Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Psoralidin Induced Differentiation from Adipose-derived Stem Cells to Nucleus Pulposus-like Cells by TGF-β/Smad Signaling

Author(s): Shuofu Li, Xiaorong Liu, Ying Nie, Lei Yang, Chao Zhang, Yantao Guo, Shaofeng Yang* and Zhaoyong Li*

Volume 23, Issue 7, 2023

Published on: 13 October, 2022

Page: [688 - 697] Pages: 10

DOI: 10.2174/1566524022666220816165135

Price: $65

Abstract

Background: Psoralidin (PL) could affect the differentiation of bone marrow mesenchymal stem cells (BMSCs). The role of PL is still unclear in adipose-derived stem cells (ADSCs).

Aims: This study aimed to investigate the effects of PL on ADSCs differentiation into nucleus pulposus-like cells and the TGF-β/Smad signaling pathway.

Methods: The proliferation and apoptosis of ADSCs were detected. The nucleus pulposus cell-related markers (CD24, BASP1, KRT19, and Aggrecan) and TGF-β/Smad signaling pathway indexes were analyzed.

Results: The results showed that compared to the control group, the cell activity was increased in the PL group, and the apoptosis rate was decreased. The mRNA and protein levels of nucleus pulposus cells markers (CD24, BASP1, KRT19, Aggrecan, and Collagen Type II) and TGF-β/Smad signaling pathway-related indexes (TGF-β, SMAD2, and SMAD3) were increased in PL group. After treatment with PL and TGF-β silencing, the TGF-β/Smad signaling pathway-related indicators (TGF-β, SMAD2, and SMAD3) and nucleus pulposus cells markers (CD24, BASP1, KRT19, Aggrecan, and Collagen Type II) were found to be higher in the sh-TGF-β +PL group than in the sh-TGF-β group.

Conclusion: In conclusion, our study showed that PL might induce the differentiation of ADSCs to nucleus pulposus cells through the TGF-β/Smad signaling pathway. It might have the potential application value in the treatment of intervertebral disc degeneration.

Keywords: Psoralidin, ADSCs, nucleus pulposus cells, TGF-β/Smad signaling

[1]
Hurwitz EL, Randhawa K, Yu H, Côté P, Haldeman S. The global spine care initiative: A summary of the global burden of low back and neck pain studies. Eur Spine J 2018; 27(S6) (Suppl. 6): 796-801.
[http://dx.doi.org/10.1007/s00586-017-5432-9] [PMID: 29480409]
[2]
Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention. Lancet 2018; 391(10137): 2356-67.
[http://dx.doi.org/10.1016/S0140-6736(18)30480-X] [PMID: 29573870]
[3]
Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 2006; 88 (Suppl. 2): 10-4.
[PMID: 16595436]
[4]
Ma K, Chen S, Li Z, et al. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage 2019; 27(1): 41-8.
[http://dx.doi.org/10.1016/j.joca.2018.08.021] [PMID: 30243946]
[5]
Tang R, Jing L, Willard VP, et al. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 2018; 9(1): 61.
[http://dx.doi.org/10.1186/s13287-018-0797-1] [PMID: 29523190]
[6]
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146: 306-24.
[http://dx.doi.org/10.1016/j.addr.2018.04.017] [PMID: 29705378]
[7]
Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016; 99: 69-80.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.015] [PMID: 26384579]
[8]
Burrow KL, Hoyland JA, Richardson SM. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells Int 2017; 2017: 2541275.
[http://dx.doi.org/10.1155/2017/2541275] [PMID: 28553357]
[9]
Zhang Y, Wang Y, Zhou X, et al. Osmolarity controls the differentiation of adipose-derived stem cells into nucleus pulposus cells via histone demethylase KDM4B. Mol Cell Biochem 2020; 472(1-2): 157-71.
[http://dx.doi.org/10.1007/s11010-020-03794-8] [PMID: 32594337]
[10]
Zhu Z, Xing H, Tang R, et al. The preconditioning of lithium promotes mesenchymal stem cell-based therapy for the degenerated intervertebral disc via upregulating cellular ROS. Stem Cell Res Ther 2021; 12(1): 239.
[http://dx.doi.org/10.1186/s13287-021-02306-9] [PMID: 33853670]
[11]
Jeong JH, Lee JH, Jin ES, Min JK, Jeon SR, Choi KH. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir (Wien) 2010; 152(10): 1771-7.
[http://dx.doi.org/10.1007/s00701-010-0698-2] [PMID: 20571835]
[12]
Ishiguro H, Kaito T, Yarimitsu S, et al. Intervertebral disc regeneration with an adipose mesenchymal stem cell-derived tissue-engineered construct in a rat nucleotomy model. Acta Biomater 2019; 87: 118-29.
[http://dx.doi.org/10.1016/j.actbio.2019.01.050] [PMID: 30690206]
[13]
Hua J, Shen N, Wang J, et al. Small molecule-based strategy promotes nucleus pulposus specific differentiation of adipose-derived mesenchymal stem cells. Mol Cells 2019; 42(9): 661-71.
[PMID: 31564076]
[14]
Wang PE, Zhang L, Ying J, et al. Bushenhuoxue formula attenuates cartilage degeneration in an osteoarthritic mouse model through TGF-β/MMP13 signaling. J Transl Med 2018; 16(1): 72.
[http://dx.doi.org/10.1186/s12967-018-1437-3] [PMID: 29554973]
[15]
Xia C, Zou Z, Fang L, et al. Bushenhuoxue formula promotes osteogenic differentiation of growth plate chondrocytes through β-catenin-dependent manner during osteoporosis. Biomed Pharmacother 2020; 127: 110170.
[http://dx.doi.org/10.1016/j.biopha.2020.110170] [PMID: 32334373]
[16]
Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B, et al. Pharmacological activities of psoralidin: A comprehensive review of the molecular mechanisms of action. Front Pharmacol 2020; 11: 571459.
[http://dx.doi.org/10.3389/fphar.2020.571459] [PMID: 33192514]
[17]
Yang HJ, Youn H, Seong KM, et al. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation. Biochem Pharmacol 2011; 82(5): 524-34.
[http://dx.doi.org/10.1016/j.bcp.2011.05.027] [PMID: 21669192]
[18]
Ren G, Luo W, Sun W, et al. Psoralidin induced reactive oxygen species (ROS)-dependent DNA damage and protective autophagy mediated by NOX4 in breast cancer cells. Phytomedicine 2016; 23(9): 939-47.
[http://dx.doi.org/10.1016/j.phymed.2016.05.008] [PMID: 27387402]
[19]
Li J, Fu Y, Hu X, Xiong Y. Psoralidin inhibits the proliferation of human liver cancer cells by triggering cell cycle arrest, apoptosis and autophagy and inhibits tumor growth in vivo. J BUON 2019; 24(5): 1950-5.
[PMID: 31786860]
[20]
Xin Z, Wu X, Yu Z, et al. Mechanisms explaining the efficacy of psoralidin in cancer and osteoporosis, a review. Pharmacol Res 2019; 147: 104334.
[http://dx.doi.org/10.1016/j.phrs.2019.104334] [PMID: 31255708]
[21]
Cao HJ, Li CR, Wang LY, et al. Effect and mechanism of psoralidin on promoting osteogenesis and inhibiting adipogenesis. Phytomedicine 2019; 61: 152860.
[http://dx.doi.org/10.1016/j.phymed.2019.152860] [PMID: 31048126]
[22]
Zhai Y, Li Y, Wang Y, et al. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. Eur J Pharmacol 2017; 801: 62-71.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.001] [PMID: 28283388]
[23]
Zhang Q, Shen Y, Zhao S, Jiang Y, Zhou D, Zhang Y. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3. Cell Signal 2021; 86: 110083.
[http://dx.doi.org/10.1016/j.cellsig.2021.110083] [PMID: 34252537]
[24]
Zhou X, Ma C, Hu B, et al. FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway. FASEB J 2018; 32(12): fj201800373R.
[http://dx.doi.org/10.1096/fj.201800373R] [PMID: 29890089]
[25]
Hu Y, Huang L, Shen M, et al. Pioglitazone protects compression-mediated apoptosis in nucleus pulposus mesenchymal stem cells by suppressing oxidative stress. Oxid Med Cell Longev 2019; 2019: 4764071.
[http://dx.doi.org/10.1155/2019/4764071] [PMID: 31885796]
[26]
Hou S, Song Y, Sun D, Zhu S, Wang Z. Xanthohumol-induced rat glioma c6 cells death by triggering mitochondrial stress. Int J Mol Sci 2021; 22(9): 4506.
[http://dx.doi.org/10.3390/ijms22094506] [PMID: 33925918]
[27]
Sinkemani A, Wang F, Xie Z, Chen L, Zhang C, Wu X. Nucleus pulposus cell conditioned medium promotes mesenchymal stem cell differentiation into nucleus pulposus-like cells under hypoxic conditions. Stem Cells Int 2020; 2020: 8882549.
[http://dx.doi.org/10.1155/2020/8882549] [PMID: 33424982]
[28]
Zheng Z, Qu JQ, Yi HM, et al. MiR-125b regulates proliferation and apoptosis of nasopharyngeal carcinoma by targeting A20/NF-κB signaling pathway. Cell Death Dis 2017; 8(6): e2855.
[http://dx.doi.org/10.1038/cddis.2017.211] [PMID: 28569771]
[29]
Blanquer SB, Grijpma DW, Poot AA. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev 2015; 84: 172-87.
[http://dx.doi.org/10.1016/j.addr.2014.10.024] [PMID: 25451138]
[30]
Tan Y, Yao X, Dai Z, Wang Y, Lv G. Bone morphogenetic protein 2 alleviated intervertebral disc degeneration through mediating the degradation of ECM and apoptosis of nucleus pulposus cells via the PI3K/Akt pathway. Int J Mol Med 2019; 43(1): 583-92.
[PMID: 30387830]
[31]
Chen HT, Huang AB, He YL, Bian J, Li HJ. Wnt11 overexpression promote adipose-derived stem cells differentiating to the nucleus pulposus-like phenotype. Eur Rev Med Pharmacol Sci 2017; 21(7): 1462-70.
[PMID: 28429362]
[32]
Tang X, Jing L, Richardson WJ, et al. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 2016; 34(8): 1316-26.
[http://dx.doi.org/10.1002/jor.23244] [PMID: 27018499]
[33]
Liu Z, Zheng Z, Qi J, et al. CD24 identifies nucleus pulposus progenitors/notochordal cells for disc regeneration. J Biol Eng 2018; 12(1): 35.
[http://dx.doi.org/10.1186/s13036-018-0129-0] [PMID: 30598696]
[34]
Zhu Y, Liang Y, Zhu H, et al. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells. Oncotarget 2017; 8(26): 42700-11.
[http://dx.doi.org/10.18632/oncotarget.17446] [PMID: 28498811]
[35]
Rutges J, Creemers LB, Dhert W, et al. Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: Potential associations with aging and degeneration. Osteoarthritis Cartilage 2010; 18(3): 416-23.
[http://dx.doi.org/10.1016/j.joca.2009.09.009] [PMID: 19833252]
[36]
Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA. Transcriptional profiling of bovine intervertebral disc cells: Implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 2010; 12(1): R22.
[http://dx.doi.org/10.1186/ar2929] [PMID: 20149220]
[37]
Zhou X, Tao Y, Wang J, et al. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype. J Biomed Mater Res A 2016; 104(7): 1687-93.
[http://dx.doi.org/10.1002/jbm.a.35701] [PMID: 26940048]
[38]
Hu BT, Chen WZ. MOTS-c improves osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells via TGF-β/Smad pathway. Eur Rev Med Pharmacol Sci 2018; 22(21): 7156-63.
[PMID: 30468456]
[39]
Wang QL, Li HF, Wang DP, et al. Effect of GGCX on the differentiation function of osteoporosis bone marrow mesenchymal stem cells through regulating TGFβ/smad signaling pathway. Eur Rev Med Pharmacol Sci 2019; 23(17): 7224-31.
[PMID: 31539109]
[40]
Grishin NV. Treble clef finger a functionally diverse zinc-binding structural motif. Nucleic Acids Res 2001; 29(8): 1703-14.
[http://dx.doi.org/10.1093/nar/29.8.1703] [PMID: 11292843]
[41]
Vafina G, Zainutdinova E, Bulatov E, Filimonova MN. Endonuclease from gram-negative bacteria Serratia marcescens is as effective as pulmozyme in the hydrolysis of DNA in sputum. Front Pharmacol 2018; 9: 114.
[http://dx.doi.org/10.3389/fphar.2018.00114] [PMID: 29503617]
[42]
Li SN, Wu JF. TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell Res Ther 2020; 11(1): 41.
[http://dx.doi.org/10.1186/s13287-020-1552-y] [PMID: 31996252]
[43]
Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 2014; 124(2): 466-72.
[http://dx.doi.org/10.1172/JCI70050] [PMID: 24487640]
[44]
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4(1): 16009.
[http://dx.doi.org/10.1038/boneres.2016.9] [PMID: 27563484]
[45]
Colombier P, Clouet J, Boyer C, et al. TGF-β1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward nucleus pulposus-like cells. Stem Cells 2016; 34(3): 653-67.
[http://dx.doi.org/10.1002/stem.2249] [PMID: 26661057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy