Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Enhancing the Cyanide Sensing Performance of the CuBi2O4 Nanoflakes by Polyaniline

Author(s): Yong Zhang, Lihong Zhuang, Zhengyu Cai and Lizhai Pei*

Volume 16, Issue 1, 2023

Published on: 06 September, 2022

Page: [95 - 107] Pages: 13

DOI: 10.2174/2666145415666220816162401

Price: $65

Abstract

Background: Cyanide (CN-) belongs to dangerous anion pollutants owing to its toxicity at a low level. The development of an efficient method for cyanide detection in an aqueous solution is of tremendous importance for protecting the environment and human health. Polyaniline/ CuBi2O4 composite modified electrode possesses good electro-catalytic activity towards cyanide.

Objective: The aim is to synthesize polyaniline/CuBi2O4 nanoflakes by a facile hydrothermal route using the CuBi2O4 nanoflakes and polyaniline as the raw materials and research the electrocatalytic activity towards cyanide of the composite nanoflakes.

Methods: Polyaniline/CuBi2O4 nanoflakes were synthesized by a facile hydrothermal route using the CuBi2O4 nanoflakes and polyaniline as the raw materials. The structure, morphology, chemical bonding, and electro-catalytic activity towards cyanide of the composite nanoflakes were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical measurements.

Results: The obtained composite nanoflakes are composed of a tetragonal CuBi2O4 phase. Amorphous polyaniline nanoscale particles with a size of about 50 nm attach to the surface of the CuBi2O4 nanoflakes. The nanoflakes modified glassy carbon electrodes (GCEs) were used for the determination of cyanide. A pair of quasi-reversible cyclic voltammetry (CV) peaks were located at +0.25 V and +0.33 V, respectively, at the polyaniline/CuBi2O4 nanoflakes modified GCE. The linear range and detection limit were 0.01-2 mM, 3.1 μM, 0.001-2 mM, and 0.39 μM for CuBi2O4 nanoflakes modified GCE and polyaniline/CuBi2O4 nanoflakes modified GCE, respectively.

Conclusion: Polyaniline/CuBi2O4 nanoflakes modified GCE shows good reproducibility and stability for cyanide detection. The electro-catalytic activity towards cyanide of the CuBi2O4 nanoflakes modified GCE can be greatly enhanced by the polyaniline.

Keywords: CuBi2O4 nanoflakes, polyaniline, cyanide, transmission electron microscopy, cyclic voltammetry, electrochemical properties.

Graphical Abstract

[1]
Boening, D.W.; Chew, C.M. A critical review: General toxicity and environmental fate of three aqueous cyanide ions and associated ligands. Water Air Soil Pollut., 1999, 109, 67-79.
[http://dx.doi.org/10.1023/A:1005005117439]
[2]
Holland, M.A.; Kozlowski, L.M. Clinical features and management of cyanide poisoning. Clin. Pharm., 1986, 5(9), 737-741.
[PMID: 3530615]
[3]
Araki, M.; Matsuyama, K. Rapid measurements of hydrogen cyanide concentration in combustion gas via terahertz spectroscopy. Curr. Appl. Phys., 2022, 36, 83-87.
[http://dx.doi.org/10.1016/j.cap.2021.12.015]
[4]
Lakshmi, P.R.; Jayasudha, P.; Elango, K.P. Selective chromogenic detection of cyanide in aqueous solution - Spectral, electrochemical and theoretical studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213, 318-323.
[http://dx.doi.org/10.1016/j.saa.2019.01.074] [PMID: 30711901]
[5]
Sadyrbaeva, T.Z. Gold (III) recovery from non-toxic electrolytes using hybrid electrodialysis–electrolysis process. Separ. Purif. Tech., 2012, 86, 262-265.
[http://dx.doi.org/10.1016/j.seppur.2011.10.007]
[6]
Dhas, P.K.; Chitra, P.; Jayakumar, S.; Mary, A.R. Study of the effects of hydrogen cyanide exposure in Cassava workers. Indian J. Occup. Environ. Med., 2011, 15(3), 133-136.
[http://dx.doi.org/10.4103/0019-5278.93204] [PMID: 22412292]
[7]
Suganya, S.; Ravindran, E.; Mahato, M.K.; Prasad, E. Oange emitting fluorescence probe for the selective detection of cyanide ion in solution and solid states. Sens. Actuators B Chem., 2019, 291, 426-432.
[http://dx.doi.org/10.1016/j.snb.2019.04.066]
[8]
Rajalakshmi, P.; Jayasudha, P.; Ciattini, S.; Chelazzi, L.; Elango, K.P. Crystallographic evidence for resonance assisted H-bonding effect in selective colorimetric detection of cyanide by arylamino-naphthoquinones. J. Mol. Struct., 2019, 1195, 259-268.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.124]
[9]
Shamsipur, M.; Karimi, Z.; Tabrizi, M.A. A novel electrochemical cyanide sensor using gold nanoparticles decorated carbon ceramic electrode. Microchem. J., 2017, 133, 485-489.
[http://dx.doi.org/10.1016/j.microc.2017.04.017]
[10]
Ishii, A.; Seno, H.; Watanabe-Suzuki, K.; Suzuki, O.; Kumazawa, T. Determination of cyanide in whole blood by capillary gas chroma-tography with cryogenic oven trapping. Anal. Chem., 1998, 70(22), 4873-4876.
[http://dx.doi.org/10.1021/ac980498b] [PMID: 9844576]
[11]
Ahfad, N.; Mohammadnezhad, G.; Meghdadi, S.; Farrokhpour, H. A naphthylamide based fluorescent probe for detection of Al3+, Fe3+, and CN- with high sensitivity and selectivity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020.228117753
[http://dx.doi.org/10.1016/j.saa.2019.117753] [PMID: 31732474]
[12]
Dadfarnia, S.; Shabani, A.M.H.; Tamadon, F.; Rezaei, M. Indirect determination of free cyanide in water and industrial waste water by flow injection-atomic absorption spectrometry. Mikrochim. Acta, 2007, 158, 159-163.
[http://dx.doi.org/10.1007/s00604-006-0679-6]
[13]
Timofeyenko, Y.G.; Rosentreter, J.J.; Mayo, S. Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determi-nation. Anal. Chem., 2007, 79(1), 251-255.
[http://dx.doi.org/10.1021/ac060890m] [PMID: 17194148]
[14]
Shamsipur, M.; Rajabi, H.R. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cya-nide ion. Mater. Sci. Eng. C, 2014, 36, 139-145.
[http://dx.doi.org/10.1016/j.msec.2013.12.001] [PMID: 24433896]
[15]
Chaudhary, M.; Verma, D.M.; Jena, K.C.; Singh, N. Histidine-naphthalimide based organic-inorganic nanohybrid for electrochemical detection of cyanide and iodide ions. ChemistrySelect, 2020, 5, 8246-8252.
[http://dx.doi.org/10.1002/slct.202001968]
[16]
Riojas, A.A.C.; Wong, A.; Planes, G.A.; Sotomayor, M.D.P.T.; Rosa-Toro, A.L.; Baena-Moncada, A.M. Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determina-tion of cyanide in river water samples. Sens. Actuators B Chem., 2019, 287, 544-550.
[http://dx.doi.org/10.1016/j.snb.2019.02.053]
[17]
Mehmandoust, M.; Erk, N.; Karaman, C.; Karaman, O. An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. Chemosphere, 2022, 291(Pt 1)132807
[http://dx.doi.org/10.1016/j.chemosphere.2021.132807] [PMID: 34762887]
[18]
Wang, F.; Yang, H.; Zhang, Y.C.; Li, R.S. Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route. Int. J. Mater. Res., 2017, 108, 298-307.
[http://dx.doi.org/10.3139/146.111483]
[19]
Wu, C.H.; Onno, E.; Lin, C.Y. CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 for highly sensitive and selective elec-trochemical detection of glucose. Electrochim. Acta, 2017, 229, 129-140.
[http://dx.doi.org/10.1016/j.electacta.2017.01.130]
[20]
Dumitru, M. Vodă, R.; Negrea, S.; Păcurariu, C.; Surdu, A.; Ianculescu, A.; Pop, A.; Manea, F. CuBi2O4 synthesis, characterization, and application in sensitive amperometric/voltammetric detection of amoxicillin in aqueous solutions. Nanomaterials (Basel), 2021, 11(3), 740.
[http://dx.doi.org/10.3390/nano11030740] [PMID: 33804252]
[21]
Zhang, Y.; Lin, F.F.; Wei, T.; Pei, L.Z. Facile hydrothermal synthesis of Cu bismuthate nanosheets and sensitive electrochemical detec-tion of tartaric acid. J. Alloys Compd., 2017, 723, 1062-1069.
[http://dx.doi.org/10.1016/j.jallcom.2017.07.001]
[22]
Chen, H.J.; Lin, F.F.; Yu, C.H. Polyaniline/Ba bismuthate nanobelts for sensitive electrochemical detection of tartaric acid. Int. J. Electrochem. Sci., 2020, 15, 1742-1756.
[http://dx.doi.org/10.20964/2020.02.55]
[23]
Goswami, B.; Mahanta, D. Fe3O4-polyaniline nanocomposite for non-enzymatic electrochemical detection of 2,4-dichlorophenoxyacetic acid. ACS Omega, 2021, 6(27), 17239-17246.
[http://dx.doi.org/10.1021/acsomega.1c00983] [PMID: 34278110]
[24]
Chen, H.Y.; Wang, J.; Meng, L.; Yang, T.; Jiao, K. Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol. Chin. Chem. Lett., 2016, 27, 231-234.
[http://dx.doi.org/10.1016/j.cclet.2015.09.018]
[25]
Pei, L.Z.; Qiu, F.L.; Ma, Y.; Lin, F.F.; Fan, C.G.; Ling, X.Z. Polyaniline/Al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid. Curr. Pharm. Anal., 2020, 16, 153-158.
[http://dx.doi.org/10.2174/1573412914666181017145307]
[26]
Yang, Y.; He, A.; Yang, M. Selective electroreduction of CO2 to ethanol over a highly stable catalyst derived from polyani-line/CuBi2O4. Catal. Sci. Technol., 2021, 11, 5908-5916.
[http://dx.doi.org/10.1039/D1CY01063H]
[27]
Wang, Z.; Chen, H.J.; Lin, F.F.; Yan, L.; Pei, L.Z.; Fan, C.G. PAn/Cu bismuthate nanoflake composites with enhanced electrochemical performance for TA. Micro Nanosyst., 2020, 12, 48-57.
[http://dx.doi.org/10.2174/1876402911666190617111608]
[28]
Najafian, H.; Manteghi, F.; Beshkar, F.; Salavati-Niasari, M. Fabrication of nanocomposite photocatalyst CuBi2O4/Bi3ClO4 for remov-al of acid brown 14 as water pollutant under visible light irradiation. J. Hazard. Mater., 2019, 361, 210-220.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.092] [PMID: 30196033]
[29]
Gao, H.J.; Wang, F.; Wang, S.F.; Wang, X.X.; Yi, Z.; Yang, H. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 com-posite: Synthesis and photocatalytic mechanism. Mater. Res. Bull., 2019, 115, 140-149.
[http://dx.doi.org/10.1016/j.materresbull.2019.03.021]
[30]
Barkovskii, N.V. Physicochemical basics for using redox Cu(III)-Cu(II) system for the identification of Bi(V) and O22− in Ba-Bi-O and K-Ba-Bi-O oxides. J. Anal. Chem., 2014, 69, 116-122.
[http://dx.doi.org/10.1134/S1061934813120022]
[31]
Palaniappan, S. Chemical and electrochemical polymerization of aniline using tartaric acid. Eur. Polym. J., 2001, 37, 975-981.
[http://dx.doi.org/10.1016/S0014-3057(00)00207-X]
[32]
Trchová, I.M.; Stejskal, Š. In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerisation. Synth. Met., 2005, 154, 1-4.
[http://dx.doi.org/10.1016/j.synthmet.2005.07.001]
[33]
Pei, L.Z.; Cai, Z.Y.; Pei, Y.Q.; Xie, Y.K.; Fan, C.G.; Fu, D.G. Electrochemical determination of L-cysteine using CuGeO3/polyaniline nanowires modified electrode. Russ. J. Electrochem., 2014, 50, 458-467.
[http://dx.doi.org/10.1134/S1023193513110098]
[34]
Muthukrishnaraj, A.; Vadivel, S.; Joni, I.M.; Balasubramanian, N. Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceram. Int., 2015, 41, 6164-6168.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.113]
[35]
Unmüssig, T.; Weltin, A.; Urban, S.; Daubinger, P.; Urban, G.A.; Kieninger, J. Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J. Electroanal. Chem. (Lausanne), 2018, 816, 215-222.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.061]
[36]
Albrahim, A.M. Construction of supramolecular copper architecture via tetrahedral Cu(CN)4 building blocks and trigonal bipyramidal [R3Sn] connecting units. J. Organomet. Chem., 1998, 556, 1-9.
[http://dx.doi.org/10.1016/S0022-328X(97)00703-1]
[37]
Sha, R.; Komori, K.; Badhulika, S. Graphene-polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochim. Acta, 2017, 233, 44-51.
[http://dx.doi.org/10.1016/j.electacta.2017.03.043]
[38]
Kaur, B.; Srivastava, R.; Satpati, B. Silver nanoparticle decorated polyaniline–zeolite nanocomposite material based non-enzymatic electrochemical sensor for nanomolar detection of lindane. RSC Advances, 2015, 5, 57657-57665.
[http://dx.doi.org/10.1039/C5RA09461E]
[39]
Pei, L.Z.; Liu, H.D.; Lin, N.; Xie, Y.K.; Cai, Z.Y. Electrochemical analysis of cyanuric acid using polyaniline/CuGeO3 nanowires as electrode modified materials. Curr. Pharm. Anal., 2015, 11, 16-24.
[http://dx.doi.org/10.2174/1573412910666140915212916]
[40]
Bai, Y.H.; Xu, J.J.; Chen, H.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron., 2009, 24(10), 2985-2990.
[http://dx.doi.org/10.1016/j.bios.2009.03.008] [PMID: 19345085]
[41]
Pei, L.Z.; Pei, Y.Q.; Xie, Y.K.; Fan, C.G.; Li, D.K.; Zhang, Q.F. Formation process of calcium vanadate nanorods and their electrochemical sensing properties. J. Mater. Res., 2012, 27, 2391-2400.
[http://dx.doi.org/10.1557/jmr.2012.254]
[42]
Safavi, A.; Maleki, N.; Shahbaazi, H.R. Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltamme-try at a mercury electrode. Anal. Chim. Acta, 2004, 503, 213-221.
[http://dx.doi.org/10.1016/j.aca.2003.10.032]
[43]
Lindsay, A.; O’Hare, D. The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Anal. Chim. Acta, 2006, 558, 158-163.
[http://dx.doi.org/10.1016/j.aca.2005.11.036]
[44]
Bohrer, D.; Nascimento, P.D.; Pomblum, S.G.; Seibert, E.; Carvalho, L.M.D. Polarographicdetermination of cyanide as nickelcyano complex in blood plasma after selective extraction in a methylene blue impregnated polyethylene column. Fresenius J. Anal. Chem., 1998, 361, 780-783.
[http://dx.doi.org/10.1007/s002160051015]
[45]
Taheri, A.; Noroozifar, M.; Khorasani-Motlagh, M. Investigation of a newelectrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional solgel. J. Electroanal. Chem. (Lausanne), 2009, 628, 48-54.
[http://dx.doi.org/10.1016/j.jelechem.2009.01.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy