Peña C, Nic-Can GI. Stem cells from dental pulp: What epigenetics can do with your tooth. Front Physiol 2017; 8: 999.
[http://dx.doi.org/10.3389/fphys.2017.00999] [PMID: 29270128]
[179]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[180]
Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015; 7(2): 247-65.
[http://dx.doi.org/10.2217/epi.14.80] [PMID: 25942534]
[181]
Utsey K, Keener JP. A mathematical model for inheritance of dna methylation patterns in somatic cells. Bull Math Biol 2020; 82(7): 84.
[http://dx.doi.org/10.1007/s11538-020-00765-4] [PMID: 32613387]
[182]
Li J, Deng Q, Fan W, Zeng Q, He H, Huang F. Melatonin-induced suppression of DNA methylation promotes odontogenic differentiation in human dental pulp cells. Bioengineered 2020; 11(1): 829-40.
[http://dx.doi.org/10.1080/21655979.2020.1795425] [PMID: 32718272]
[183]
Liu Q, Fan W, He Y, et al. Effects of melatonin on the proliferation and differentiation of human dental pulp cells. Arch Oral Biol 2017; 83: 33-9.
[http://dx.doi.org/10.1016/j.archoralbio.2017.06.034] [PMID: 28692829]
[184]
Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103 (Suppl.): 155-69.
[http://dx.doi.org/10.1242/dev.103.Supplement.155] [PMID: 3250849]
[185]
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: Growth factors, transcription factors, and stem cells. Cell Res 2005; 15(5): 301-16.
[http://dx.doi.org/10.1038/sj.cr.7290299] [PMID: 15916718]
[186]
Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 2012; 4(4): a008425.
[http://dx.doi.org/10.1101/cshperspect.a008425] [PMID: 22415375]
[187]
Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol 2016; 415(2): 347-70.
[http://dx.doi.org/10.1016/j.ydbio.2016.01.038] [PMID: 26845577]
[188]
Li W, Chen L, Chen Z, et al. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation. Sci Rep 2017; 7(1): 300.
[http://dx.doi.org/10.1038/s41598-017-00339-w] [PMID: 28331230]
[189]
Martinez EF, da Silva LAH, Furuse C, de Araújo NS, de Araújo VC. Dentin matrix protein 1 (DMP1) expression in developing human teeth. Braz Dent J 2009; 20(5): 365-9.
[http://dx.doi.org/10.1590/S0103-64402009000500002] [PMID: 20126903]
[190]
Cremers S, Garnero P, Seibel MJ. Biochemical Markers of Bone Metabolism. Martin TJBT-P of BB San Diego: Academic Press. 2008; pp. 1857-81. Available from: [https://www.sciencedirect.com/science/article/pii/B9780123738844000203
[191]
Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11(4): 273-82.
[http://dx.doi.org/10.1016/S1359-6101(00)00011-3] [PMID: 10959075]
[192]
Lybrand DB, Naiman M, Laumann JM, et al. Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo. Development 2019; 146(13): dev164145.
[http://dx.doi.org/10.1242/dev.164145] [PMID: 31189665]
[193]
Fraser GJ, Bloomquist RF, Streelman JT. Common developmental pathways link tooth shape to regeneration. Dev Biol 2013; 377(2): 399-414.
[http://dx.doi.org/10.1016/j.ydbio.2013.02.007] [PMID: 23422830]
[194]
Someya H, Fujiwara H, Nagata K, et al. Thymosin beta 4 is associated with RUNX2 expression through the Smad and Akt signaling pathways in mouse dental epithelial cells. Int J Mol Med 2015; 35(5): 1169-78.
[http://dx.doi.org/10.3892/ijmm.2015.2118] [PMID: 25739055]
[195]
Lee D-J, Kim H-Y, Lee S-J, Jung H-S. Spatiotemporal changes in transcriptome of odontogenic and non-odontogenic regions in the dental arch of mus musculus. Front Cell Dev Biol 2021; 9: 723326.
[http://dx.doi.org/10.3389/fcell.2021.723326] [PMID: 34722506]
[196]
Surana R, Sikka S, Cai W, et al. Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta 2014; 1845(1): 53-65.
[PMID: 24316024]
[197]
Spoto G, Fioroni M, Rubini C, Tripodi D, Di Stilio M, Piattelli A. Alkaline phosphatase activity in normal and inflamed dental pulps. J Endod 2001; 27(3): 180-2.
[http://dx.doi.org/10.1097/00004770-200103000-00010] [PMID: 11487147]
[198]
Wang C, Wang Y, Wang H, et al. SFRP2 enhances dental pulp stem cell-mediated dentin regeneration in rabbit jaw. Oral Dis 2021; 27(7): 1738-46.
[http://dx.doi.org/10.1111/odi.13698] [PMID: 33128313]
[199]
Tabatabaei FS, Ai J, Jafarzadeh Kashi TS, Khazaei M, Kajbafzadeh A-M, Ghanbari Z. Effect of dentine matrix proteins on human endometrial adult stem-like cells: In vitro regeneration of odontoblasts cells. Arch Oral Biol 2013; 58(7): 871-9.
[http://dx.doi.org/10.1016/j.archoralbio.2013.01.013] [PMID: 23465411]
[200]
Anneroth G, Bang G. The effect of allogeneic demineralized dentin as a pulp capping agent in Java monkeys. Odontol Revy 1972; 23(3): 315-28.
[PMID: 4628280]
[201]
Park M, Jeon S, Jeong J-H, et al. Identification and characterization of LHX8 DNA binding elements. Dev Reprod 2012; 16(4): 379-84.
[http://dx.doi.org/10.12717/DR.2012.16.4.379] [PMID: 25949113]
[202]
Zhou C, Yang G, Chen M, et al. Lhx8 mediated Wnt and TGFβ pathways in tooth development and regeneration. Biomaterials 2015; 63: 35-46.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.004] [PMID: 26081866]
[203]
Du W, Du W, Yu H. The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018: 7549160.
[http://dx.doi.org/10.1155/2018/7549160]
[204]
Li C-Y, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2014; 102(1): 1-13.
[http://dx.doi.org/10.1007/s10266-013-0142-1] [PMID: 24343791]
[205]
Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of angiogenesis in endodontics: Contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod 2015; 41(6): 797-803.
[http://dx.doi.org/10.1016/j.joen.2014.12.019] [PMID: 25649306]
[206]
Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549-80.
[http://dx.doi.org/10.1124/pr.56.4.3] [PMID: 15602010]
[207]
Janebodin K, Chavanachat R, Hays A, Reyes Gil M. Silencing VEGFR-2 hampers odontoblastic differentiation of dental pulp stem cells. Front Cell Dev Biol 2021; 9: 665886.
[http://dx.doi.org/10.3389/fcell.2021.665886] [PMID: 34249919]
[208]
Zheng Y, Jia L, Liu P, et al. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis. PeerJ 2016; 4: e1684.
[http://dx.doi.org/10.7717/peerj.1684] [PMID: 26925321]
[209]
Niwa T, Yamakoshi Y, Yamazaki H, et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci Rep 2018; 8(1): 4450.
[http://dx.doi.org/10.1038/s41598-018-22823-7] [PMID: 29535349]
[210]
Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 2008; 283(12): 7628-37.
[http://dx.doi.org/10.1074/jbc.M704883200] [PMID: 18184661]
[211]
Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 2012; 69(15): 2527-41.
[http://dx.doi.org/10.1007/s00018-012-0935-3] [PMID: 22349261]
[212]
Xiao Y, Lin YX, Cui Y, et al. Zeb1 promotes odontoblast differentiation in a stage-dependent manner. J Dent Res 2021; 100(6): 648-57.
[http://dx.doi.org/10.1177/0022034520982249] [PMID: 33419386]
[213]
Kang Q, Song W-X, Luo Q, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 2009; 18(4): 545-59.
[http://dx.doi.org/10.1089/scd.2008.0130] [PMID: 18616389]
[214]
Luther G, Wagner ER, Zhu G, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: Molecular mechanism and therapeutic potential. Curr Gene Ther 2011; 11(3): 229-40.
[http://dx.doi.org/10.2174/156652311795684777] [PMID: 21453282]
[215]
Abrahão IJ, Martins MD, Katayama E, Antoniazzi JH, Segmentilli A, Marques MM. Collagen analysis in human tooth germ papillae. Braz Dent J 2006; 17(3): 208-12.
[http://dx.doi.org/10.1590/S0103-64402006000300006] [PMID: 17262126]
[216]
Bronckers AL, Price PA, Schrijvers A, Bervoets TJ, Karsenty G. Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci 1998; 106(3): 795-807.
[http://dx.doi.org/10.1046/j.0909-8836.1998.eos106306.x] [PMID: 9672102]
[217]
Luo W, Zhang L, Huang B, et al. BMP9-initiated osteogenic/odontogenic differentiation of mouse tooth germ mesenchymal cells (TGMCS) requires Wnt/β-catenin signalling activity. J Cell Mol Med 2021; 25(5): 2666-78.
[http://dx.doi.org/10.1111/jcmm.16293] [PMID: 33605035]
[218]
Weidauer SE, Schmieder P, Beerbaum M, Schmitz W, Oschkinat H, Mueller TD. NMR structure of the Wnt modulator protein Sclerostin. Biochem Biophys Res Commun 2009; 380(1): 160-5.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.062] [PMID: 19166819]
[219]
Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem 2009; 284(34): 23159-68.
[http://dx.doi.org/10.1074/jbc.M109.025478] [PMID: 19553665]
[220]
Murashima-Suginami A, Kiso H, Tokita Y, et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling Sci Adv 2021; 7(7): eabf1798.
[http://dx.doi.org/10.1126/sciadv.abf1798] [PMID: 33579703]
[221]
Mishima S, Takahashi K, Kiso H, et al. Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci Rep 2021; 11(1): 13674.
[http://dx.doi.org/10.1038/s41598-021-93256-y] [PMID: 34211084]
[222]
Wang Y, Li L, Zheng Y, et al. BMP activity is required for tooth development from the lamina to bud stage. J Dent Res 2012; 91(7): 690-5.
[http://dx.doi.org/10.1177/0022034512448660] [PMID: 22592126]
[223]
Lim H-M, Nam M-H, Kim Y-M, Seo Y-K. Increasing odontoblast-like differentiation from dental pulp stem cells through increase of β-Catenin/p-GSK-3β expression by low-frequency electromagnetic field. Biomedicines 2021; 9(8)
[http://dx.doi.org/10.3390/biomedicines9081049]
[224]
Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25(9): 1379-88.
[http://dx.doi.org/10.1038/leu.2011.95] [PMID: 21566654]
[225]
Liu J, Saito K, Maruya Y, et al. Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation. Sci Rep 2016; 6(1): 23670.
[http://dx.doi.org/10.1038/srep23670] [PMID: 27030100]
[226]
Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin β4: A multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther 2012; 12(1): 37-51.
[http://dx.doi.org/10.1517/14712598.2012.634793] [PMID: 22074294]
[227]
Brockes JP. The nerve dependence of amphibian limb regeneration. J Exp Biol 1987; 132: 79-91.
[http://dx.doi.org/10.1242/jeb.132.1.79] [PMID: 3323408]
[228]
Makanae A, Tajika Y, Nishimura K, Saito N, Tanaka J-I, Satoh A. Neural regulation in tooth regeneration of Ambystoma mexicanum. Sci Rep 2020; 10(1): 9323.
[http://dx.doi.org/10.1038/s41598-020-66142-2] [PMID: 32518359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy