Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Protective Effect of Plumeria Pudica Latex Proteins on Intestinal Mucositis Induced by 5-Fluorouracil

Author(s): Gabriella Linhares de Andrade, Bruna da Silva Souza, Dakson Douglas Araújo, Cleverson Diniz Teixeira de Freitas and Jefferson Soares de Oliveira*

Volume 23, Issue 3, 2023

Published on: 16 September, 2022

Page: [298 - 306] Pages: 9

DOI: 10.2174/1389557522666220817112943

Price: $65

Abstract

Intestinal mucositis is characterized by inflammation and ulceration of the mucosa that affects the gastrointestinal tract and is associated with administering some drugs, such as 5- Fluorouracil (5-FU), conventional chemotherapy used in clinics for cancer therapy. Inside intestinal mucosa, the 5-FU acts, leading to oxidative stress, stimulating the production/release of proinflammatory cytokines, local accumulation of neutrophils and consequent tissue damage. These alterations favor bacterial proliferation, triggering secondary infections, and are responsible for undesired effects such as myelosuppression and diarrhea. These factors negatively impact oncological patients' quality of life and explain why they commonly interrupt their treatment prematurely. Currently, there is no specific drug with the ability to completely avoid this condition, so the search for new molecules with pharmacological properties that can be used for preventing or ameliorating intestinal mucositis is important. Plumeria pudica is a plant that produces latexcontaining molecules with therapeutic potential. A protein fraction obtained from this latex (LPPp), which comprises a well-defined mixture of chitinases, proteinases proteinase inhibitors, was demonstrated to have antioxidant and anti-inflammatory activities, preserving tissue glutathione and malondialdehyde concentration, reducing superoxide dismutase and myeloperoxidase activity, and reducing the level of proinflammatory cytokines in different experimental models. Given this scenario, inflammation and oxidative stress are directly involved in the pathogenesis of intestinal mucositis promoted by 5-FU. So, the hypothesis is that LPPp could inhibit these factors to attenuate the cytotoxicity of this pathology associated with 5-FU-treatment. This article brings new insights into the potential of the laticifer proteins extracted from the latex of P. pudica and opens new perspectives for the treatment of this type of intestinal mucositis with LPPp.

Keywords: Anti-inflammatory, antioxidant, chemotherapeutic, laticifers proteins, 5-FU, inflammation.

Graphical Abstract

[1]
Sangild, P.T.; Shen, R.L.; Pontoppidan, P.; Rathe, M. Animal models of chemotherapy-induced mucositis: Translational relevance and challenges. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 314(2), G231-G246.
[http://dx.doi.org/10.1152/ajpgi.00204.2017] [PMID: 29074485]
[2]
Tooley, K.L.; Howarth, G.S.; Butler, R.N. Mucositis and non-invasive markers of small intestinal function. Cancer Biol. Ther., 2009, 8(9), 753-758.
[http://dx.doi.org/10.4161/cbt.8.9.8232] [PMID: 19276675]
[3]
Thomsen, M.; Vitetta, L. Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis. Integr. Cancer Ther., 2018, 17(4), 1027-1047.
[http://dx.doi.org/10.1177/1534735418794885] [PMID: 30136590]
[4]
Villa, A.; Sonis, S.T. Mucositis: Pathobiology and management. Curr. Opin. Oncol., 2015, 27(3), 159-164.
[http://dx.doi.org/10.1097/CCO.0000000000000180] [PMID: 25774860]
[5]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206(107447), 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[6]
Focaccetti, C.; Bruno, A.; Magnani, E.; Bartolini, D.; Principi, E.; Dallaglio, K.; Bucci, E.O.; Finzi, G.; Sessa, F.; Noonan, D.M.; Albini, A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One, 2015, 10(2), e0115686.
[http://dx.doi.org/10.1371/journal.pone.0115686]
[7]
Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother., 2021, 137(111285), 111285.
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[8]
Soares, P.M.G.; Mota, J.M.S.C.; Souza, E.P.; Justino, P.F.C.; Franco, A.X.; Cunha, F.Q.; Ribeiro, R.A.; Souza, M.H.L.P. Inflammatory intestinal damage induced by 5-fluorouracil requires IL-4. Cytokine, 2013, 61(1), 46-49.
[http://dx.doi.org/10.1016/j.cyto.2012.10.003]
[9]
Basile, D.; Di Nardo, P.; Corvaja, C.; Garanttini, S.K.; Pelizzari, G.; Lisanti, C.; Bortot, L.; Da Ros, L.; Bartoletti, M.; Borghi, M.; Gerratana, L.; Lombardi, D.; Puglisi, F. Mucosal injury during anti-cancer treatment: From pathobiology to bedside. Cancers, 2019, 11(6), 857.
[http://dx.doi.org/10.3390/cancers11060857]
[10]
Al-Dasooqi, N.; Sonis, S.T.; Bowen, J.M.; Bateman, E.; Blijlevens, N.; Gibson, R.J.; Logan, R.M.; Nair, R.G.; Stringer, A.M.; Yazbeck, R.; Elad, S.; Lalla, R.V. Emerging evidence on the pathobiology of mucositis. Support. Care Cancer, 2013, 21(7), 2075-2083.
[http://dx.doi.org/10.1007/s00520-013-1810-y] [PMID: 23604521]
[11]
Falzon, C.C.; Balabanova, A. Phytotherapy: An introduction to herbal medicine. Prim. Care, 2017, 44(2), 217-227.
[http://dx.doi.org/10.1016/j.pop.2017.02.001] [PMID: 28501226]
[12]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed. Pharmacother., 2021, 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[13]
Mu, C.; Sheng, Y.; Wang, Q.; Amin, A.; Li, X.; Xie, Y. Potential compound from herbal food of Rhizoma polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J. Funct. Foods, 2021, 77, 104149.
[http://dx.doi.org/10.1016/j.jff.2020.104149] [PMID: 32837538]
[14]
Chavan, B.A.; Hundiwale, J.C.; Patil, A.V. Plant latex: An inherent spring of pharmaceuticals. World J. Pharm. Pharm. Sci., 2015, 4(4), 1781-1796.
[15]
Téllez, J.C.R.; Santos, I.E.M. Plumeria pudica species of Apocynaceae recently cultivated in Cuba. Agrisost, 2017, 23(3), 111-117.
[16]
Fernandes, H.B.; Machado, D.L.; Dias, J.M.; Brito, T.V.; Batista, J.A.; Silva, R.O.; Pereira, A.C.T.C.; Ferreira, G.P.; Ramos, M.V.; Medeiros, J.V.R.; Aragão, K.S.; Ribeiro, R.A.; Barbosa, A.L.R.; Oliveira, J.S. Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines. Rev. Bras. Farmacogn., 2015, 25(3), 269-277.
[http://dx.doi.org/10.1016/j.bjp.2015.05.003]
[17]
Santana, L.A.B.; Aragão, D.P.; Araújo, T.S.L.; Sousa, N.A.; Souza, L.K.M.; Oliveira, L.E.S.; Pereira, A.C.T.D.C.; Ferreira, G.P.; Oliveira, N.V.M.; Souza, B.D.S.; Sousa, F.B.M.; Ramos, M.V.; Freitas, C.D.T.; Medeiros, J.R.; Oliveira, J.S. Antidiarrheal effects of water-soluble proteins from Plumeria pudica latex in mice. Biomed. Pharmacother., 2018, 97, 1147-1154.
[http://dx.doi.org/10.1016/j.biopha.2017.11.019] [PMID: 29136953]
[18]
Oliveira, N.V.M.; Souza, B.D.S.; Moita, L.A.; Oliveira, L.E.S.; Brito, F.C.; Magalhães, D.A.; Batista, J.A.; Sousa, S.G.; Brito, T.V.; Sousa, F.B.M.; Alves, E.H.P.; Vasconcelos, D.F.P.; Freitas, C.D.T.; Ramos, M.V.; Barbosa, A.L.D.R.; Oliveira, J.S. Proteins from Plumeria pudica latex exhibit protective effect in acetic acid induced colitis in mice by inhibition of pro-inflammatory mechanisms and oxidative stress. Life Sci., 2019, 231, 116535.
[http://dx.doi.org/10.1016/j.lfs.2019.06.010] [PMID: 31175857]
[19]
Oliveira, L.E.S.; Moita, L.A.; Souza, B.S.; Oliveira, N.M.V.; Sales, A.C.S.; Barbosa, M.S.; Silva, F.D.S.; Farias, A.L.C.; Lopes, V.L.R.; França, L.F.C.; Alves, E.H.P.; Freitas, C.D.T.; Ramos, M.V.; Vasconcelos, D.F.P.; Oliveira, J.S. Latex proteins from Plumeria pudica reduce ligature-induced periodontitis in rats. Oral Dis., 2021, 28(3), 786-795.
[http://dx.doi.org/10.1111/odi.13803] [PMID: 33586328]
[20]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[21]
Hariri, M.R.; Irsyam, A.S.D.; Irwanto, R.R. Plumeria pudica Jacq.: Tambahan untuk marga Plumeria (Apocynaceae) di Jawa. BIOTIKA, 2019, 17(2), 1-8.
[http://dx.doi.org/10.24198/biotika.v17i2.25454]
[22]
Chamakuri, S.R.; Suttee, A.; Mondal, P. An eye-catching and comprehensive review on Plumeria pudica JACQ. Plant Arch., 2020, 20(Suppl. 2), 2076-2079.
[23]
Radhika, B. Pharmacognostic evaluation of the leaves of Plumeria pudica. J. Nat. Prod. Plant Resour., 2017, 7(2), 40-45.
[24]
Souza, B.S.; Oliveira, N.V.M.O.; Moita, L.A.; Oliveira, L.E.S.; Brito, F.C.; Silva, F.R.P.; França, L.F.C.; Sousa, F.B.M.; Pereira, A.C.T.C.; Ferreira, G.P.; Medeiros, J.V.R.; Freitas, C.D.T.; Vasconcelos, D.F.P.; Oliveira, J.S. Acute and subchronic toxicity assessment of proteins from Plumeria pudica latex in mice. Res. Soc. Dev., 2021, 10(6), e58610616174.
[http://dx.doi.org/10.33448/rsd-v10i6.16174]
[25]
Van Sebille, Y.Z.A.; Stansborough, R.; Wardill, H.R.; Bateman, E.; Gibson, R.J.; Keefe, D.M. Management of mucositis during chemotherapy: From pathophysiology to pragmatic therapeutics. Curr. Oncol. Rep., 2015, 17(11), 50.
[http://dx.doi.org/10.1007/s11912-015-0474-9] [PMID: 26384312]
[26]
Ali, J.; Khan, A.U.; Shah, F.A.; Ali, H.; Islam, S.U.; Kim, Y.S.; Khan, S. Mucoprotective effects of Saikosaponin-A in 5-fluorouracil-induced intestinal mucositis in mice model. Life Sci., 2019, 239(239), 116888.
[http://dx.doi.org/10.1016/j.lfs.2019.116888] [PMID: 31639401]
[27]
Kwon, Y. Mechanism-based management for mucositis: Option for treating side effects without compromising the efficacy of cancer therapy. OncoTargets Ther., 2016, 9(9), 2007-2016.
[http://dx.doi.org/10.2147/OTT.S96899] [PMID: 27103826]
[28]
Singh, V.; Singh, A.K. Oral mucositis. Natl. J. Maxillofac. Surg., 2020, 11(2), 159-168.
[http://dx.doi.org/10.4103/njms.NJMS_10_20] [PMID: 33897175]
[29]
Cinausero, M.; Aprile, G.; Ermacora, P.; Basile, D.; Vitale, M.G.; Fanotto, V.; Parisi, G.; Calvetti, L.; Sonis, S.T. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front. Pharmacol., 2017, 8(8), 354.
[http://dx.doi.org/10.3389/fphar.2017.00354] [PMID: 28642709]
[30]
Al-Ansari, S.; Zecha, J.A.E.M.; Barasch, A.; de Lange, J.; Rozema, F.R.; Raber-Durlacher, J.E. Oral mucositis induced by anticancer therapies. Curr. Oral Health Rep., 2015, 2(4), 202-211.
[http://dx.doi.org/10.1007/s40496-015-0069-4] [PMID: 26523246]
[31]
Aghamohamamdi, A.; Hosseinimehr, S.J. Natural products for management of oral mucositis induced by radiotherapy and chemotherapy. Integr. Cancer Ther., 2016, 15(1), 60-68.
[http://dx.doi.org/10.1177/1534735415596570] [PMID: 26306626]
[32]
Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; Gasparovic, A.C.; Cuadrado, A.; Weber, D.; Poulsen, H.E.; Grune, T.; Schmidt, H.H.H.; Ghezzi, P. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal., 2015, 23(14), 1144-1170.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[33]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13(13), 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[34]
Shiota, A.; Hada, T.; Baba, T.; Sato, M.; Yamanaka-Okumura, H.; Yamamoto, H.; Taketani, Y.; Takeda, E. Protective effects of glycoglycerolipids extracted from spinach on 5-fluorouracil induced intestinal mucosal injury. J. Med. Invest., 2010, 57(3-4), 314-320.
[http://dx.doi.org/10.2152/jmi.57.314] [PMID: 20847532]
[35]
Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Sebai, H.; Marzouki, L. Contribution of oxidative stress in acute intestinal mucositis induced by 5 fluorouracil (5-FU) and its pro-drug capecitabine in rats. Toxicol. Mech. Methods, 2018, 28(4), 262-267.
[http://dx.doi.org/10.1080/15376516.2017.1402976] [PMID: 29117755]
[36]
Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem., 2017, 524(524), 13-30.
[http://dx.doi.org/10.1016/j.ab.2016.10.021] [PMID: 27789233]
[37]
Ong, Z.Y.; Gibson, R.J.; Bowen, J.M.; Stringer, A.M.; Darby, J.M.; Logan, R.M.; Yeoh, A.S.; Keefe, D.M. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiat. Oncol., 2010, 5(22), 22.
[http://dx.doi.org/10.1186/1748-717X-5-22] [PMID: 20233440]
[38]
Li, H.L.; Lu, L.; Wang, X.S.; Qin, L.Y.; Wang, P.; Qiu, S.P.; Wu, H.; Huang, F.; Zhang, B.B.; Shi, H.L.; Wu, X.J. Alteration of gut microbiota and inflammatory cytokine/chemokine profiles in 5-fluorouracil induced intestinal mucositis. Front. Cell. Infect. Microbiol., 2017, 7, 455.
[http://dx.doi.org/10.3389/fcimb.2017.00455]
[39]
Gan, Y.; Ai, G.; Wu, J.; Luo, H.; Chen, L.; Huang, Q.; Wu, X.; Xu, N.; Li, M.; Su, Z.; Liu, Y.; Huang, X. Patchouli oil ameliorates 5-fluorouracil-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport. J. Ethnopharmacol., 2020, 250(250), 112519.
[http://dx.doi.org/10.1016/j.jep.2019.112519] [PMID: 31883475]
[40]
Chami, B.; Martin, N.J.J.; Dennis, J.M.; Witting, P.K. Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch. Biochem. Biophys., 2018, 645(645), 61-71.
[http://dx.doi.org/10.1016/j.abb.2018.03.012] [PMID: 29548776]
[41]
Fidelis, L.S.; Miranda, J.A.L.; Martins, C.S.; Barbosa, M.L.L.; Pimenta, H.B.; Pimentel, P.V.S.; Teixeira, C.S.; Scafuri, M.A.S.; Façanha, S.O.; Barreto, J.E.F.; Carvalho, P.M.M.; Scafuri, A.G.; Araújo, J.L.; Rocha, J.A.; Vieira, I.G.P.; Ricardo, N.M.P.S.; Campelo, M.S.; Ribeiro, M.E.N.P.; Brito, G.A.C.; Cerqueira, G.S. Role of rutin in 5-fluorouracil-induced intestinal mucositis: Prevention of histological damage and reduction of inflammation and oxidative stress. Molecules, 2020, 25(12), 2786.
[http://dx.doi.org/10.3390/molecules25122786]
[42]
Atiq, A.; Shal, B.; Naveed, M.; Khan, A.; Ali, J.; Zeeshan, S.; Ai-Sharari, S.D.; Kim, Y.S.; Khan, S. Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. Eur. J. Pharmacol., 2019, 15(843), 292-306.
[http://dx.doi.org/10.1016/j.ejphar.2018.12.014]
[43]
Salvo Romero, E.; Alonso Cotoner, C.; Pardo Camacho, C.; Casado Bedmar, M.; Vicario, M. The intestinal barrier function and its involvement in digestive disease. Rev. Esp. Enferm. Dig., 2015, 107(11), 686-696.
[http://dx.doi.org/10.17235/reed.2015.3846/2015] [PMID: 26541659]
[44]
Wu, Y.; Tang, L.; Wang, B.; Sun, Q.; Zhao, P.; Li, W. The role of autophagy in maintaining intestinal mucosal barrier. J. Cell. Physiol., 2019, 234(11), 19406-19419.
[http://dx.doi.org/10.1002/jcp.28722] [PMID: 31020664]
[45]
Galdino, F.M.P.; Andrade, M.E.R.; Barros, P.A.V.; Generoso, S.V.; Alvarez-Leite, J.I.; Almeida-Leite, C.M.; Peluzio, M.C.G.; Fernandes, S.O.A.; Cardoso, V.N. Pretreatment and treatment with fructo-oligosaccharides attenuate intestinal mucositis induced by 5-FU in mice. J. Funct. Foods, 2018, 49, 485-492.
[http://dx.doi.org/10.1016/j.jff.2018.09.012]
[46]
Lortet-Tieulent, J.; Georges, D.; Bray, F.; Vaccarella, S. Profiling global cancer incidence and mortality by socioeconomic development. Int. J. Cancer, 2020, 147(11), 3029-3036.
[http://dx.doi.org/10.1002/ijc.33114] [PMID: 32449164]
[47]
Marley, A.R.; Nan, H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet., 2016, 7(3), 105-114.
[PMID: 27766137]
[48]
Chang, C.W.; Lee, H.C.; Li, L.H.; Chiang Chiau, J.S.; Wang, T.E.; Chuang, W.H.; Chen, M.J.; Wang, H.Y.; Shih, S.C.; Liu, C.Y.; Tsai, T.H.; Chen, Y.J. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int. J. Mol. Sci., 2020, 21(2), E386.
[http://dx.doi.org/10.3390/ijms21020386] [PMID: 31936237]
[49]
Lalla, R.V.; Sonis, S.T.; Peterson, D.E. Management of oral mucositis in patients who have cancer. Dent. Clin. North Am., 2008, 52(1), 61-77. [viii.
[http://dx.doi.org/10.1016/j.cden.2007.10.002] [PMID: 18154865]
[50]
Baykov, S.V.; Mikherdov, A.S.; Novikov, A.S.; Geyl, K.K.; Tarasenko, M.V.; Gureev, M.A.; Boyarskiy, V.P. Noncovalent interaction involving 1,2,4-and 1,3,4-oxidiazole systems: The combined experimental, theoretical, and database study. Molecules, 2021, 26(18), 5672.
[http://dx.doi.org/10.3390/molecules26185672] [PMID: 34577142]
[51]
Il’in, M.V.; Sysoeva, A.A.; Bolotin, D.S.; Novikov, A.S.; Suslonov, V.V.; Rogacheva, E.V.; Kraeva, L.A.; Kukushkin, V.Y. Aminonitrones as highly reactive bifunctional synthons. An expedient one-pot route to 5-amino-1,2,4-triazoles and 5-amino-1,2,4-oxadiazoles – potential antimicrobials targeting multi-drug resistant bacteria. New J. Chem., 2019, 43(44), 17358-17366.
[http://dx.doi.org/10.1039/C9NJ04529E]
[52]
Melekhova, A.A.; Smirnov, A.S.; Novikov, A.S.; Panikorovskii, T.L.; Bokach, N.A.; Kukushkin, V.Y. Copper(l)-catalyzed 1,3-dipolar cycloaddition of ketonitrones to dialkylcyanamides: A step toward sustainable generation of 2,3-dihydro-1,2,4-oxadiazoles. ACS Omega, 2017, 2(4), 1380-1391.
[http://dx.doi.org/10.1021/acsomega.7b00130] [PMID: 31457510]
[53]
Kulish, K.I.; Novikov, A.S.; Tolstoy, P.M.; Bolotin, D.S.; Bokach, N.A.; Zolotarev, A.A.; Kukushkin, V.Y. Solid state and dynamic solution structures of O-carbamidine amidoximes gives further insight into the mechanism of zinc(II)-mediated generation of 1,2,4-oxadiazoles. J. Mol. Struct., 2016, 1111, 142-150.
[http://dx.doi.org/10.1016/j.molstruc.2016.01.038]
[54]
Baharvand, M.; Jafari, S.; Mortazavi, H. Herbs in oral mucositis. J Clin Diagn Res 2017, 11(3), 05-11.
[http://dx.doi.org/10.7860/JCDR/2017/21703.9467]
[55]
Figueredo, C.A.; Gurgel, I.G.D.; Gurgel, G.D., Jr The national policy on medicinal plants and phytotherapeutics: Construction, perspectives and challenges. Physis, 2014, 24(2), 381-400.
[http://dx.doi.org/10.1590/S0103-73312014000200004]
[56]
Zheng, H.; Gao, J.; Man, S.; Zhang, J.; Jin, Z.; Gao, W. The protective effects of Aquilariae Lignum Resinatum extract on 5-Fuorouracil-induced intestinal mucositis in mice. Phytomedicine, 2019, 54, 308-317.
[http://dx.doi.org/10.1016/j.phymed.2018.07.006] [PMID: 30396718]
[57]
de Freitas-Blanco, V.S.; Monteiro, K.M.; de Oliveira, P.R.; de Oliveira, E.C.S.; de Oliveira Braga, L.E.; de Carvalho, J.E.; Ferreira Rodrigues, R.A. Spilanthol, the principal alkylamide from Acmella oleracea, attenuates 5-fluorouracil-induced intestinal mucositis in mice. Planta Med., 2019, 85(3), 203-209.
[http://dx.doi.org/10.1055/a-0715-2002] [PMID: 30153691]
[58]
Liu, J.H.; Hsieh, C.H.; Liu, C.Y.; Chang, C.W.; Chen, Y.J.; Tsai, T.H. Anti-inflammatory effects of Radix aucklandiae herbal preparation ameliorate intestinal mucositis induced by 5-fluorouracil in mice. J. Ethnopharmacol., 2021, 271, 113912.
[http://dx.doi.org/10.1016/j.jep.2021.113912] [PMID: 33567307]
[59]
Yariswamy, M.; Shivaprasad, H.V.; Joshi, V.; Nanjaraj Urs, A.N.; Nataraju, A.; Vishwanath, B.S. Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice. J. Ethnopharmacol., 2013, 149(1), 377-383.
[http://dx.doi.org/10.1016/j.jep.2013.06.056] [PMID: 23838477]
[60]
Viana, C.A.; Ramos, M.V.; Filho, J.D.B.M.; Lotufo, L.V.C.; Figueiredo, I.S.T.; de Oliveira, J.S.; Mastroeni, P.; Lima-Filho, J.V.; Alencar, N.M.N. Cytotoxicity against tumor cell lines and anti-inflammatory properties of chitinases from Calotropis procera latex. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(10), 1005-1013.
[http://dx.doi.org/10.1007/s00210-017-1397-9] [PMID: 28698893]
[61]
Ramos, M.V.; Freitas, A.P.F.; Leitão, R.F.C.; Costa, D.V.S.; Cerqueira, G.S.; Martins, D.S.; Martins, C.S.; Alencar, N.M.N.; Freitas, L.B.N.; Brito, G.A.C. Anti-inflammatory latex proteins of the medicinal plant Calotropis procera: A promising alternative for oral mucositis treatment. Inflamm. Res., 2020, 69(9), 951-966.
[http://dx.doi.org/10.1007/s00011-020-01365-7] [PMID: 32488316]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy