Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

A Review of Freeze Casting: Preparation Process, Modified Methods, and Development Tendency

Author(s): Dong Yang, Xiaojuan Wang, Huacheng Xu, Yijun Huang, Congjie Gao and Xueli Gao*

Volume 19, Issue 4, 2023

Published on: 04 October, 2022

Page: [559 - 574] Pages: 16

DOI: 10.2174/1573413718666220817152025

Price: $65

Abstract

Fabricating materials with nacre-like structure have received considerable attention as it shows an excellent combination of mechanical strength and toughness. A considerable number of researchers have reported the preparation method of bionic structure, such as layer-by-layer assembly, vacuum filtration, coextrusion assembly, electrophoresis deposition, water-evaporation-induced assembly, 3D printing, and freeze casting. Compared with other techniques, freeze casting, known as ice templating, is an environmentally friendly, prolongable, and potential method, so it has been rapidly developing and widely researched in recent decades. In this review, the front six methods with their benefits and limitations are briefly introduced. Then, the freeze casting technique with the preparation process and modified technique is emphatically analyzed. Finally, the future tendencies of materials application and technique application are discussed. Freeze casting consists of suspension preparation, solidification, sublimation, and post-treatment processes. The mechanism and influence of parameters during suspension preparation and solidification processes are principally discussed. It must be pointed out that the performance and structure of samples are closely related to the model and external force. Besides, the adjustable process parameters of freezing casting are a strong guarantee of obtaining the target product. The purpose of this review is to promote freeze casting workers to understand the influence of parameters and enlighten them in new experimental designs.

Keywords: Bionic structure, freeze casting, technological parameters, pore structure, modified processes, application.

[1]
Han, N.; Race, M.; Zhang, W.; Marotta, R.; Zhang, C.; Bokhari, A.; Klemeš, J.J. Perovskite and related oxide based electrodes for water splitting. J. Clean. Prod., 2021, 318, 128544.
[http://dx.doi.org/10.1016/j.jclepro.2021.128544]
[2]
Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(41), 19912-19933.
[http://dx.doi.org/10.1039/C8TA06529B]
[3]
Wang, J.; Cheng, Q.; Tang, Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev., 2012, 41(3), 1111-1129.
[http://dx.doi.org/10.1039/C1CS15106A] [PMID: 21959863]
[4]
Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater., 2015, 14(1), 23-36.
[http://dx.doi.org/10.1038/nmat4089] [PMID: 25344782]
[5]
Yao, H.B.; Ge, J.; Mao, L.B.; Yan, Y.X.; Yu, S.H. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications. Adv. Mater., 2014, 26(1), 163-188.
[http://dx.doi.org/10.1002/adma.201303470] [PMID: 24338814]
[6]
Begley, M.R.; Philips, N.R.; Compton, B.G.; Wilbrink, D.V.; Ritchie, R.O.; Utz, M. Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites. J. Mech. Phys. Solids, 2012, 60(8), 1545-1560.
[http://dx.doi.org/10.1016/j.jmps.2012.03.002]
[7]
Gao, W.; Wang, M.; Bai, H. A review of multifunctional nacre-mimetic materials based on bidirectional freeze casting. J. Mech. Behav. Biomed. Mater., 2020, 109, 103820.
[http://dx.doi.org/10.1016/j.jmbbm.2020.103820] [PMID: 32543396]
[8]
Teo, W.; Liao, S.; Chan, C.; Ramakrishna, S. Remodeling of three-dimensional hierarchically organized nanofibrous assemblies. Curr. Nanosci., 2008, 4(4), 361-369.
[http://dx.doi.org/10.2174/157341308786306080]
[9]
Li, S.F.; Mark, S.; Kricka, L. Polymeric nanotubes and nanorods for biomedical applications. Curr. Nanosci., 2009, 5(2), 182-188.
[http://dx.doi.org/10.2174/157341309788185398]
[10]
Kisannagar, R.R.; Jha, P.; Navalkar, A.; Maji, S.K.; Gupta, D. Fabrication of silver nanowire/polydimethylsiloxane dry electrodes by a vacuum filtration method for electrophysiological signal monitoring. ACS Omega, 2020, 5(18), 10260-10265.
[http://dx.doi.org/10.1021/acsomega.9b03678] [PMID: 32426582]
[11]
Wilkerson, R.P.; Gludovatz, B.; Watts, J.; Tomsia, A.P.; Hilmas, G.E.; Ritchie, R.O. A novel approach to developing biomimetic (“Nacre-Like”) metal-compliant-phase (Nickel-Alumina) ceramics through coextrusion. Adv. Mater., 2016, 28(45), 10061-10067.
[http://dx.doi.org/10.1002/adma.201602471] [PMID: 27690374]
[12]
Choi, W.B.; Jin, Y.W.; Kim, H.Y.; Lee, S.J.; Yun, M.J.; Kang, J.H.; Choi, Y.S.; Park, N.S.; Lee, N.S.; Kim, J.M. Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl. Phys. Lett., 2001, 78(11), 1547-1549.
[http://dx.doi.org/10.1063/1.1349870]
[13]
Wang, J.; Cheng, Q.; Lin, L.; Chen, L.; Jiang, L. Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale, 2013, 5(14), 6356-6362.
[http://dx.doi.org/10.1039/c3nr00801k] [PMID: 23673418]
[14]
Yang, Y.; Li, X.; Chu, M.; Sun, H.; Jin, J.; Yu, K.; Wang, Q.; Zhou, Q.; Chen, Y. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv., 2019, 5(4), eaau9490.
[http://dx.doi.org/10.1126/sciadv.aau9490] [PMID: 30972361]
[15]
Du, Y.; Hedayat, N.; Panthi, D.; Ilkhani, H.; Emley, B.J.; Woodson, T. Freeze-casting for the fabrication of solid oxide fuel cells: A review. Materialia (Oxf.), 2018, 1, 198-210.
[http://dx.doi.org/10.1016/j.mtla.2018.07.005]
[16]
Silva, A.O.; Hotza, D.; Machado, R.; Rezwan, K.; Wilhelm, M. Porous asymmetric microfiltration membranes shaped by combined alumina freeze and tape casting. J. Eur. Ceram. Soc., 2021, 41(1), 871-879.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2020.07.069]
[17]
Gaudillere, C.; Navarrete, L.; Serra, J.M. CO2 hydrogenation on Ru/Ce based catalysts dispersed on highly ordered micro-channelled 3YSZ monoliths fabricated by freeze-casting. Int. J. Hydrogen Energy, 2017, 42(2), 895-905.
[http://dx.doi.org/10.1016/j.ijhydene.2016.09.213]
[18]
Mao, M.; Tang, Y.; Zhao, K.; Duan, Z.; Wu, C. Porous titanium scaffolds with aligned lamellar pore channels by directional freeze-casting from aqueous TiH2 slurries. Met. Mater. Int., 2019, 25(2), 508-515.
[http://dx.doi.org/10.1007/s12540-018-0182-8]
[19]
Kuang, J.; Dai, Z.; Liu, L.; Yang, Z.; Jin, M.; Zhang, Z. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7(20), 9252-9260.
[http://dx.doi.org/10.1039/C5NR00841G] [PMID: 25932597]
[20]
Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J.W. Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev., 2020, 404, 213116-213146.
[http://dx.doi.org/10.1016/j.ccr.2019.213116]
[21]
Zhang, W.; Liu, N.; Cao, Y.; Lin, X.; Liu, Y.; Feng, L. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation. Adv. Mater. Interfaces, 2017, 4(10), 1600029.
[http://dx.doi.org/10.1002/admi.201700029]
[22]
Yang, D.; Yang, N.; Meng, B.; Tan, X.; Zhang, C.; Sunarso, J.; Zhu, Z.; Liu, S. A-site excess (La 0.8 Ca 0.2) 1.01 FeO 3−δ (LCF) perovskite hollow fiber membrane for oxygen permeation in CO 2 -containing atmosphere. Energy Fuels, 2017, 31(4), 4531-4538.
[http://dx.doi.org/10.1021/acs.energyfuels.7b00121]
[23]
Gaudillere, C.; Garcia-Fayos, J.; Serra, J.M. Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(11), 3828-3833.
[http://dx.doi.org/10.1039/c3ta14069e]
[24]
Kota, M.; Yu, X.; Yeon, S.H.; Cheong, H.W.; Park, H.S. Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J. Power Sources, 2016, 303, 372-378.
[http://dx.doi.org/10.1016/j.jpowsour.2015.11.006]
[25]
Nguyen, P.T.N.; Ulrich, J. Fast dispersible cocoa tablets: A case study of freeze-casting applied to foods. Chem. Eng. Technol., 2014, 37(8), 1376-1382.
[http://dx.doi.org/10.1002/ceat.201400032]
[26]
Scotti, K.L.; Dunand, D.C. Freeze casting – A review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci., 2018, 94, 243-305.
[http://dx.doi.org/10.1016/j.pmatsci.2018.01.001]
[27]
Yin, T.J.; Jeyapalina, S.; Naleway, S.E. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting. J. Mech. Behav. Biomed. Mater., 2021, 123, 104717.
[http://dx.doi.org/10.1016/j.jmbbm.2021.104717] [PMID: 34352488]
[28]
Zhang, W.; Lin, B.; Tang, Y.; Wang, Y.; Zhang, D.; Zhang, W. Microstructures and mechanical properties of high-performance nacre-inspired Al-Si/TiB2 composites prepared by freeze casting and pressure infiltration. Ceram. Int., 2021, 47(12), 16891-16901.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.001]
[29]
Quan, L.; Wang, C.; Xu, Y.; Qiu, J.; Zhang, H.; Cunning, B.; Huang, M.; Wei, H.; Seong, W.K.; Seo, J.; Wang, H.; Qin, F.; Zhu, J.; Peng, H.X.; Ruoff, R.S. Electromagnetic properties of graphene aerogels made by freeze-casting. Chem. Eng. J., 2022, 428, 131337.
[http://dx.doi.org/10.1016/j.cej.2021.131337]
[30]
Han, L.; Dong, L.; Zhang, H.; Li, F.; Tian, L.; Li, G.; Jia, Q.; Zhang, S. Thermal insulation TiN aerogels prepared by a combined freeze-casting and carbothermal reduction-nitridation technique. J. Eur. Ceram. Soc., 2021, 41(10), 5127-5137.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2021.01.037]
[31]
Kuo, T.; Rueschhoff, L.M.; Dickerson, M.B.; Patel, T.A.; Faber, K.T. Hierarchical porous SiOC via freeze casting and self-assembly of block copolymers. Scr. Mater., 2021, 191, 204-209.
[http://dx.doi.org/10.1016/j.scriptamat.2020.09.042]
[32]
Dong, X.; Guo, X.; Liu, Q.; Zhao, Y.; Qi, H.; Zhai, W. Strong and tough conductive organo-hydrogels via freeze‐casting assisted solution substitution. Adv. Funct. Mater., 2022, 2203610.
[http://dx.doi.org/10.1002/adfm.202203610]
[33]
Han, N.; Yao, Z.; Ye, H.; Zhang, C.; Liang, P.; Sun, H.; Wang, S.; Liu, S. Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustainable Materials and Technologies, 2019, 20, e00108.
[http://dx.doi.org/10.1016/j.susmat.2019.e00108]
[34]
Jing, L.; Zuo, K.; Fuqiang, Z.; Chun, X.; Yuanfei, F.; Jiang, D.; Zeng, Y.P. The controllable microstructure of porous Al2O3 ceramics prepared via a novel freeze casting route. Ceram. Int., 2010, 36(8), 2499-2503.
[http://dx.doi.org/10.1016/j.ceramint.2010.07.005]
[35]
Zou, J.; Zhang, Y.; Li, R. Effect of suspension state on the pore structure of freeze-cast ceramics. Int. J. Appl. Ceram. Technol., 2011, 8(2), 482-489.
[http://dx.doi.org/10.1111/j.1744-7402.2009.02458.x]
[36]
Chino, Y.; Dunand, D.C. Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater., 2008, 56(1), 105-113.
[37]
Huang, Y.; Xiong, H.; Zou, J.; Zhou, K.; Zhang, D. Ultralight porous SiC with attracting strength: Freeze casting of polycarbosilane/SiCp/camphene-based suspensions. Ceram. Int., 2020, 46(7), 9582-9589.
[http://dx.doi.org/10.1016/j.ceramint.2019.12.223]
[38]
Lasalle, A.; Guizard, C.; Maire, E.; Adrien, J.; Deville, S. Particle redistribution and structural defect development during ice templating. Acta Mater., 2012, 60(11), 4594-4603.
[http://dx.doi.org/10.1016/j.actamat.2012.02.023]
[39]
Landi, E.; Valentini, F.; Tampieri, A. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater., 2008, 4(6), 1620-1626.
[http://dx.doi.org/10.1016/j.actbio.2008.05.023] [PMID: 18579459]
[40]
Huang, Z.; Zhou, K.; Lei, D.; Li, Z.; Zhang, Y.; Zhang, D. Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceram. Int., 2013, 39(6), 6035-6040.
[http://dx.doi.org/10.1016/j.ceramint.2013.01.019]
[41]
Sadeghpour, S.; Amirjani, A.; Hafezi, M.; Zamanian, A. Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceram. Int., 2014, 40(10), 16107-16114.
[http://dx.doi.org/10.1016/j.ceramint.2014.07.039]
[42]
Xia, Y.; Zeng, Y.P.; Jiang, D. Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Mater. Des., 2012, 33, 98-103.
[http://dx.doi.org/10.1016/j.matdes.2011.06.023]
[43]
Hou, Z.; Liu, J.; Du, H.; Xu, H.; Guo, A.; Wang, M. Preparation of porous Y2SiO5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceram. Int., 2013, 39(2), 969-976.
[http://dx.doi.org/10.1016/j.ceramint.2012.07.014]
[44]
Ai, T.T. Preparation, microstructure and properties of ZrO<sub>2</sub> gradient porous ceramics by freeze-casting process. Mater. Sci. Forum, 2015, 816, 226-230.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.816.226]
[45]
Wang, J.; Gong, Q.; Zhuang, D.; Liang, J. Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 2015, 5(22), 16870-16877.
[http://dx.doi.org/10.1039/C4RA16082G]
[46]
Gao, W.; Zhao, N.; Yao, W.; Xu, Z.; Bai, H.; Gao, C. Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Advances, 2017, 7(53), 33600-33605.
[http://dx.doi.org/10.1039/C7RA05557A]
[47]
Rozmanov, D.; Kusalik, P.G. Anisotropy in the crystal growth of hexagonal ice. Ih. J. Chem. Phys., 2012, 137(9), 094702.
[http://dx.doi.org/10.1063/1.4748377] [PMID: 22957581]
[48]
Zhang, R.; Fang, D.; Pei, Y.; Zhou, L. Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceram. Int., 2012, 38(5), 4373-4377.
[http://dx.doi.org/10.1016/j.ceramint.2012.01.012]
[49]
Macchetta, A.; Turner, I.G.; Bowen, C.R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater., 2009, 5(4), 1319-1327.
[http://dx.doi.org/10.1016/j.actbio.2008.11.009] [PMID: 19112055]
[50]
Yoon, B.H.; Choi, W.Y.; Kim, H.E.; Kim, J.H.; Koh, Y.H. Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scr. Mater., 2008, 58(7), 537-540.
[http://dx.doi.org/10.1016/j.scriptamat.2007.11.006]
[51]
Dong, S.; Wang, L.; Gao, X.; Zhu, W.; Wang, Z.; Ma, Z.; Gao, C. Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. J. Membr. Sci., 2017, 541, 143-152.
[http://dx.doi.org/10.1016/j.memsci.2017.06.067]
[52]
Araki, K.; Halloran, J.W. Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene-camphor eutectic system. J. Am. Ceram. Soc., 2004, 87(11), 2014-2019.
[http://dx.doi.org/10.1111/j.1151-2916.2004.tb06353.x]
[53]
Lacerda, L.D.; Souza, D.F.; Nunes, E.H.M.; Houmard, M. Macroporous alumina structures tailored by freeze-casting using naphthalene–camphor as freezing vehicle. Ceram. Int., 2018, 44(13), 16010-16016.
[http://dx.doi.org/10.1016/j.ceramint.2018.06.036]
[54]
Peko, C.; Groth, B.; Nettleship, I. The effect of polyvinyl alcohol on the microstructure and permeability of freeze-cast alumina. J. Am. Ceram. Soc., 2010, 93(1), 115-120.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03398.x]
[55]
Wu, J.; Luo, B.; Liu, X.; Zhang, L. Control of the structure and mechanical property of porous WS2 scaffold during freeze casting. J. Porous Mater., 2018, 25(1), 37-43.
[http://dx.doi.org/10.1007/s10934-017-0418-x]
[56]
Sofie, S.W.; Dogan, F. Freeze casting of aqueous alumina slurries with glycerol. J. Am. Ceram. Soc., 2001, 84(7), 1459-1464.
[http://dx.doi.org/10.1111/j.1151-2916.2001.tb00860.x]
[57]
Weaver, J.S.; Kalidindi, S.R.; Wegst, U.G.K. Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Mater., 2017, 132, 182-192.
[http://dx.doi.org/10.1016/j.actamat.2017.02.031]
[58]
Koh, Y.H.; Lee, E.J.; Yoon, B.H.; Song, J.H.; Kim, H.E.; Kim, H.W. Effect of polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity ceramics with aligned pore channels. J. Am. Ceram. Soc., 2006, 89(12), 3646-3653.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01311.x]
[59]
Lu, K.; Kessler, C.S.; Davis, R.M. Optimization of a nanoparticle suspension for freeze casting. J. Am. Ceram. Soc., 2006, 89(8), 2459-2465.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01111.x]
[60]
Lyu, S.W.; Yang, T.Y.; Lee, J.M.; Yoon, S.Y.; Stevens, R.; Park, H.C. The effect of processing additives on dispersion and rheological properties of freeze casting alumina/zirconia and mullite/zirconia slurries. Mater. Sci. Forum, 2007, 544-545, 893-896.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.544-545.893]
[61]
Fu, Q.; Rahaman, M.N.; Dogan, F.; Bal, B.S. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 86B(1), 125-135.
[http://dx.doi.org/10.1002/jbm.b.30997] [PMID: 18098195]
[62]
Qi, Y.; Jiang, K.; Zhou, C.; Han, W.; Du, Z. Preparation and properties of high-porosity ZrB2-SiC ceramics by water-based freeze casting. J. Eur. Ceram. Soc., 2021, 41(4), 2239-2246.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2020.11.009]
[63]
Miller, S.M.; Xiao, X.; Setlock, J.A.; Faber, K.T. Freeze-cast alumina pore networks: Effects of processing parameters in steady-state solidification regimes of aqueous slurries. J. Eur. Ceram. Soc., 2018, 38(15), 5134-5143.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2018.07.009]
[64]
Bareggi, A.; Maire, E.; Lasalle, A.; Deville, S. Dynamics of the freezing front during the solidification of a colloidal alumina aqueous suspension: In situ X-Ray radiography, tomography, and modeling. J. Am. Ceram. Soc., 2011, 94(10), 3570-3578.
[http://dx.doi.org/10.1111/j.1551-2916.2011.04572.x]
[65]
Deville, S.; Maire, E.; Lasalle, A.; Bogner, A.; Gauthier, C.; Leloup, J.; Guizard, C. Influence of particle size on ice nucleation and growth during the ice-templating process. J. Am. Ceram. Soc., 2010, 93(9), 2507-2510.
[http://dx.doi.org/10.1111/j.1551-2916.2010.03840.x]
[66]
Rempel, A.W.; Worster, M.G. Particle trapping at an advancing solidification front with interfacial-curvature effects. J. Cryst. Growth, 2001, 223(3), 420-432.
[http://dx.doi.org/10.1016/S0022-0248(01)00595-4]
[67]
Waschkies, T.; Oberacker, R.; Hoffmann, M.J. Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater., 2011, 59(13), 5135-5145.
[http://dx.doi.org/10.1016/j.actamat.2011.04.046]
[68]
Shao, G.; Hanaor, D.A.H.; Shen, X.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv. Mater., 2020, 32(17), 1907176.
[http://dx.doi.org/10.1002/adma.201907176] [PMID: 32163660]
[69]
Körber, C.; Rau, G.; Cosman, M.D.; Cravalho, E.G. Interaction of particles and a moving ice-liquid interface. J. Cryst. Growth, 1985, 72(3), 649-662.
[http://dx.doi.org/10.1016/0022-0248(85)90217-9]
[70]
Turkyilmazoglu, M. Stefan problems for moving phase change materials and multiple solutions. Int. J. Therm. Sci., 2018, 126, 67-73.
[http://dx.doi.org/10.1016/j.ijthermalsci.2017.12.019]
[71]
Liu, X.; Xue, W.; Shi, C.; Sun, J. Fully interconnected porous Al2O3 scaffolds prepared by a fast cooling freeze casting method. Ceram. Int., 2015, 41(9), 11922-11926.
[http://dx.doi.org/10.1016/j.ceramint.2015.05.160]
[72]
Wang, N.; Liu, Y.; Zhang, Y.; Du, Y.; Zhang, J. Control of pore structure during freeze casting of porous SiC ceramics by different freezing modes. Ceram. Int., 2019, 45(9), 11558-11563.
[http://dx.doi.org/10.1016/j.ceramint.2019.03.025]
[73]
Dong, S.; Zhu, W.; Gao, X.; Wang, Z.; Wang, L.; Wang, X.; Gao, C. Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chem. Eng. J., 2016, 295, 530-541.
[http://dx.doi.org/10.1016/j.cej.2016.03.023]
[74]
Rogers, C.; Pun, D.; Fu, Q.; Zhang, H. Fabricating MOF/Polymer composites via freeze casting for water remediation. Ceramics, 2018, 1(2), 353-363.
[http://dx.doi.org/10.3390/ceramics1020028]
[75]
Tang, Y.; Miao, Q.; Qiu, S.; Zhao, K.; Hu, L. Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. J. Eur. Ceram. Soc., 2014, 34(15), 4077-4082.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.05.040]
[76]
Wang, C.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R.S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano, 2018, 12(6), 5816-5825.
[http://dx.doi.org/10.1021/acsnano.8b01747] [PMID: 29757617]
[77]
Su, F.; Mok, J.; McKittrick, J. Radial-concentric freeze casting inspired by porcupine fish spines. Ceramics, 2019, 2(1), 161-179.
[http://dx.doi.org/10.3390/ceramics2010015]
[78]
Athayde, D.D.; Sousa, B.M.; Dolabella, A.C.A.; Ribeiro, J.O.N.; Vasconcelos, D.C.L.; Diniz da Costa, J.C.; Vasconcelos, W.L. Manufacture of highly porous tubular alumina substrates with anisotropic pore structure by freeze-casting. Adv. Eng. Mater., 2020, 22(7), 1901432-1901442.
[http://dx.doi.org/10.1002/adem.201901432]
[79]
Huang, T.; Li, Y.; Chen, M.; Wu, L. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae. Compos. Sci. Technol., 2020, 198, 108322.
[http://dx.doi.org/10.1016/j.compscitech.2020.108322]
[80]
Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A.P.; Ritchie, R.O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv., 2015, 1(11), e1500849.
[http://dx.doi.org/10.1126/sciadv.1500849] [PMID: 26824062]
[81]
Algharaibeh, S.; Ireland, A.J.; Su, B. Bi-directional freeze casting of porous alumina ceramics: A study of the effects of different processing parameters on microstructure. J. Eur. Ceram. Soc., 2019, 39(2-3), 514-521.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2018.09.030]
[82]
Geng, S.L.; Shen, P.; Hu, Z.J.; Guo, R.F.; Jiang, Q.C. Formation mechanism and control of a large-scale lamellar structure in freeze-cast Al 2 O 3 ceramics under dual temperature gradients. J. Eur. Ceram. Soc., 2018, 38(6), 2605-2611.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2018.01.039]
[83]
Hu, Z.J.; Shen, X.T.; Geng, S.L.; Shen, P.; Jiang, Q.C. 3D long-range ordered porous ceramics prepared by a novel bidirectional freeze-casting technique. Ceram. Int., 2018, 44(5), 5803-5806.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.130]
[84]
Tang, Y.; Qiu, S.; Miao, Q.; Wu, C. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. J. Eur. Ceram. Soc., 2016, 36(5), 1233-1240.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2015.12.012]
[85]
Akiyama, J.; Hashimoto, M.; Takadama, H.; Nagata, F.; Yokogawa, Y.; Sassa, K.; Iwai, K.; Asai, S. Formation of c-Axis aligned hydroxyapatite sheet by simultaneous imposition of high magnetic field and mold rotation during slip casting process. Key Eng. Mater., 2006, 309-311, 53-56.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.309-311.53]
[86]
Porter, M.M.; Yeh, M.; Strawson, J.; Goehring, T.; Lujan, S.; Siripasopsotorn, P.; Meyers, M.A.; McKittrick, J. Magnetic freeze casting inspired by nature. Mater. Sci. Eng. A, 2012, 556, 741-750.
[http://dx.doi.org/10.1016/j.msea.2012.07.058]
[87]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29(6), 04016049.
[http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000643]
[88]
Siddiqui, A.A.; Turkyilmazoglu, M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines (Basel), 2019, 10(6), 373.
[http://dx.doi.org/10.3390/mi10060373] [PMID: 31167483]
[89]
Nelson, I.; Ogden, T.A.; Al Khateeb, S.; Graser, J.; Sparks, T.D.; Abbott, J.J.; Naleway, S.E. Freeze-casting of surface‐magnetized iron(II,III) oxide particles in a uniform static magnetic field generated by a helmholtz coil. Adv. Eng. Mater., 2019, 21(3), 1801092-1801103.
[http://dx.doi.org/10.1002/adem.201801092]
[90]
Frank, M.B.; Naleway, S.E.; Haroush, T.; Liu, C.H.; Siu, S.H.; Ng, J.; Torres, I.; Ismail, A.; Karandikar, K.; Porter, M.M.; Graeve, O.A.; McKittrick, J. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Mater. Sci. Eng. C, 2017, 77, 484-492.
[http://dx.doi.org/10.1016/j.msec.2017.03.246] [PMID: 28532056]
[91]
Bakkar, S.; Wall, M.; Ku, N.; Berman, D.; Aouadi, S.M.; Brennan, R.E.; Young, M.L. Al/Al2O3 metal matrix composites produced using magnetic field-assisted freeze-casting of porous ceramic structures. J. Mater. Res., 2021, 36(10), 2094-2106.
[http://dx.doi.org/10.1557/s43578-021-00159-9]
[92]
Jung, D.H.; Yang, J.H.; Jhon, M.S. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations. Chem. Phys., 1999, 244(2-3), 331-337.
[http://dx.doi.org/10.1016/S0301-0104(99)00119-6]
[93]
Zhang, Y.; Hu, L.; Han, J. Preparation of a dense/porous bilayered ceramic by applying an electric field during freeze casting. J. Am. Ceram. Soc., 2009, 92(8), 1874-1876.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03110.x]
[94]
Cheng, Z.; Zhao, K.; Wu, Z.P. Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceram. Int., 2015, 41(7), 8599-8604.
[http://dx.doi.org/10.1016/j.ceramint.2015.03.069]
[95]
Tang, Y.F.; Zhao, K.; Wei, J.Q.; Qin, Y.S. Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. J. Eur. Ceram. Soc., 2010, 30(9), 1963-1965.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2010.03.012]
[96]
Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium. J. Appl. Phys., 2017, 121(1), 014302.
[http://dx.doi.org/10.1063/1.4973190]
[97]
Ogden, T.A.; Prisbrey, M.; Nelson, I.; Raeymaekers, B.; Naleway, S.E. Ultrasound freeze casting: Fabricating bioinspired porous scaffolds through combining freeze casting and ultrasound directed self-assembly. Mater. Des., 2019, 164, 107561-107570.
[http://dx.doi.org/10.1016/j.matdes.2018.107561]
[98]
Mroz, M.; Rosenberg, J.L.; Acevedo, C.; Kruzic, J.J.; Raeymaekers, B.; Naleway, S.E. Ultrasound freeze-casting of a biomimetic layered microstructure in epoxy-ceramic composite materials to increase strength and hardness. Materialia (Oxf.), 2020, 12, 100754-100763.
[http://dx.doi.org/10.1016/j.mtla.2020.100754]
[99]
Yan, P.; Brown, E.; Su, Q.; Li, J.; Wang, J.; Xu, C.; Zhou, C.; Lin, D. 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson’s ratio. Small, 2017, 13(38), 1701756-1701762.
[http://dx.doi.org/10.1002/smll.201701756] [PMID: 28834394]
[100]
Jung, J.Y.; Naleway, S.E.; Maker, Y.N.; Kang, K.Y.; Lee, J.; Ha, J.; Hur, S.S.; Chien, S.; McKittrick, J. 3D printed templating of extrinsic freeze-casting for macro–microporous biomaterials. ACS Biomater. Sci. Eng., 2019, 5(5), 2122-2133.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01308] [PMID: 33405715]
[101]
Song, X.; Tetik, H.; Jirakittsonthon, T.; Parandoush, P.; Yang, G.; Lee, D.; Ryu, S.; Lei, S.; Weiss, M.L.; Lin, D. Biomimetic 3D printing of hierarchical and interconnected porous hydroxyapatite structures with high mechanical strength for bone cell culture. Adv. Eng. Mater., 2019, 21(1), 1800678-1800683.
[http://dx.doi.org/10.1002/adem.201800678]
[102]
Zhang, Q.; Zhang, F.; Medarametla, S.P.; Li, H.; Zhou, C.; Lin, D. 3D printing of graphene aerogels. Small, 2016, 12(13), 1702-1708.
[http://dx.doi.org/10.1002/smll.201503524] [PMID: 26861680]
[103]
Wang, Y.; Wakisaka, M. Chitosan nanofibers fabricated by combined ultrasonic atomization and freeze casting. Carbohydr. Polym., 2015, 122, 18-25.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.080] [PMID: 25817638]
[104]
Basiri, F.; Abdolkarim Hosseini Ravandi, S.; Feiz, M.; Moheb, A. Recycling of direct dyes wastewater by nylon-6 nanofibrous membrane. Curr. Nanosci., 2011, 7(4), 633-639.
[http://dx.doi.org/10.2174/157341311796196899]
[105]
Gaudillere, C.; Serra, J.M. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications. Bol. Soc. Esp. Ceram. Vidr., 2016, 55(2), 45-54.
[http://dx.doi.org/10.1016/j.bsecv.2016.02.002]
[106]
Liaw, B.S.; Chang, T.T.; Chang, H.K.; Liu, W.K.; Chen, P.Y. Fish scale-extracted hydroxyapatite/chitosan composite scaffolds fabricated by freeze casting—An innovative strategy for water treatment. J. Hazard. Mater., 2020, 382, 121082.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121082] [PMID: 31472467]
[107]
Kim, T.; Kim, J.; Hyun, S.; Han, S.M. Fabrication of ultralight 3D porous composite for Ag nanowire/cellulose nanofiber with tunable mechanical and electrical properties via directional freeze casting. Extreme Mech. Lett., 2019, 30, 100512-100519.
[http://dx.doi.org/10.1016/j.eml.2019.100512]
[108]
Shao, Y.; El-Kady, M.F.; Lin, C.W.; Zhu, G.; Marsh, K.L.; Hwang, J.Y.; Zhang, Q.; Li, Y.; Wang, H.; Kaner, R.B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater., 2016, 28(31), 6719-6726.
[http://dx.doi.org/10.1002/adma.201506157] [PMID: 27214752]
[109]
Koh, Y.H.; Sun, J.J.; Kim, H.E. Freeze casting of porous Ni–YSZ cermets. Mater. Lett., 2007, 61(6), 1283-1287.
[http://dx.doi.org/10.1016/j.matlet.2006.07.009]
[110]
Jung, H.D.; Yook, S.W.; Jang, T.S.; Li, Y.; Kim, H.E.; Koh, Y.H. Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Mater. Sci. Eng. C, 2013, 33(1), 59-63.
[http://dx.doi.org/10.1016/j.msec.2012.08.004] [PMID: 25428042]
[111]
Liao, W.; Zhao, H.B.; Liu, Z.; Xu, S.; Wang, Y.Z. On controlling aerogel microstructure by freeze casting. Compos., Part B Eng., 2019, 173, 107036.
[http://dx.doi.org/10.1016/j.compositesb.2019.107036]
[112]
Kim, J.; Nese, V.; Joos, J.; Jeske, K.; Duyckaerts, N.; Pfänder, N.; Prieto, G. Directional freeze-cast hybrid-backbone meso-macroporous bodies as micromonolith catalysts for gas-to-liquid processes. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(44), 21978-21989.
[http://dx.doi.org/10.1039/C8TA07512C]
[113]
Barr, S.A.; Luijten, E. Structural properties of materials created through freeze casting. Acta Mater., 2010, 58(2), 709-715.
[http://dx.doi.org/10.1016/j.actamat.2009.09.050]
[114]
Turkyilmazoglu, M. On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus, 2021, 136(4), 376.
[http://dx.doi.org/10.1140/epjp/s13360-021-01359-2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy