Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases

Author(s): Dehao Shang, Minghao Huang, Biyao Wang, Xu Yan, Zhou Wu and Xinwen Zhang*

Volume 21, Issue 3, 2023

Published on: 02 November, 2022

Page: [578 - 598] Pages: 21

DOI: 10.2174/1570159X20666220810114644

Price: $65

Abstract

Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.

Keywords: Mitochondrial DNA (mtDNA), Mitophagy, Reactive oxygen species (ROS), Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis

Graphical Abstract

[1]
Modesti, L.; Danese, A.; Angela Maria Vitto, V.; Ramaccini, D.; Aguiari, G.; Gafà, R.; Lanza, G.; Giorgi, C.; Pinton, P. Mitochondrial Ca2+ signaling in health, disease and therapy. Cells, 2021, 10(6), 1317.
[http://dx.doi.org/10.3390/cells10061317] [PMID: 34070562]
[2]
Singh, L.N.; Kao, S.H.; Wallace, D.C. Unlocking the complexity of mitochondrial DNA: A key to understanding neurodegenerative disease caused by injury. Cells, 2021, 10(12), 3460.
[http://dx.doi.org/10.3390/cells10123460] [PMID: 34943968]
[3]
Rone, M.B.; Fan, J.; Papadopoulos, V. Cholesterol transport in steroid biosynthesis: Role of protein–protein interactions and implications in disease states. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2009, 1791(7), 646-658.
[http://dx.doi.org/10.1016/j.bbalip.2009.03.001] [PMID: 19286473]
[4]
Wang, B.; Huang, M.; Shang, D.; Yan, X.; Zhao, B.; Zhang, X. Mitochondrial behavior in axon degeneration and regeneration. Front. Aging Neurosci., 2021, 13, 650038.
[http://dx.doi.org/10.3389/fnagi.2021.650038] [PMID: 33762926]
[5]
Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.B.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxid. Redox Signal., 2013, 18(16), 2029-2074.
[http://dx.doi.org/10.1089/ars.2012.4729] [PMID: 23244576]
[6]
Garrido, N.; Griparic, L.; Jokitalo, E.; Wartiovaara, J.; van der Bliek, A.M.; Spelbrink, J.N. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell, 2003, 14(4), 1583-1596.
[http://dx.doi.org/10.1091/mbc.e02-07-0399] [PMID: 12686611]
[7]
Holt, I.J.; Harding, A.E.; Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 1988, 331(6158), 717-719.
[http://dx.doi.org/10.1038/331717a0] [PMID: 2830540]
[8]
Hällberg, B.M.; Larsson, N.G. Making proteins in the powerhouse. Cell Metab., 2014, 20(2), 226-240.
[http://dx.doi.org/10.1016/j.cmet.2014.07.001] [PMID: 25088301]
[9]
Alston, C.L.; Rocha, M.C.; Lax, N.Z.; Turnbull, D.M.; Taylor, R.W. The genetics and pathology of mitochondrial disease. J. Pathol., 2017, 241(2), 236-250.
[http://dx.doi.org/10.1002/path.4809] [PMID: 27659608]
[10]
Filograna, R.; Mennuni, M.; Alsina, D.; Larsson, N.G. Mitochondrial DNA copy number in human disease: The more the better? FEBS Lett., 2021, 595(8), 976-1002.
[http://dx.doi.org/10.1002/1873-3468.14021] [PMID: 33314045]
[11]
Heemels, M.T. Neurodegenerative diseases. Nature, 2016, 539(7628), 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[12]
Klein, H.U.; Trumpff, C.; Yang, H.S.; Lee, A.J.; Picard, M.; Bennett, D.A.; De Jager, P.L. Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer’s disease brain. Mol. Neurodegener., 2021, 16(1), 75.
[http://dx.doi.org/10.1186/s13024-021-00495-8] [PMID: 34742335]
[13]
Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett., 2018, 592(5), 728-742.
[http://dx.doi.org/10.1002/1873-3468.12956] [PMID: 29281123]
[14]
Buneeva, O.; Fedchenko, V.; Kopylov, A.; Medvedev, A. Mitochondrial dysfunction in Parkinson’s disease: Focus on mitochondrial DNA. Biomedicines, 2020, 8(12), 591.
[http://dx.doi.org/10.3390/biomedicines8120591] [PMID: 33321831]
[15]
De Gaetano, A.; Solodka, K.; Zanini, G.; Selleri, V.; Mattioli, A.V.; Nasi, M.; Pinti, M. Molecular mechanisms of mtDNA-mediated inflammation. Cells, 2021, 10(11), 2898.
[http://dx.doi.org/10.3390/cells10112898] [PMID: 34831121]
[16]
Mishra, P.; Chan, D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(10), 634-646.
[http://dx.doi.org/10.1038/nrm3877] [PMID: 25237825]
[17]
Gustafsson, C.M.; Falkenberg, M.; Larsson, N.G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem., 2016, 85(1), 133-160.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014402] [PMID: 27023847]
[18]
El-Hattab, A.W.; Craigen, W.J.; Scaglia, F. Mitochondrial DNA maintenance defects. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(6), 1539-1555.
[http://dx.doi.org/10.1016/j.bbadis.2017.02.017] [PMID: 28215579]
[19]
Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 2021, 11(4), 1845-1863.
[http://dx.doi.org/10.7150/thno.50905] [PMID: 33408785]
[20]
Zhao, M.; Liu, S.; Wang, C.; Wang, Y.; Wan, M.; Liu, F.; Gong, M.; Yuan, Y.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano, 2021, 15(1), 1519-1538.
[http://dx.doi.org/10.1021/acsnano.0c08947] [PMID: 33369392]
[21]
Campbell, C.T.; Kolesar, J.E.; Kaufman, B.A. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta. Gene Regul. Mech., 2012, 1819(9-10), 921-929.
[http://dx.doi.org/10.1016/j.bbagrm.2012.03.002] [PMID: 22465614]
[22]
Picca, A.; Lezza, A.M.S. Regulation of mitochondrial biogenesis through TFAM–mitochondrial DNA interactions. Mitochondrion, 2015, 25, 67-75.
[http://dx.doi.org/10.1016/j.mito.2015.10.001] [PMID: 26437364]
[23]
Rubio-Cosials, A.; Solà, M. U-turn DNA bending by human mitochondrial transcription factor A. Curr. Opin. Struct. Biol., 2013, 23(1), 116-124.
[http://dx.doi.org/10.1016/j.sbi.2012.12.004] [PMID: 23333034]
[24]
West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; Kaech, S.M.; Smiley, J.R.; Means, R.E.; Iwasaki, A.; Shadel, G.S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520(7548), 553-557.
[http://dx.doi.org/10.1038/nature14156] [PMID: 25642965]
[25]
Kang, I.; Chu, C.T.; Kaufman, B.A. The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms. FEBS Lett., 2018, 592(5), 793-811.
[http://dx.doi.org/10.1002/1873-3468.12989] [PMID: 29364506]
[26]
Song, L.; Shan, Y.; Lloyd, K.C.K.; Cortopassi, G.A. Mutant Twinkle increases dopaminergic neurodegeneration, mtDNA deletions and modulates Parkin expression. Hum. Mol. Genet., 2012, 21(23), 5147-5158.
[http://dx.doi.org/10.1093/hmg/dds365] [PMID: 22949510]
[27]
Hoff, K.E.; DeBalsi, K.L.; Sanchez-Quintero, M.J.; Longley, M.J.; Hirano, M.; Naini, A.B.; Copeland, W.C. Characterization of the human homozygous R182W POLG2 mutation in mitochondrial DNA depletion syndrome. PLoS One, 2018, 13(8), e0203198.
[http://dx.doi.org/10.1371/journal.pone.0203198] [PMID: 30157269]
[28]
Del Dotto, V.; Fogazza, M.; Lenaers, G.; Rugolo, M.; Carelli, V.; Zanna, C. OPA1: How much do we know to approach therapy? Pharmacol. Res., 2018, 131, 199-210.
[http://dx.doi.org/10.1016/j.phrs.2018.02.018] [PMID: 29454676]
[29]
Kukat, C.; Davies, K.M.; Wurm, C.A.; Spåhr, H.; Bonekamp, N.A.; Kühl, I.; Joos, F.; Polosa, P.L.; Park, C.B.; Posse, V.; Falkenberg, M.; Jakobs, S.; Kühlbrandt, W.; Larsson, N.G. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl. Acad. Sci. USA, 2015, 112(36), 11288-11293.
[http://dx.doi.org/10.1073/pnas.1512131112] [PMID: 26305956]
[30]
Elachouri, G.; Vidoni, S.; Zanna, C.; Pattyn, A.; Boukhaddaoui, H.; Gaget, K.; Yu-Wai-Man, P.; Gasparre, G.; Sarzi, E.; Delettre, C.; Olichon, A.; Loiseau, D.; Reynier, P.; Chinnery, P.F.; Rotig, A.; Carelli, V.; Hamel, C.P.; Rugolo, M.; Lenaers, G. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res., 2011, 21(1), 12-20.
[http://dx.doi.org/10.1101/gr.108696.110] [PMID: 20974897]
[31]
Hudson, G.; Amati-Bonneau, P.; Blakely, E.L.; Stewart, J.D.; He, L.; Schaefer, A.M.; Griffiths, P.G.; Ahlqvist, K.; Suomalainen, A.; Reynier, P.; McFarland, R.; Turnbull, D.M.; Chinnery, P.F.; Taylor, R.W. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: A novel disorder of mtDNA maintenance. Brain, 2008, 131(2), 329-337.
[http://dx.doi.org/10.1093/brain/awm272] [PMID: 18065439]
[32]
Peter, B.; Falkenberg, M. TWINKLE and other human mitochondrial DNA helicases: Structure, function and disease. Genes (Basel), 2020, 11(4), 408.
[http://dx.doi.org/10.3390/genes11040408] [PMID: 32283748]
[33]
He, J.; Cooper, H.M.; Reyes, A.; Di Re, M.; Sembongi, H.; Litwin, T.R.; Gao, J.; Neuman, K.C.; Fearnley, I.M.; Spinazzola, A.; Walker, J.E.; Holt, I.J. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res., 2012, 40(13), 6109-6121.
[http://dx.doi.org/10.1093/nar/gks266] [PMID: 22453275]
[34]
Baudier, J. ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in mammalian cells. Biol. Rev. Camb. Philos. Soc., 2018, 93(2), 827-844.
[http://dx.doi.org/10.1111/brv.12373] [PMID: 28941010]
[35]
Harel, T.; Yoon, W.H.; Garone, C.; Gu, S.; Coban-Akdemir, Z.; Eldomery, M.K.; Posey, J.E.; Jhangiani, S.N.; Rosenfeld, J.A.; Cho, M.T.; Fox, S.; Withers, M.; Brooks, S.M.; Chiang, T.; Duraine, L.; Erdin, S.; Yuan, B.; Shao, Y.; Moussallem, E.; Lamperti, C.; Donati, M.A.; Smith, J.D.; McLaughlin, H.M.; Eng, C.M.; Walkiewicz, M.; Xia, F.; Pippucci, T.; Magini, P.; Seri, M.; Zeviani, M.; Hirano, M.; Hunter, J.V.; Srour, M.; Zanigni, S.; Lewis, R.A.; Muzny, D.M.; Lotze, T.E.; Boerwinkle, E.; Gibbs, R.A.; Hickey, S.E.; Graham, B.H.; Yang, Y.; Buhas, D.; Martin, D.M.; Potocki, L.; Graziano, C.; Bellen, H.J.; Lupski, J.R. Recurrent de novo and biallelic variation of ATAD3A, encoding a mitochondrial membrane protein, results in distinct neurological syndromes. Am. J. Hum. Genet., 2016, 99(4), 831-845.
[http://dx.doi.org/10.1016/j.ajhg.2016.08.007] [PMID: 27640307]
[36]
Peres de Oliveira, A.; Basei, F.L.; Slepicka, P.F.; de Castro Ferezin, C.; Melo-Hanchuk, T.D.; de Souza, E.E.; Lima, T.I.; dos Santos, V.T.; Mendes, D.; Silveira, L.R.; Menck, C.F.M.; Kobarg, J. NEK10 interactome and depletion reveal new roles in mitochondria. Proteome Sci., 2020, 18(1), 4.
[http://dx.doi.org/10.1186/s12953-020-00160-w] [PMID: 32368190]
[37]
Reynolds, J.C.; Bwiza, C.P.; Lee, C. Mitonuclear genomics and aging. Hum. Genet., 2020, 139(3), 381-399.
[http://dx.doi.org/10.1007/s00439-020-02119-5] [PMID: 31997134]
[38]
DeBalsi, K.L.; Hoff, K.E.; Copeland, W.C. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res. Rev., 2017, 33, 89-104.
[http://dx.doi.org/10.1016/j.arr.2016.04.006] [PMID: 27143693]
[39]
Zekonyte, U.; Bacman, S.R.; Moraes, C.T. DNA‐editing enzymes as potential treatments for heteroplasmic mtDNA diseases. J. Intern. Med., 2020, 287(6), 685-697.
[http://dx.doi.org/10.1111/joim.13055] [PMID: 32176378]
[40]
Thompson, L.V. Oxidative stress, mitochondria and mtDNA-mutator mice. Exp. Gerontol., 2006, 41(12), 1220-1222.
[http://dx.doi.org/10.1016/j.exger.2006.10.018] [PMID: 17126516]
[41]
Su, B.C.; Pan, C.Y.; Chen, J.Y. Antimicrobial peptide TP4 induces ROS-mediated necrosis by triggering mitochondrial dysfunction in wild-type and mutant p53 glioblastoma cells. Cancers (Basel), 2019, 11(2), 171.
[http://dx.doi.org/10.3390/cancers11020171] [PMID: 30717309]
[42]
Hu, M.; Bogoyevitch, M.A.; Jans, D.A. Subversion of host cell mitochondria by RSV to favor virus production is dependent on inhibition of mitochondrial complex I and ROS generation. Cells, 2019, 8(11), 1417.
[http://dx.doi.org/10.3390/cells8111417] [PMID: 31717900]
[43]
Guliaeva, N.A.; Kuznetsova, E.A.; Gaziev, A.I. Proteins associated with mitochondrial DNA protect it against the action of X-rays and hydrogen peroxide. Biofizika, 2006, 51(4), 692-697.
[PMID: 16909848]
[44]
Napolitano, G.; Fasciolo, G.; Venditti, P. Mitochondrial management of reactive oxygen species. Antioxidants (Basel), 2021, 10(11), 1824.
[http://dx.doi.org/10.3390/antiox10111824] [PMID: 34829696]
[45]
Yasui, M.; Kanemaru, Y.; Kamoshita, N.; Suzuki, T.; Arakawa, T.; Honma, M. Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair (Amst.), 2014, 15, 11-20.
[http://dx.doi.org/10.1016/j.dnarep.2014.01.003] [PMID: 24559511]
[46]
Sanyal, T.; Bhattacharjee, P.; Bhattacharjee, S.; Bhattacharjee, P. Hypomethylation of mitochondrial D-loop and ND6 with increased mitochondrial DNA copy number in the arsenic-exposed population. Toxicology, 2018, 408, 54-61.
[http://dx.doi.org/10.1016/j.tox.2018.06.012] [PMID: 29940200]
[47]
Yu, D.; Du, Z.; Pian, L.; Li, T.; Wen, X.; Li, W.; Kim, S.J.; Xiao, J.; Cohen, P.; Cui, J.; Hoffman, A.R.; Hu, J.F. Mitochondrial DNA hypomethylation is a biomarker associated with induced senescence in human fetal heart mesenchymal stem cells. Stem Cells Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/1764549] [PMID: 28484495]
[48]
Szczepanowska, K.; Trifunovic, A. Origins of mtDNA mutations in ageing. Essays Biochem., 2017, 61(3), 325-337.
[http://dx.doi.org/10.1042/EBC20160090] [PMID: 28698307]
[49]
Qian, Y.; Kachroo, A.H.; Yellman, C.M.; Marcotte, E.M.; Johnson, K.A. Yeast cells expressing the human mitochondrial DNA polymerase reveal correlations between polymerase fidelity and human disease progression. J. Biol. Chem., 2014, 289(9), 5970-5985.
[http://dx.doi.org/10.1074/jbc.M113.526418] [PMID: 24398692]
[50]
Kauppila, J.H.K.; Stewart, J.B. Mitochondrial DNA: Radically free of free-radical driven mutations. Biochim. Biophys. Acta Bioenerg., 2015, 1847(11), 1354-1361.
[http://dx.doi.org/10.1016/j.bbabio.2015.06.001] [PMID: 26050972]
[51]
Trifunovic, A.; Wredenberg, A.; Falkenberg, M.; Spelbrink, J.N.; Rovio, A.T.; Bruder, C.E.; Bohlooly-Y, M.; Gidlöf, S.; Oldfors, A.; Wibom, R.; Törnell, J.; Jacobs, H.T.; Larsson, N.G. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 2004, 429(6990), 417-423.
[http://dx.doi.org/10.1038/nature02517] [PMID: 15164064]
[52]
Anderson, A.P.; Luo, X.; Russell, W.; Yin, Y.W. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res., 2020, 48(2), 817-829.
[http://dx.doi.org/10.1093/nar/gkz1018] [PMID: 31799610]
[53]
Chan, D.C. Mitochondrial Dynamics and Its Involvement in Disease. Annu. Rev. Pathol., 2020, 15(1), 235-259.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[54]
Carelli, V.; Maresca, A.; Caporali, L.; Trifunov, S.; Zanna, C.; Rugolo, M. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int. J. Biochem. Cell Biol., 2015, 63, 21-24.
[http://dx.doi.org/10.1016/j.biocel.2015.01.023] [PMID: 25666555]
[55]
Aryaman, J.; Bowles, C.; Jones, N.S.; Johnston, I.G. Mitochondrial network state scales mtDNA genetic dynamics. Genetics, 2019, 212(4), 1429-1443.
[http://dx.doi.org/10.1534/genetics.119.302423] [PMID: 31253641]
[56]
Lee, J.E.; Westrate, L.M.; Wu, H.; Page, C.; Voeltz, G.K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature, 2016, 540(7631), 139-143.
[http://dx.doi.org/10.1038/nature20555] [PMID: 27798601]
[57]
Olichon, A.; Baricault, L.; Gas, N.; Guillou, E.; Valette, A.; Belenguer, P.; Lenaers, G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem., 2003, 278(10), 7743-7746.
[http://dx.doi.org/10.1074/jbc.C200677200] [PMID: 12509422]
[58]
Pellino, G.; Faggioli, R.; Galuppi, A.; Leon, A.; Fusco, C.; Tugnoli, V.; Suppiej, A. Mitofusin 2: The missing link between mtDNA maintenance defects and neurotransmitter disorders. Mitochondrion, 2021, 61, 159-164.
[http://dx.doi.org/10.1016/j.mito.2021.09.011] [PMID: 34600155]
[59]
Twig, G.; Elorza, A.; Molina, A.J.A.; Mohamed, H.; Wikstrom, J.D.; Walzer, G.; Stiles, L.; Haigh, S.E.; Katz, S.; Las, G.; Alroy, J.; Wu, M.; Py, B.F.; Yuan, J.; Deeney, J.T.; Corkey, B.E.; Shirihai, O.S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J., 2008, 27(2), 433-446.
[http://dx.doi.org/10.1038/sj.emboj.7601963] [PMID: 18200046]
[60]
Gomes, L.C.; Benedetto, G.D.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol., 2011, 13(5), 589-598.
[http://dx.doi.org/10.1038/ncb2220] [PMID: 21478857]
[61]
Suen, D.F.; Narendra, D.P.; Tanaka, A.; Manfredi, G.; Youle, R.J. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc. Natl. Acad. Sci. USA, 2010, 107(26), 11835-11840.
[http://dx.doi.org/10.1073/pnas.0914569107] [PMID: 20547844]
[62]
Hashimoto, M.; Bacman, S.R.; Peralta, S.; Falk, M.J.; Chomyn, A.; Chan, D.C.; Williams, S.L.; Moraes, C.T. MitoTALEN: A general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Ther., 2015, 23(10), 1592-1599.
[http://dx.doi.org/10.1038/mt.2015.126] [PMID: 26159306]
[63]
Ghosh, A.; Bhattacharjee, S.; Chowdhuri, S.P.; Mallick, A.; Rehman, I.; Basu, S.; Das, B.B. SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy. Sci. Adv., 2019, 5(11), eaax9778.
[http://dx.doi.org/10.1126/sciadv.aax9778] [PMID: 31723605]
[64]
Gao, A.; Jiang, J.; Xie, F.; Chen, L. Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin. Chim. Acta, 2020, 506, 72-83.
[http://dx.doi.org/10.1016/j.cca.2020.02.024] [PMID: 32092316]
[65]
Dombi, E.; Mortiboys, H.; Poulton, J. Modulating mitophagy in mitochondrial disease. Curr. Med. Chem., 2019, 25(40), 5597-5612.
[http://dx.doi.org/10.2174/0929867324666170616101741] [PMID: 28618992]
[66]
Twig, G.; Shirihai, O.S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal., 2011, 14(10), 1939-1951.
[http://dx.doi.org/10.1089/ars.2010.3779] [PMID: 21128700]
[67]
Herst, P.M.; Rowe, M.R.; Carson, G.M.; Berridge, M.V. Functional mitochondria in health and disease. Front. Endocrinol. (Lausanne), 2017, 8, 296.
[http://dx.doi.org/10.3389/fendo.2017.00296] [PMID: 29163365]
[68]
Corti, O.; Blomgren, K.; Poletti, A.; Beart, P.M. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J. Neurochem., 2020, 154(4), 354-371.
[http://dx.doi.org/10.1111/jnc.15002] [PMID: 32149395]
[69]
Sliter, D.A.; Martinez, J.; Hao, L.; Chen, X.; Sun, N.; Fischer, T.D.; Burman, J.L.; Li, Y.; Zhang, Z.; Narendra, D.P.; Cai, H.; Borsche, M.; Klein, C.; Youle, R.J. Parkin and PINK1 mitigate STING-induced inflammation. Nature, 2018, 561(7722), 258-262.
[http://dx.doi.org/10.1038/s41586-018-0448-9] [PMID: 30135585]
[70]
Matheoud, D.; Cannon, T.; Voisin, A.; Penttinen, A.M.; Ramet, L.; Fahmy, A.M.; Ducrot, C.; Laplante, A.; Bourque, M.J.; Zhu, L.; Cayrol, R.; Le Campion, A.; McBride, H.M.; Gruenheid, S.; Trudeau, L.E.; Desjardins, M. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1 −/− mice. Nature, 2019, 571(7766), 565-569.
[http://dx.doi.org/10.1038/s41586-019-1405-y] [PMID: 31316206]
[71]
Malena, A.; Pantic, B.; Borgia, D.; Sgarbi, G.; Solaini, G.; Holt, I.J.; Spinazzola, A.; Perissinotto, E.; Sandri, M.; Baracca, A.; Vergani, L. Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA. Autophagy, 2016, 12(11), 2098-2112.
[http://dx.doi.org/10.1080/15548627.2016.1226734] [PMID: 27627835]
[72]
Kandul, N.P.; Zhang, T.; Hay, B.A.; Guo, M. Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nat. Commun., 2016, 7(1), 13100.
[http://dx.doi.org/10.1038/ncomms13100] [PMID: 27841259]
[73]
Ma, H.; Xu, H.; O’Farrell, P.H. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat. Genet., 2014, 46(4), 393-397.
[http://dx.doi.org/10.1038/ng.2919] [PMID: 24614071]
[74]
Pickrell, A.M.; Huang, C.H.; Kennedy, S.R.; Ordureau, A.; Sideris, D.P.; Hoekstra, J.G.; Harper, J.W.; Youle, R.J. Endogenous parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron, 2015, 87(2), 371-381.
[http://dx.doi.org/10.1016/j.neuron.2015.06.034] [PMID: 26182419]
[75]
Moretton, A.; Morel, F.; Macao, B.; Lachaume, P.; Ishak, L.; Lefebvre, M.; Garreau-Balandier, I.; Vernet, P.; Falkenberg, M.; Farge, G. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One, 2017, 12(4), e0176795.
[http://dx.doi.org/10.1371/journal.pone.0176795] [PMID: 28453550]
[76]
Sun, N.; Yun, J.; Liu, J.; Malide, D.; Liu, C.; Rovira, I.I.; Holmström, K.M.; Fergusson, M.M.; Yoo, Y.H.; Combs, C.A.; Finkel, T. Measuring in vivo mitophagy. Mol. Cell, 2015, 60(4), 685-696.
[http://dx.doi.org/10.1016/j.molcel.2015.10.009] [PMID: 26549682]
[77]
Marin, J.J.G.; Hernandez, A.; Revuelta, I.E.; Gonzalez-Sanchez, E.; Gonzalez-Buitrago, J.M.; Perez, M.J. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: Role of the Akt/mTOR survival pathway and Bcl-2 family proteins. Free Radic. Biol. Med., 2013, 61, 218-228.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.002] [PMID: 23597504]
[78]
Yang, X.; Zhang, R.; Nakahira, K.; Gu, Z. Mitochondrial DNA mutation, diseases, and nutrient-regulated mitophagy. Annu. Rev. Nutr., 2019, 39(1), 201-226.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124643] [PMID: 31433742]
[79]
Knorre, D.A. Intracellular quality control of mitochondrial DNA: evidence and limitations. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2020, 375(1790), 20190176.
[http://dx.doi.org/10.1098/rstb.2019.0176] [PMID: 31787047]
[80]
Dickson-Murray, E.; Nedara, K.; Modjtahedi, N.; Tokatlidis, K. The Mia40/CHCHD4 oxidative folding system: Redox regulation and signaling in the mitochondrial intermembrane space. Antioxidants (Basel), 2021, 10(4), 592.
[http://dx.doi.org/10.3390/antiox10040592] [PMID: 33921425]
[81]
Al Amir Dache, Z.; Otandault, A.; Tanos, R.; Pastor, B.; Meddeb, R.; Sanchez, C.; Arena, G.; Lasorsa, L.; Bennett, A.; Grange, T.; El Messaoudi, S.; Mazard, T.; Prevostel, C.; Thierry, A.R. Blood contains circulating cell‐free respiratory competent mitochondria. FASEB J., 2020, 34(3), 3616-3630.
[http://dx.doi.org/10.1096/fj.201901917RR] [PMID: 31957088]
[82]
Pérez-Treviño, P.; Velásquez, M.; García, N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(6), 165761.
[http://dx.doi.org/10.1016/j.bbadis.2020.165761] [PMID: 32169503]
[83]
Picca, A.; Calvani, R.; Coelho-Junior, H.J.; Marzetti, E. Cell death and inflammation: the role of mitochondria in health and disease. Cells, 2021, 10(3), 537.
[http://dx.doi.org/10.3390/cells10030537] [PMID: 33802550]
[84]
Zhao, Y.; Liu, B.; Xu, L.; Yu, S.; Fu, J.; Wang, J.; Yan, X.; Su, J. ROS-induced mtDNA release: The emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression. Antioxidants, 2021, 10(12), 1917.
[http://dx.doi.org/10.3390/antiox10121917] [PMID: 34943020]
[85]
Bernardi, P. Why F-ATP Synthase remains a strong candidate as the mitochondrial permeability transition pore. Front. Physiol., 2018, 9, 1543.
[http://dx.doi.org/10.3389/fphys.2018.01543] [PMID: 30443222]
[86]
Urbani, A.; Giorgio, V.; Carrer, A.; Franchin, C.; Arrigoni, G.; Jiko, C.; Abe, K.; Maeda, S.; Shinzawa-Itoh, K.; Bogers, J.F.M.; McMillan, D.G.G.; Gerle, C.; Szabò, I.; Bernardi, P. Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat. Commun., 2019, 10(1), 4341.
[http://dx.doi.org/10.1038/s41467-019-12331-1] [PMID: 31554800]
[87]
Riley, J.S.; Quarato, G.; Cloix, C.; Lopez, J.; O’Prey, J.; Pearson, M.; Chapman, J.; Sesaki, H.; Carlin, L.M.; Passos, J.F.; Wheeler, A.P.; Oberst, A.; Ryan, K.M.; Tait, S.W.G. Mitochondrial inner membrane permeabilisation enables mt DNA release during apoptosis. EMBO J., 2018, 37(17), e99238.
[http://dx.doi.org/10.15252/embj.201899238] [PMID: 30049712]
[88]
Sugiura, A.; McLelland, G.L.; Fon, E.A.; McBride, H.M. A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles. EMBO J., 2014, 33(19), 2142-2156.
[http://dx.doi.org/10.15252/embj.201488104] [PMID: 25107473]
[89]
Li, W.; Li, Y.; Siraj, S.; Jin, H.; Fan, Y.; Yang, X.; Huang, X.; Wang, X.; Wang, J.; Liu, L.; Du, L.; Chen, Q. FUN14 Domain‐containing 1–mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology, 2019, 69(2), 604-621.
[http://dx.doi.org/10.1002/hep.30191] [PMID: 30053328]
[90]
Contis, A.; Mitrovic, S.; Lavie, J.; Douchet, I.; Lazaro, E.; Truchetet, M.E.; Goizet, C.; Contin-Bordes, C.; Schaeverbeke, T.; Blanco, P.; Rossignol, R.; Faustin, B.; Richez, C.; Duffau, P. Neutrophil-derived mitochondrial DNA promotes receptor activator of nuclear factor κB and its ligand signalling in rheumatoid arthritis. Rheumatology (Oxford), 2017, 56(7), 1200-1205.
[http://dx.doi.org/10.1093/rheumatology/kex041] [PMID: 28340056]
[91]
Yoo, S.M.; Park, J.; Kim, S.H.; Jung, Y.K. Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer’s disease. BMB Rep., 2020, 53(1), 35-46.
[http://dx.doi.org/10.5483/BMBRep.2020.53.1.274] [PMID: 31818363]
[92]
Zhang, X.; Wang, R.; Hu, D.; Sun, X.; Fujioka, H.; Lundberg, K.; Chan, E.R.; Wang, Q.; Xu, R.; Flanagan, M.E.; Pieper, A.A.; Qi, X. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci. Adv., 2020, 6(49), eabb8680.
[http://dx.doi.org/10.1126/sciadv.abb8680] [PMID: 33277246]
[93]
Mottis, A.; Herzig, S.; Auwerx, J. Mitocellular communication: Shaping health and disease. Science, 2019, 366(6467), 827-832.
[http://dx.doi.org/10.1126/science.aax3768] [PMID: 31727828]
[94]
Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; Hevener, A.L.; Greenberg, H.B.; Kisseleva, T.; Karin, M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560(7717), 198-203.
[http://dx.doi.org/10.1038/s41586-018-0372-z] [PMID: 30046112]
[95]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[96]
Vince, J.E.; De Nardo, D.; Gao, W.; Vince, A.J.; Hall, C.; McArthur, K.; Simpson, D.; Vijayaraj, S.; Lindqvist, L.M.; Bouillet, P.; Rizzacasa, M.A.; Man, S.M.; Silke, J.; Masters, S.L.; Lessene, G.; Huang, D.C.S.; Gray, D.H.D.; Kile, B.T.; Shao, F.; Lawlor, K.E. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep., 2018, 25(9), 2339-2353.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.10.103] [PMID: 30485804]
[97]
White, M.J.; McArthur, K.; Metcalf, D.; Lane, R.M.; Cambier, J.C.; Herold, M.J.; van Delft, M.F.; Bedoui, S.; Lessene, G.; Ritchie, M.E.; Huang, D.C.S.; Kile, B.T. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell, 2014, 159(7), 1549-1562.
[http://dx.doi.org/10.1016/j.cell.2014.11.036] [PMID: 25525874]
[98]
Sun, J.; Zhou, Y.; Xu, B.; Li, J.; Zhang, L.; Li, D.; Zhang, S.; Wu, J.; Gao, S.; Ye, D.; Mei, W. STING/NF-κB/IL-6-mediated inflammation in microglia contributes to spared nerve injury (SNI)-induced pain initiation. J. Neuroimmune Pharmacol., 2022, 3-4, 453-469.
[http://dx.doi.org/10.1007/s11481-021-10031-6] [PMID: 34727296]
[99]
Li, S.; Li, H.; Zhang, Y.L.; Xin, Q.L.; Guan, Z.Q.; Chen, X.; Zhang, X.A.; Li, X.K.; Xiao, G.F.; Lozach, P.Y.; Cui, J.; Liu, W.; Zhang, L.K.; Peng, K. SFTSV infection induces BAK/BAX-dependent mitochondrial dna release to trigger NLRP3 inflammasome activation. Cell Rep., 2020, 30(13), 4370-4385.e7.
[http://dx.doi.org/10.1016/j.celrep.2020.02.105] [PMID: 32234474]
[100]
Rodríguez-Nuevo, A.; Díaz-Ramos, A.; Noguera, E.; Díaz-Sáez, F.; Duran, X.; Muñoz, J.P.; Romero, M.; Plana, N.; Sebastián, D.; Tezze, C.; Romanello, V.; Ribas, F.; Seco, J.; Planet, E.; Doctrow, S.R.; González, J.; Borràs, M.; Liesa, M.; Palacín, M.; Vendrell, J.; Villarroya, F.; Sandri, M.; Shirihai, O.; Zorzano, A. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J., 2018, 37(10), e96553.
[http://dx.doi.org/10.15252/embj.201796553] [PMID: 29632021]
[101]
Bajwa, E.; Pointer, C.B.; Klegeris, A. The role of mitochondrial damage-associated molecular patterns in chronic neuroinflammation. Mediators Inflamm., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/4050796] [PMID: 31065234]
[102]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[103]
Lashley, T.; Schott, J.M.; Weston, P.; Murray, C.E.; Wellington, H.; Keshavan, A.; Foti, S.C.; Foiani, M.; Toombs, J.; Rohrer, J.D.; Heslegrave, A.; Zetterberg, H. Molecular biomarkers of Alzheimer’s disease: progress and prospects. Dis. Model. Mech., 2018, 11(5), dmm031781.
[http://dx.doi.org/10.1242/dmm.031781] [PMID: 29739861]
[104]
Sheng, B.; Wang, X.; Su, B.; Lee, H.; Casadesus, G.; Perry, G.; Zhu, X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J. Neurochem., 2012, 120(3), 419-429.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07581.x] [PMID: 22077634]
[105]
Wei, W.; Keogh, M.J.; Wilson, I.; Coxhead, J.; Ryan, S.; Rollinson, S.; Griffin, H.; Kurzawa-Akanbi, M.; Santibanez-Koref, M.; Talbot, K.; Turner, M.R.; McKenzie, C.A.; Troakes, C.; Attems, J.; Smith, C.; Al Sarraj, S.; Morris, C.M.; Ansorge, O.; Pickering-Brown, S.; Ironside, J.W.; Chinnery, P.F. Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol. Commun., 2017, 5(1), 13.
[http://dx.doi.org/10.1186/s40478-016-0404-6] [PMID: 28153046]
[106]
Chagnon, P.; Gee, M.; Filion, M.; Robitaille, Y.; Belouchi, M.; Gauvreau, D. Phylogenetic analysis of the mitochondrial genome indicates significant differences between patients with Alzheimer disease and controls in a French-Canadian founder population. Am. J. Med. Genet., 1999, 85(1), 20-30.
[http://dx.doi.org/10.1002/(SICI)1096-8628(19990702)85:1<20:AID-AJMG6>3.0.CO;2-K] [PMID: 10377009]
[107]
Corral-Debrinski, M.; Horton, T.; Lott, M.T.; Shoffner, J.M.; McKee, A.C.; Beal, M.F.; Graham, B.H.; Wallace, D.C. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics, 1994, 23(2), 471-476.
[http://dx.doi.org/10.1006/geno.1994.1525] [PMID: 7835898]
[108]
Xu, Y.; Xu, L.; Han, M.; Liu, X.; Li, F.; Zhou, X.; Wang, Y.; Bi, J. Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease. Biochem. Biophys. Res. Commun., 2019, 520(1), 41-46.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.094] [PMID: 31564416]
[109]
Antonyová, V.; Kejík, Z.; Brogyányi, T.; Kaplánek, R.; Pajková, M.; Talianová, V.; Hromádka, R.; Masařík, M.; Sýkora, D.; Mikšátková, L.; Martásek, P.; Jakubek, M. Role of mtDNA disturbances in the pathogenesis of Alzheimer’s and Parkinson’s disease. DNA Repair (Amst.), 2020, 91-92, 102871.
[http://dx.doi.org/10.1016/j.dnarep.2020.102871] [PMID: 32502755]
[110]
Lezza, A.M.S.; Mecocci, P.; Cormio, A.; Real, M.F.; Cherubini, A.; Cantatore, P.; Senin, U.; Gadaleta, M.N. Mitochondrial DNA 4977 bp deletion and OH 8 dG levels correlate in the brain of aged subjects but not Alzheimer’s disease patients. FASEB J., 1999, 13(9), 1083-1088.
[http://dx.doi.org/10.1096/fasebj.13.9.1083] [PMID: 10336891]
[111]
Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2001, 60(8), 759-767.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[112]
Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci., 2006, 26(35), 9057-9068.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006] [PMID: 16943564]
[113]
Reddy, P.H.; Yin, X.; Manczak, M.; Kumar, S.; Pradeepkiran, J.A.; Vijayan, M.; Reddy, A.P. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum. Mol. Genet., 2018, 27(14), 2502-2516.
[http://dx.doi.org/10.1093/hmg/ddy154] [PMID: 29701781]
[114]
Reddy, P.H.; McWeeney, S.; Park, B.S.; Manczak, M.; Gutala, R.V.; Partovi, D.; Jung, Y.; Yau, V.; Searles, R.; Mori, M.; Quinn, J. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum. Mol. Genet., 2004, 13(12), 1225-1240.
[http://dx.doi.org/10.1093/hmg/ddh140] [PMID: 15115763]
[115]
Wang, J.; Xiong, S.; Xie, C.; Markesbery, W.R.; Lovell, M.A. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J. Neurochem., 2005, 93(4), 953-962.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03053.x] [PMID: 15857398]
[116]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[117]
Hoekstra, J.G.; Hipp, M.J.; Montine, T.J.; Kennedy, S.R. Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann. Neurol., 2016, 80(2), 301-306.
[http://dx.doi.org/10.1002/ana.24709] [PMID: 27315116]
[118]
Soltys, D.T.; Pereira, C.P.M.; Rowies, F.T.; Farfel, J.M.; Grinberg, L.T.; Suemoto, C.K.; Leite, R.E.P.; Rodriguez, R.D.; Ericson, N.G.; Bielas, J.H.; Souza-Pinto, N.C. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol. Aging, 2019, 73, 161-170.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.09.015] [PMID: 30359878]
[119]
Wang, Z.T.; Lu, M.H.; Zhang, Y.; Ji, W.L.; Lei, L.; Wang, W.; Fang, L.P.; Wang, L.W.; Yu, F.; Wang, J.; Li, Z.Y.; Wang, J.R.; Wang, T.H.; Dou, F.; Wang, Q.W.; Wang, X.L.; Li, S.; Ma, Q.H.; Xu, R.X. Disrupted-in-schizophrenia-1 protects synaptic plasticity in a transgenic mouse model of Alzheimer’s disease as a mitophagy receptor. Aging Cell, 2019, 18(1), e12860.
[http://dx.doi.org/10.1111/acel.12860] [PMID: 30488644]
[120]
Reddy, P.H.; Oliver, D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells, 2019, 8(5), 488.
[http://dx.doi.org/10.3390/cells8050488] [PMID: 31121890]
[121]
Morton, H.; Kshirsagar, S.; Orlov, E.; Bunquin, L.E.; Sawant, N.; Boleng, L.; George, M.; Basu, T.; Ramasubramanian, B.; Pradeepkiran, J.A.; Kumar, S.; Vijayan, M.; Reddy, A.P.; Reddy, P.H. Defective mitophagy and synaptic degeneration in Alzheimer’s disease: Focus on aging, mitochondria and synapse. Free Radic. Biol. Med., 2021, 172, 652-667.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.07.013] [PMID: 34246776]
[122]
Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci., 2019, 22(3), 401-412.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[123]
Reeve, A.K.; Ludtmann, M.H.; Angelova, P.R.; Simcox, E.M.; Horrocks, M.H.; Klenerman, D.; Gandhi, S.; Turnbull, D.M.; Abramov, A.Y. Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis., 2015, 6(7), e1820.
[http://dx.doi.org/10.1038/cddis.2015.166] [PMID: 26181201]
[124]
Dodson, M.W.; Guo, M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr. Opin. Neurobiol., 2007, 17(3), 331-337.
[http://dx.doi.org/10.1016/j.conb.2007.04.010] [PMID: 17499497]
[125]
Tzoulis, C.; Schwarzlmüller, T.; Biermann, M.; Haugarvoll, K.; Bindoff, L.A. Mitochondrial DNA homeostasis is essential for nigrostriatal integrity. Mitochondrion, 2016, 28, 33-37.
[http://dx.doi.org/10.1016/j.mito.2016.03.003] [PMID: 26979109]
[126]
Park, J.S.; Davis, R.L.; Sue, C.M. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep., 2018, 18(5), 21.
[http://dx.doi.org/10.1007/s11910-018-0829-3] [PMID: 29616350]
[127]
Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.A.; Robinson, J.P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 2003, 278(10), 8516-8525.
[http://dx.doi.org/10.1074/jbc.M210432200] [PMID: 12496265]
[128]
Ikebe, S.; Tanaka, M.; Ohno, K.; Sato, W.; Hattori, K.; Kondo, T.; Mizuno, Y.; Ozawa, T. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem. Biophys. Res. Commun., 1990, 170(3), 1044-1048.
[http://dx.doi.org/10.1016/0006-291X(90)90497-B] [PMID: 2390073]
[129]
Gezen-Ak, D.; Alaylıoğlu, M.; Genç, G.; Şengül, B.; Keskin, E.; Sordu, P.; Güleç, Z.E.K.; Apaydın, H.; Bayram-Gürel, Ç.; Ulutin, T.; Yılmazer, S.; Ertan, S.; Dursun, E. Altered transcriptional profile of mitochondrial DNA-encoded OXPHOS subunits, mitochondria quality control genes, and intracellular ATP levels in blood samples of patients with Parkinson’s disease. J. Alzheimers Dis., 2020, 74(1), 287-307.
[http://dx.doi.org/10.3233/JAD-191164] [PMID: 32007957]
[130]
Wei Soong, N.; Hinton, D.R.; Cortopassi, G.; Arnheim, N. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet., 1992, 2(4), 318-323.
[http://dx.doi.org/10.1038/ng1292-318] [PMID: 1303287]
[131]
Kraytsberg, Y.; Kudryavtseva, E.; McKee, A.C.; Geula, C.; Kowall, N.W.; Khrapko, K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet., 2006, 38(5), 518-520.
[http://dx.doi.org/10.1038/ng1778] [PMID: 16604072]
[132]
Basu, S.; Xie, X.; Uhler, J.P.; Hedberg-Oldfors, C.; Milenkovic, D.; Baris, O.R.; Kimoloi, S.; Matic, S.; Stewart, J.B.; Larsson, N.G.; Wiesner, R.J.; Oldfors, A.; Gustafsson, C.M.; Falkenberg, M.; Larsson, E. Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. PLoS Genet., 2020, 16(12), e1009242.
[http://dx.doi.org/10.1371/journal.pgen.1009242] [PMID: 33315859]
[133]
Chen, S-H.; Kuo, C-W.; Lin, T-K.; Tsai, M-H.; Liou, C-W. Dopamine therapy and the regulation of oxidative stress and mitochondrial DNA copy number in patients with Parkinson’s disease. Antioxidants (Basel), 2020, 9(11), 1159.
[http://dx.doi.org/10.3390/antiox9111159] [PMID: 33233852]
[134]
Hsieh, P.C.; Wang, C.C.; Tsai, C.L.; Yeh, Y.M.; Lee, Y.S.; Wu, Y.R. POLG R964C and GBA L444P mutations in familial Parkinson’s disease: Case report and literature review. Brain Behav., 2019, 9(5), e01281.
[http://dx.doi.org/10.1002/brb3.1281] [PMID: 30941926]
[135]
Tzoulis, C.; Tran, G.T.; Schwarzlmüller, T.; Specht, K.; Haugarvoll, K.; Balafkan, N.; Lilleng, P.K.; Miletic, H.; Biermann, M.; Bindoff, L.A. Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations. Brain, 2013, 136(8), 2393-2404.
[http://dx.doi.org/10.1093/brain/awt103] [PMID: 23625061]
[136]
Kiferle, L.; Orsucci, D.; Mancuso, M.; Lo Gerfo, A.; Petrozzi, L.; Siciliano, G.; Ceravolo, R.; Bonuccelli, U. Twinkle mutation in an Italian family with external progressive ophthalmoplegia and parkinsonism: A case report and an update on the state of art. Neurosci. Lett., 2013, 556, 1-4.
[http://dx.doi.org/10.1016/j.neulet.2013.09.034] [PMID: 24076137]
[137]
Garone, C.; Rubio, J.C.; Calvo, S.E.; Naini, A.; Tanji, K.; DiMauro, S.; Mootha, V.K.; Hirano, M. MPV17 Mutations causing adult-onset multisystemic disorder with multiple mitochondrial DNA deletions. Arch. Neurol., 2012, 69(12), 1648-1651.
[http://dx.doi.org/10.1001/archneurol.2012.405] [PMID: 22964873]
[138]
Fonseca Cabral, G.; Schaan, A.P.; Cavalcante, G.C.; Sena-dos-Santos, C.; de Souza, T.P. Souza Port’s, N.M.; dos Santos Pinheiro, J.A.; Ribeiro-dos-Santos, Â.; Vidal, A.F. Nuclear and mitochondrial genome, epigenome and gut microbiome: Emerging molecular biomarkers for Parkinson’s disease. Int. J. Mol. Sci., 2021, 22(18), 9839.
[http://dx.doi.org/10.3390/ijms22189839] [PMID: 34576000]
[139]
Chen, C.; Vincent, A.E.; Blain, A.P.; Smith, A.L.; Turnbull, D.M.; Reeve, A.K. Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissues. Neurobiol. Dis., 2020, 134, 104631.
[http://dx.doi.org/10.1016/j.nbd.2019.104631] [PMID: 31689514]
[140]
Isobe, C.; Abe, T.; Terayama, Y. Levels of reduced and oxidized coenzymeQ-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci. Lett., 2010, 469(1), 159-163.
[http://dx.doi.org/10.1016/j.neulet.2009.11.065] [PMID: 19944739]
[141]
Lin, M.T.; Cantuti-Castelvetri, I.; Zheng, K.; Jackson, K.E.; Tan, Y.B.; Arzberger, T.; Lees, A.J.; Betensky, R.A.; Beal, M.F.; Simon, D.K. Somatic mitochondrial DNA mutations in early parkinson and incidental lewy body disease. Ann. Neurol., 2012, 71(6), 850-854.
[http://dx.doi.org/10.1002/ana.23568] [PMID: 22718549]
[142]
Simon, D.K.; Mayeux, R.; Marder, K.; Kowall, N.W.; Beal, M.F.; Johns, D.R. Mitochondrial DNA mutations in complex I and tRNA genes in Parkinson’s disease. Neurology, 2000, 54(3), 703-709.
[http://dx.doi.org/10.1212/WNL.54.3.703] [PMID: 10680807]
[143]
Giannoccaro, M.P.; La Morgia, C.; Rizzo, G.; Carelli, V. M itochondrial DNA and primary mitochondrial dysfunction in P arkinson’s disease. Mov. Disord., 2017, 32(3), 346-363.
[http://dx.doi.org/10.1002/mds.26966] [PMID: 28251677]
[144]
Sanders, L.H.; Laganière, J.; Cooper, O.; Mak, S.K.; Vu, B.J.; Huang, Y.A.; Paschon, D.E.; Vangipuram, M.; Sundararajan, R.; Urnov, F.D.; Langston, J.W.; Gregory, P.D.; Zhang, H.S.; Greenamyre, J.T.; Isacson, O.; Schüle, B. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: Reversal by gene correction. Neurobiol. Dis., 2014, 62, 381-386.
[http://dx.doi.org/10.1016/j.nbd.2013.10.013] [PMID: 24148854]
[145]
Liu, Z.; Ye, Q.; Wang, F.; Guo, Y.; Cui, R.; Wang, J.; Wang, D. Overexpression of thioredoxin reductase 1 can reduce DNA damage, mitochondrial autophagy and endoplasmic reticulum stress in Parkinson’s disease. Exp. Brain Res., 2021, 239(2), 475-490.
[http://dx.doi.org/10.1007/s00221-020-05979-5] [PMID: 33230666]
[146]
Gambardella, S.; Limanaqi, F.; Ferese, R.; Biagioni, F.; Campopiano, R.; Centonze, D.; Fornai, F. ccf-mtDNA as a potential link between the brain and immune system in neuro-immunological disorders. Front. Immunol., 2019, 10, 1064.
[http://dx.doi.org/10.3389/fimmu.2019.01064] [PMID: 31143191]
[147]
Pickrell, A.M.; Pinto, M.; Hida, A.; Moraes, C.T. Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson’s disease. J. Neurosci., 2011, 31(48), 17649-17658.
[http://dx.doi.org/10.1523/JNEUROSCI.4871-11.2011] [PMID: 22131425]
[148]
Cheng, A.N.; Cheng, L.C.; Kuo, C.L.; Lo, Y.K.; Chou, H.Y.; Chen, C.H.; Wang, Y.H.; Chuang, T.H.; Cheng, S.J.; Lee, A.Y.L. Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1–mediated immunoescape via STING-IFN signaling and extracellular vesicles. J. Immunother. Cancer, 2020, 8(2), e001372.
[http://dx.doi.org/10.1136/jitc-2020-001372] [PMID: 33268351]
[149]
Yang, Y.; Zhou, X.; Liu, X.; Song, R.; Gao, Y.; Wang, S. Implications of FBXW7 in neurodevelopment and neurodegeneration: molecular mechanisms and therapeutic potential. Front. Cell. Neurosci., 2021, 15, 736008.
[http://dx.doi.org/10.3389/fncel.2021.736008] [PMID: 34512273]
[150]
Picca, A.; Guerra, F.; Calvani, R.; Marini, F.; Biancolillo, A.; Landi, G.; Beli, R.; Landi, F.; Bernabei, R.; Bentivoglio, A.; Lo Monaco, M.; Bucci, C.; Marzetti, E. Mitochondrial signatures in circulating extracellular vesicles of older adults with Parkinson’s disease: results from the exosomes in Parkinson’s disease (EXPAND) study. J. Clin. Med., 2020, 9(2), 504.
[http://dx.doi.org/10.3390/jcm9020504] [PMID: 32059608]
[151]
Matheoud, D.; Sugiura, A.; Bellemare-Pelletier, A.; Laplante, A.; Rondeau, C.; Chemali, M.; Fazel, A.; Bergeron, J.J.; Trudeau, L.E.; Burelle, Y.; Gagnon, E.; McBride, H.M.; Desjardins, M. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell, 2016, 166(2), 314-327.
[http://dx.doi.org/10.1016/j.cell.2016.05.039] [PMID: 27345367]
[152]
Gusella, J.F.; Wexler, N.S.; Conneally, P.M.; Naylor, S.L.; Anderson, M.A.; Tanzi, R.E.; Watkins, P.C.; Ottina, K.; Wallace, M.R.; Sakaguchi, A.Y.; Young, A.B.; Shoulson, I.; Bonilla, E.; Martin, J.B. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature, 1983, 306(5940), 234-238.
[http://dx.doi.org/10.1038/306234a0] [PMID: 6316146]
[153]
Askeland, G.; Dosoudilova, Z.; Rodinova, M.; Klempir, J.; Liskova, I.; Kuśnierczyk, A.; Bjørås, M.; Nesse, G.; Klungland, A.; Hansikova, H.; Eide, L. Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington’s disease patients. Sci. Rep., 2018, 8(1), 9817.
[http://dx.doi.org/10.1038/s41598-018-27985-y] [PMID: 29959348]
[154]
Zhao, Y.; Sun, X.; Hu, D.; Prosdocimo, D.A.; Hoppel, C.; Jain, M.K.; Ramachandran, R.; Qi, X. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat. Commun., 2019, 10(1), 1371.
[http://dx.doi.org/10.1038/s41467-019-09291-x] [PMID: 30914652]
[155]
Hering, T.; Kojer, K.; Birth, N.; Hallitsch, J.; Taanman, J-W.; Orth, M. Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington’s disease R6/2 fragment model. Exp. Neurol., 2017, 288, 167-175.
[http://dx.doi.org/10.1016/j.expneurol.2016.10.017] [PMID: 27889468]
[156]
Wang, Y.; Guo, X.; Ye, K.; Orth, M.; Gu, Z. Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2021, 118(30), e2014610118.
[http://dx.doi.org/10.1073/pnas.2014610118] [PMID: 34301881]
[157]
Williams, S.L.; Mash, D.C.; Züchner, S.; Moraes, C.T. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet., 2013, 9(12), e1003990.
[http://dx.doi.org/10.1371/journal.pgen.1003990] [PMID: 24339796]
[158]
Disatnik, M.H.; Joshi, A.U.; Saw, N.L.; Shamloo, M.; Leavitt, B.R.; Qi, X.; Mochly-Rosen, D. Potential biomarkers to follow the progression and treatment response of Huntington’s disease. J. Exp. Med., 2016, 213(12), 2655-2669.
[http://dx.doi.org/10.1084/jem.20160776] [PMID: 27821553]
[159]
Siddiqui, A.; Rivera-Sánchez, S.; Castro, M.R.; Acevedo-Torres, K.; Rane, A.; Torres-Ramos, C.A.; Nicholls, D.G.; Andersen, J.K.; Ayala-Torres, S. Mitochondrial DNA damage Is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic. Biol. Med., 2012, 53(7), 1478-1488.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.008] [PMID: 22709585]
[160]
Jędrak, P.; Krygier, M.; Tońska, K.; Drozd, M.; Kaliszewska, M.; Bartnik, E.; Sołtan, W.; Sitek, E.J.; Stanisławska-Sachadyn, A.; Limon, J.; Sławek, J.; Węgrzyn, G.; Barańska, S. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metab. Brain Dis., 2017, 32(4), 1237-1247.
[http://dx.doi.org/10.1007/s11011-017-0026-0] [PMID: 28508341]
[161]
Petersen, M.H.; Budtz-Jørgensen, E.; Sørensen, S.A.; Nielsen, J.E.; Hjermind, L.E.; Vinther-Jensen, T.; Nielsen, S.M.B.; Nørremølle, A. Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington’s disease. Mitochondrion, 2014, 17, 14-21.
[http://dx.doi.org/10.1016/j.mito.2014.05.001] [PMID: 24836434]
[162]
Rasola, A.; Bernardi, P. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium, 2011, 50(3), 222-233.
[http://dx.doi.org/10.1016/j.ceca.2011.04.007] [PMID: 21601280]
[163]
Hering, T.; Birth, N.; Taanman, J.W.; Orth, M. Selective striatal mtDNA depletion in end-stage Huntington’s disease R6/2 mice. Exp. Neurol., 2015, 266, 22-29.
[http://dx.doi.org/10.1016/j.expneurol.2015.02.004] [PMID: 25682918]
[164]
Quintanilla, R.A.; Jin, Y.N.; von Bernhardi, R.; Johnson, G.V.W. Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol. Neurodegener., 2013, 8(1), 45.
[http://dx.doi.org/10.1186/1750-1326-8-45] [PMID: 24330821]
[165]
Shirendeb, U.P.; Calkins, M.J.; Manczak, M.; Anekonda, V.; Dufour, B.; McBride, J.L.; Mao, P.; Reddy, P.H. Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum. Mol. Genet., 2012, 21(2), 406-420.
[http://dx.doi.org/10.1093/hmg/ddr475] [PMID: 21997870]
[166]
Crotti, A.; Glass, C.K. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol., 2015, 36(6), 364-373.
[http://dx.doi.org/10.1016/j.it.2015.04.007] [PMID: 26001312]
[167]
Vicencio, E.; Beltrán, S.; Labrador, L.; Manque, P.; Nassif, M.; Woehlbier, U. Implications of selective autophagy dysfunction for ALS pathology. Cells, 2020, 9(2), 381.
[http://dx.doi.org/10.3390/cells9020381] [PMID: 32046060]
[168]
Ladd, A.C.; Brohawn, D.G.; Thomas, R.R.; Keeney, P.M.; Berr, S.S.; Khan, S.M.; Portell, F.R.; Shakenov, M.Z.; Antkowiak, P.F.; Kundu, B.; Tustison, N.; Bennett, J.P. RNA-seq analyses reveal that cervical spinal cords and anterior motor neurons from amyotrophic lateral sclerosis subjects show reduced expression of mitochondrial DNA-encoded respiratory genes, and rhTFAM may correct this respiratory deficiency. Brain Res., 2017, 1667, 74-83.
[http://dx.doi.org/10.1016/j.brainres.2017.05.010] [PMID: 28511992]
[169]
Lopez-Gonzalez, R.; Lu, Y.; Gendron, T.F.; Karydas, A.; Tran, H.; Yang, D.; Petrucelli, L.; Miller, B.L.; Almeida, S.; Gao, F.B. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron, 2016, 92(2), 383-391.
[http://dx.doi.org/10.1016/j.neuron.2016.09.015] [PMID: 27720481]
[170]
Barber, S.C.; Shaw, P.J. Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med., 2010, 48(5), 629-641.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.018] [PMID: 19969067]
[171]
Kok, J.R.; Palminha, N.M.; Dos Santos Souza, C.; El-Khamisy, S.F.; Ferraiuolo, L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell. Mol. Life Sci., 2021, 78(15), 5707-5729.
[http://dx.doi.org/10.1007/s00018-021-03872-0] [PMID: 34173837]
[172]
Stoccoro, A.; Smith, A.R.; Mosca, L.; Marocchi, A.; Gerardi, F.; Lunetta, C.; Cereda, C.; Gagliardi, S.; Lunnon, K.; Migliore, L.; Coppedè, F. Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis. Clin. Epigenetics, 2020, 12(1), 137.
[http://dx.doi.org/10.1186/s13148-020-00933-2] [PMID: 32917270]
[173]
Stoccoro, A.; Mosca, L.; Carnicelli, V.; Cavallari, U.; Lunetta, C.; Marocchi, A.; Migliore, L.; Coppedè, F. Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics, 2018, 10(11), 1431-1443.
[http://dx.doi.org/10.2217/epi-2018-0072] [PMID: 30088417]
[174]
Walker, C.; El-Khamisy, S.F. Perturbed autophagy and DNA repair converge to promote neurodegeneration in amyotrophic lateral sclerosis and dementia. Brain, 2018, 141(5), 1247-1262.
[http://dx.doi.org/10.1093/brain/awy076] [PMID: 29584802]
[175]
Huang, C.; Yan, S.; Zhang, Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl. Neurodegener., 2020, 9(1), 40.
[http://dx.doi.org/10.1186/s40035-020-00219-w] [PMID: 33126923]
[176]
Davis, S.A.; Itaman, S.; Khalid-Janney, C.M.; Sherard, J.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci. Lett., 2018, 678, 8-15.
[http://dx.doi.org/10.1016/j.neulet.2018.04.053] [PMID: 29715546]
[177]
Ichimura, Y.; Kominami, E.; Tanaka, K.; Komatsu, M. Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy, 2008, 4(8), 1063-1066.
[http://dx.doi.org/10.4161/auto.6826] [PMID: 18776737]
[178]
Johnson, J.O.; Glynn, S.M.; Gibbs, J.R.; Nalls, M.A.; Sabatelli, M.; Restagno, G.; Drory, V.E.; Chiò, A.; Rogaeva, E.; Traynor, B.J. Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain, 2014, 137(12), e311.
[http://dx.doi.org/10.1093/brain/awu265] [PMID: 25261972]
[179]
Zhou, Z.D.; Saw, W.T.; Tan, E.K. Mitochondrial CHCHD-containing proteins: Physiologic functions and link with neurodegenerative diseases. Mol. Neurobiol., 2017, 54(7), 5534-5546.
[http://dx.doi.org/10.1007/s12035-016-0099-5] [PMID: 27631878]
[180]
Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.G.; Verschueren, A.; Rouzier, C.; Le Ber, I.; Augé, G.; Cochaud, C.; Lespinasse, F.; N’Guyen, K.; de Septenville, A.; Brice, A.; Yu-Wai-Man, P.; Sesaki, H.; Pouget, J.; Paquis-Flucklinger, V. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 2014, 137(8), 2329-2345.
[http://dx.doi.org/10.1093/brain/awu138] [PMID: 24934289]
[181]
Wang, P.; Deng, J.; Dong, J.; Liu, J.; Bigio, E.H.; Mesulam, M.; Wang, T.; Sun, L.; Wang, L.; Lee, A.Y.L.; McGee, W.A.; Chen, X.; Fushimi, K.; Zhu, L.; Wu, J.Y. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet., 2019, 15(5), e1007947.
[http://dx.doi.org/10.1371/journal.pgen.1007947] [PMID: 31100073]
[182]
Yu, C.H.; Davidson, S.; Harapas, C.R.; Hilton, J.B.; Mlodzianoski, M.J.; Laohamonthonkul, P.; Louis, C.; Low, R.R.J.; Moecking, J.; De Nardo, D.; Balka, K.R.; Calleja, D.J.; Moghaddas, F.; Ni, E.; McLean, C.A.; Samson, A.L.; Tyebji, S.; Tonkin, C.J.; Bye, C.R.; Turner, B.J.; Pepin, G.; Gantier, M.P.; Rogers, K.L.; McArthur, K.; Crouch, P.J.; Masters, S.L. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell, 2020, 183(3), 636-649.e18.
[http://dx.doi.org/10.1016/j.cell.2020.09.020] [PMID: 33031745]
[183]
Yang, Y.; Wu, H.; Kang, X.; Liang, Y.; Lan, T.; Li, T.; Tan, T.; Peng, J.; Zhang, Q.; An, G.; Liu, Y.; Yu, Q.; Ma, Z.; Lian, Y.; Soh, B.S.; Chen, Q.; Liu, P.; Chen, Y.; Sun, X.; Li, R.; Zhen, X.; Liu, P.; Yu, Y.; Li, X.; Fan, Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell, 2018, 9(3), 283-297.
[http://dx.doi.org/10.1007/s13238-017-0499-y] [PMID: 29318513]
[184]
Bacman, S.R.; Kauppila, J.H.K.; Pereira, C.V.; Nissanka, N.; Miranda, M.; Pinto, M.; Williams, S.L.; Larsson, N.G.; Stewart, J.B.; Moraes, C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med., 2018, 24(11), 1696-1700.
[http://dx.doi.org/10.1038/s41591-018-0166-8] [PMID: 30250143]
[185]
Gammage, P.A.; Viscomi, C.; Simard, M.L.; Costa, A.S.H.; Gaude, E.; Powell, C.A.; Van Haute, L.; McCann, B.J.; Rebelo-Guiomar, P.; Cerutti, R.; Zhang, L.; Rebar, E.J.; Zeviani, M.; Frezza, C.; Stewart, J.B.; Minczuk, M. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med., 2018, 24(11), 1691-1695.
[http://dx.doi.org/10.1038/s41591-018-0165-9] [PMID: 30250142]
[186]
Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.; Radey, M.C.; Peterson, S.B.; Mootha, V.K.; Mougous, J.D.; Liu, D.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020, 583(7817), 631-637.
[http://dx.doi.org/10.1038/s41586-020-2477-4] [PMID: 32641830]
[187]
Pereira, C.V.; Bacman, S.R.; Arguello, T.; Zekonyte, U.; Williams, S.L.; Edgell, D.R.; Moraes, C.T. mitoTev‐TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol. Med., 2018, 10(9), e8084.
[http://dx.doi.org/10.15252/emmm.201708084] [PMID: 30012581]
[188]
Zinovkin, R.A.; Zamyatnin, A.A. Mitochondria-targeted drugs. Curr. Mol. Pharmacol., 2019, 12(3), 202-214.
[http://dx.doi.org/10.2174/1874467212666181127151059] [PMID: 30479224]
[189]
Bharadwaj, P.R.; Bates, K.A.; Porter, T.; Teimouri, E.; Perry, G.; Steele, J.W.; Gandy, S.; Groth, D.; Martins, R.N.; Verdile, G. Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases. Transl. Psychiatry, 2013, 3(12), e332.
[http://dx.doi.org/10.1038/tp.2013.97] [PMID: 24301650]
[190]
Perez Ortiz, J.M.; Swerdlow, R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol., 2019, 176(18), 3489-3507.
[http://dx.doi.org/10.1111/bph.14585] [PMID: 30675901]
[191]
Beal, M.F.; Oakes, D.; Shoulson, I.; Henchcliffe, C.; Galpern, W.R.; Haas, R.; Juncos, J.L.; Nutt, J.G.; Voss, T.S.; Ravina, B.; Shults, C.M.; Helles, K.; Snively, V.; Lew, M.F.; Griebner, B.; Watts, A.; Gao, S.; Pourcher, E.; Bond, L.; Kompoliti, K.; Agarwal, P.; Sia, C.; Jog, M.; Cole, L.; Sultana, M.; Kurlan, R.; Richard, I.; Deeley, C.; Waters, C.H.; Figueroa, A.; Arkun, A.; Brodsky, M.; Ondo, W.G.; Hunter, C.B.; Jimenez-Shahed, J.; Palao, A.; Miyasaki, J.M.; So, J.; Tetrud, J.; Reys, L.; Smith, K.; Singer, C.; Blenke, A.; Russell, D.S.; Cotto, C.; Friedman, J.H.; Lannon, M.; Zhang, L.; Drasby, E.; Kumar, R.; Subramanian, T.; Ford, D.S.; Grimes, D.A.; Cote, D.; Conway, J.; Siderowf, A.D.; Evatt, M.L.; Sommerfeld, B.; Lieberman, A.N.; Okun, M.S.; Rodriguez, R.L.; Merritt, S.; Swartz, C.L.; Martin, W.R.W.; King, P.; Stover, N.; Guthrie, S.; Watts, R.L.; Ahmed, A.; Fernandez, H.H.; Winters, A.; Mari, Z.; Dawson, T.M.; Dunlop, B.; Feigin, A.S.; Shannon, B.; Nirenberg, M.J.; Ogg, M.; Ellias, S.A.; Thomas, C.A.; Frei, K.; Bodis-Wollner, I.; Glazman, S.; Mayer, T.; Hauser, R.A.; Pahwa, R.; Langhammer, A.; Ranawaya, R.; Derwent, L.; Sethi, K.D.; Farrow, B.; Prakash, R.; Litvan, I.; Robinson, A.; Sahay, A.; Gartner, M.; Hinson, V.K.; Markind, S.; Pelikan, M.; Perlmutter, J.S.; Hartlein, J.; Molho, E.; Evans, S.; Adler, C.H.; Duffy, A.; Lind, M.; Elmer, L.; Davis, K.; Spears, J.; Wilson, S.; Leehey, M.A.; Hermanowicz, N.; Niswonger, S.; Shill, H.A.; Obradov, S.; Rajput, A.; Cowper, M.; Lessig, S.; Song, D.; Fontaine, D.; Zadikoff, C.; Williams, K.; Blindauer, K.A.; Bergholte, J.; Propsom, C.S.; Stacy, M.A.; Field, J.; Mihaila, D.; Chilton, M.; Uc, E.Y.; Sieren, J.; Simon, D.K.; Kraics, L.; Silver, A.; Boyd, J.T.; Hamill, R.W.; Ingvoldstad, C.; Young, J.; Thomas, K.; Kostyk, S.K.; Wojcieszek, J.; Pfeiffer, R.F.; Panisset, M.; Beland, M.; Reich, S.G.; Cines, M.; Zappala, N.; Rivest, J.; Zweig, R.; Lumina, L.P.; Hilliard, C.L.; Grill, S.; Kellermann, M.; Tuite, P.; Rolandelli, S.; Kang, U.J.; Young, J.; Rao, J.; Cook, M.M.; Severt, L.; Boyar, K. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol., 2014, 71(5), 543-552.
[http://dx.doi.org/10.1001/jamaneurol.2014.131] [PMID: 24664227]
[192]
Kieburtz, K.; Tilley, B.C.; Elm, J.J.; Babcock, D.; Hauser, R.; Ross, G.W.; Augustine, A.H.; Augustine, E.U.; Aminoff, M.J.; Bodis-Wollner, I.G.; Boyd, J.; Cambi, F.; Chou, K.; Christine, C.W.; Cines, M.; Dahodwala, N.; Derwent, L.; Dewey, R.B., Jr; Hawthorne, K.; Houghton, D.J.; Kamp, C.; Leehey, M.; Lew, M.F.; Liang, G.S.L.; Luo, S.T.; Mari, Z.; Morgan, J.C.; Parashos, S.; Pérez, A.; Petrovitch, H.; Rajan, S.; Reichwein, S.; Roth, J.T.; Schneider, J.S.; Shannon, K.M.; Simon, D.K.; Simuni, T.; Singer, C.; Sudarsky, L.; Tanner, C.M.; Umeh, C.C.; Williams, K.; Wills, A.M. Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA, 2015, 313(6), 584-593.
[http://dx.doi.org/10.1001/jama.2015.120] [PMID: 25668262]
[193]
Koentjoro, B.; Park, J.S.; Sue, C.M. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease. Sci. Rep., 2017, 7(1), 44373.
[http://dx.doi.org/10.1038/srep44373] [PMID: 28281653]
[194]
Hayashi, G.; Jasoliya, M.; Sahdeo, S.; Saccà, F.; Pane, C.; Filla, A.; Marsili, A.; Puorro, G.; Lanzillo, R.; Brescia Morra, V.; Cortopassi, G. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum. Mol. Genet., 2017, 26(15), 2864-2873.
[http://dx.doi.org/10.1093/hmg/ddx167] [PMID: 28460056]
[195]
Delerue, T.; Tribouillard-Tanvier, D.; Daloyau, M.; Khosrobakhsh, F.; Emorine, L.J.; Friocourt, G.; Belenguer, P.; Blondel, M.; Arnauné-Pelloquin, L. A yeast-based screening assay identifies repurposed drugs that suppress mitochondrial fusion and mtDNA maintenance defects. Dis. Model. Mech., 2019, 12(2), dmm.036558.
[http://dx.doi.org/10.1242/dmm.036558] [PMID: 30658998]
[196]
Wang, Y.; Liu, N.; Lu, B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther., 2019, 25(7), cns.13140.
[http://dx.doi.org/10.1111/cns.13140] [PMID: 31050206]
[197]
Gureev, A.P.; Sadovnikova, I.S.; Starkov, N.N.; Starkov, A.A.; Popov, V.N. p62-Nrf2-p62 mitophagy regulatory loop as a target for preventive therapy of neurodegenerative diseases. Brain Sci., 2020, 10(11), 847.
[http://dx.doi.org/10.3390/brainsci10110847] [PMID: 33198234]
[198]
Rahman, M.H.; Akter, R.; Bhattacharya, T.; Abdel-Daim, M.M.; Alkahtani, S.; Arafah, M.W.; Al-Johani, N.S.; Alhoshani, N.M.; Alkeraishan, N.; Alhenaky, A.; Abd-Elkader, O.H.; El-Seedi, H.R.; Kaushik, D.; Mittal, V. Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease. Front. Pharmacol., 2020, 11, 619024.
[http://dx.doi.org/10.3389/fphar.2020.619024] [PMID: 33456444]
[199]
Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.G.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A.J. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[200]
Savitt, D.; Jankovic, J. Targeting α-synuclein in Parkinson’s disease: Progress towards the development of disease-modifying therapeutics. Drugs, 2019, 79(8), 797-810.
[http://dx.doi.org/10.1007/s40265-019-01104-1] [PMID: 30982161]
[201]
Haag, S.M.; Gulen, M.F.; Reymond, L.; Gibelin, A.; Abrami, L.; Decout, A.; Heymann, M.; van der Goot, F.G.; Turcatti, G.; Behrendt, R.; Ablasser, A. Targeting STING with covalent small-molecule inhibitors. Nature, 2018, 559(7713), 269-273.
[http://dx.doi.org/10.1038/s41586-018-0287-8] [PMID: 29973723]
[202]
Vincent, J.; Adura, C.; Gao, P.; Luz, A.; Lama, L.; Asano, Y.; Okamoto, R.; Imaeda, T.; Aida, J.; Rothamel, K.; Gogakos, T.; Steinberg, J.; Reasoner, S.; Aso, K.; Tuschl, T.; Patel, D.J.; Glickman, J.F.; Ascano, M. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun., 2017, 8(1), 750.
[http://dx.doi.org/10.1038/s41467-017-00833-9] [PMID: 28963528]
[203]
Russell, O.M.; Gorman, G.S.; Lightowlers, R.N.; Turnbull, D.M. Mitochondrial diseases: Hope for the future. Cell, 2020, 181(1), 168-188.
[http://dx.doi.org/10.1016/j.cell.2020.02.051] [PMID: 32220313]
[204]
Yoo, S.M.; Jung, Y.K. A Molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells, 2018, 41(1), 18-26.
[PMID: 29370689]
[205]
Swerdlow, R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1403-1416.
[http://dx.doi.org/10.3233/JAD-170585] [PMID: 29036828]
[206]
Hwang, I.W.; Kwon, B.N.; Kim, H.J.; Han, S.H.; Lee, N.R.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Assessment of associations between mitochondrial DNA haplogroups and attention deficit and hyperactivity disorder in Korean children. Mitochondrion, 2019, 47, 174-178.
[http://dx.doi.org/10.1016/j.mito.2018.11.003] [PMID: 30423452]
[207]
DeBrosse, S.; Parikh, S. Neurologic disorders due to mitochondrial DNA mutations. Semin. Pediatr. Neurol., 2012, 19(4), 194-202.
[http://dx.doi.org/10.1016/j.spen.2012.09.006] [PMID: 23245552]
[208]
Moya, G.E.; Rivera, P.D.; Dittenhafer-Reed, K.E. Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. Int. J. Mol. Sci., 2021, 22(13), 7030.
[http://dx.doi.org/10.3390/ijms22137030] [PMID: 34209978]
[209]
Stoccoro, A.; Siciliano, G.; Migliore, L.; Coppedè, F. Decreased methylation of the mitochondrial D-Loop region in late-onset Alzheimer’s disease. J. Alzheimers Dis., 2017, 59(2), 559-564.
[http://dx.doi.org/10.3233/JAD-170139] [PMID: 28655136]
[210]
Gonzalez-Hunt, C.P.; Thacker, E.A.; Toste, C.M.; Boularand, S.; Deprets, S.; Dubois, L.; Sanders, L.H. Mitochondrial DNA damage as a potential biomarker of LRRK2 kinase activity in LRRK2 Parkinson’s disease. Sci. Rep., 2020, 10(1), 17293.
[http://dx.doi.org/10.1038/s41598-020-74195-6] [PMID: 33057100]
[211]
Zambrano, K.; Barba, D.; Castillo, K.; Robayo, P.; Argueta-Zamora, D.; Sanon, S.; Arizaga, E.; Caicedo, A.; Gavilanes, A.W.D. The war against Alzheimer, the mitochondrion strikes back! Mitochondrion, 2022, 64, 125-135.
[http://dx.doi.org/10.1016/j.mito.2022.03.003] [PMID: 35337984]
[212]
Matsui, H.; Ito, J.; Matsui, N.; Uechi, T.; Onodera, O.; Kakita, A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson’s disease. Nat. Commun., 2021, 12(1), 3101.
[http://dx.doi.org/10.1038/s41467-021-23452-x] [PMID: 34035300]
[213]
Onyango, I.; Bennett, J.; Stokin, G. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen. Res., 2021, 16(8), 1467-1482.
[http://dx.doi.org/10.4103/1673-5374.303007] [PMID: 33433460]
[214]
Caicedo, A.; Zambrano, K.; Sanon, S.; Luis Vélez, J.; Montalvo, M.; Jara, F.; Moscoso, S.A.; Vélez, P.; Maldonado, A.; Velarde, G. The diversity and coexistence of extracellular mitochondria in circulation: A friend or foe of the immune system. Mitochondrion, 2021, 58, 270-284.
[http://dx.doi.org/10.1016/j.mito.2021.02.014] [PMID: 33662580]
[215]
Caicedo, A.; Zambrano, K.; Sanon, S.; Gavilanes, A.W.D. Extracellular mitochondria in the cerebrospinal fluid (CSF): Potential types and key roles in central nervous system (CNS) physiology and pathogenesis. Mitochondrion, 2021, 58, 255-269.
[http://dx.doi.org/10.1016/j.mito.2021.02.006] [PMID: 33662579]
[216]
Nakamura, Y.; Park, J.H.; Hayakawa, K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp. Neurol., 2020, 324, 113114.
[http://dx.doi.org/10.1016/j.expneurol.2019.113114] [PMID: 31734316]
[217]
Zhang, X.; Hu, D.; Shang, Y.; Qi, X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165431.
[http://dx.doi.org/10.1016/j.bbadis.2019.03.004] [PMID: 30898538]
[218]
Zhang, W.; Gu, G.J.; Shen, X.; Zhang, Q.; Wang, G.M.; Wang, P.J. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease–like pathology. Neurobiol. Aging, 2015, 36(3), 1282-1292.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.040] [PMID: 25582749]
[219]
Zaia, A.; Maponi, P.; Zannotti, M.; Casoli, T. Biocomplexity and fractality in the search of biomarkers of aging and pathology: Mitochondrial DNA profiling of Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(5), 1758.
[http://dx.doi.org/10.3390/ijms21051758] [PMID: 32143500]
[220]
Zaia, A.; Maponi, P.; Di Stefano, G.; Casoli, T. Biocomplexity and fractality in the search of biomarkers of aging and pathology: Focus on mitochondrial DNA and Alzheimer’s disease. Aging Dis., 2017, 8(1), 44-56.
[http://dx.doi.org/10.14336/AD.2016.0629] [PMID: 28197358]
[221]
Santibanez-Koref, M.; Griffin, H.; Turnbull, D.M.; Chinnery, P.F.; Herbert, M.; Hudson, G. Assessing mitochondrial heteroplasmy using next generation sequencing: A note of caution. Mitochondrion, 2019, 46, 302-306.
[http://dx.doi.org/10.1016/j.mito.2018.08.003] [PMID: 30098421]
[222]
Krishnan, K.J.; Ratnaike, T.E.; De Gruyter, H.L.M.; Jaros, E.; Turnbull, D.M. Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer’s disease. Neurobiol. Aging, 2012, 33(9), 2210-2214.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.08.009] [PMID: 21925769]
[223]
de la Monte, S.M.; Luong, T.; Neely, T.R.; Robinson, D.; Wands, J.R. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab. Invest., 2000, 80(8), 1323-1335.
[http://dx.doi.org/10.1038/labinvest.3780140] [PMID: 10950123]
[224]
Liou, C.W.; Chen, S.H.; Lin, T.K.; Tsai, M.H.; Chang, C.C. Oxidative stress biomarkers and mitochondrial DNA copy number associated with APOE4 allele and cholinesterase inhibitor therapy in patients with Alzheimer’s disease. Antioxidants (Basel), 2021, 10(12), 1971.
[http://dx.doi.org/10.3390/antiox10121971] [PMID: 34943074]
[225]
Hutchin, T.P.; Heath, P.R.; Pearson, R.C.A.; Sinclair, A.J. Mitochondrial DNA mutations in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 1997, 241(2), 221-225.
[http://dx.doi.org/10.1006/bbrc.1997.7793] [PMID: 9425253]
[226]
Shoffner, J.M.; Brown, M.D.; Torroni, A.; Lott, M.T.; Cabell, M.F.; Mirra, S.S.; Beal, M.F.; Yang, C.C.; Gearing, M.; Salvo, R.; Watts, R.L.; Juncos, J.L.; Hansen, L.A.; Crain, B.J.; Fayad, M.; Reckord, C.L.; Wallace, D.C. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics, 1993, 17(1), 171-184.
[http://dx.doi.org/10.1006/geno.1993.1299] [PMID: 8104867]
[227]
Blanch, M.; Mosquera, J.L.; Ansoleaga, B.; Ferrer, I.; Barrachina, M. Altered mitochondrial DNA methylation pattern in Alzheimer disease–related pathology and in Parkinson disease. Am. J. Pathol., 2016, 186(2), 385-397.
[http://dx.doi.org/10.1016/j.ajpath.2015.10.004] [PMID: 26776077]
[228]
Stoccoro, A.; Baldacci, F.; Ceravolo, R.; Giampietri, L.; Tognoni, G.; Siciliano, G.; Migliore, L.; Coppedè, F. Increase in mitochondrial D-loop region methylation levels in mild cognitive impairment individuals. Int. J. Mol. Sci., 2022, 23(10), 5393.
[http://dx.doi.org/10.3390/ijms23105393] [PMID: 35628202]
[229]
Grünewald, A.; Rygiel, K.A.; Hepplewhite, P.D.; Morris, C.M.; Picard, M.; Turnbull, D.M. Mitochondrial DNA depletion in respiratory chain–deficient p arkinson disease neurons. Ann. Neurol., 2016, 79(3), 366-378.
[http://dx.doi.org/10.1002/ana.24571] [PMID: 26605748]
[230]
Bury, A.G.; Pyle, A.; Elson, J.L.; Greaves, L.; Morris, C.M.; Hudson, G.; Pienaar, I.S. Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann. Neurol., 2017, 82(6), 1016-1021.
[http://dx.doi.org/10.1002/ana.25099] [PMID: 29149768]
[231]
Nido, G.S.; Dölle, C.; Flønes, I.; Tuppen, H.A.; Alves, G.; Tysnes, O.B.; Haugarvoll, K.; Tzoulis, C. Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease. Neurobiol. Aging, 2018, 63, 120-127.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.024] [PMID: 29257976]
[232]
Richter, G.; Sonnenschein, A.; Grünewald, T.; Reichmann, H.; Janetzky, B. Novel mitochondrial DNA mutations in Parkinson’s disease. J. Neural Transm. (Vienna), 2002, 109(5-6), 721-729.
[http://dx.doi.org/10.1007/s007020200060] [PMID: 12111463]
[233]
Huerta, C.; Castro, M.G.; Coto, E.; Blázquez, M.; Ribacoba, R.; Guisasola, L.M.; Salvador, C.; Martínez, C.; Lahoz, C.H.; Alvarez, V. Mitochondrial DNA polymorphisms and risk of Parkinson’s disease in Spanish population. J. Neurol. Sci., 2005, 236(1-2), 49-54.
[http://dx.doi.org/10.1016/j.jns.2005.04.016] [PMID: 15975594]
[234]
Egensperger, R.; Kösel, S.; Schnopp, N.M.; Mehraein, P.; Graeber, M.B. Association of the mitochondrial tRNAA4336G mutation with Alzheimer’s and Parkinson’s diseases. Neuropathol. Appl. Neurobiol., 1997, 23(4), 315-321.
[http://dx.doi.org/10.1111/j.1365-2990.1997.tb01301.x] [PMID: 9292870]
[235]
Coxhead, J.; Kurzawa-Akanbi, M.; Hussain, R.; Pyle, A.; Chinnery, P.; Hudson, G. Somatic mtDNA variation is an important component of Parkinson’s disease. Neurobiol. Aging, 2016, 38, 217.e1-217.e6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.10.036] [PMID: 26639157]
[236]
Stoccoro, A.; Smith, A.R.; Baldacci, F.; Del Gamba, C.; Lo Gerfo, A.; Ceravolo, R.; Lunnon, K.; Migliore, L.; Coppedè, F. Mitochondrial D-loop region methylation and copy number in peripheral blood DNA of Parkinson’s disease patients. Genes (Basel), 2021, 12(5), 720.
[http://dx.doi.org/10.3390/genes12050720] [PMID: 34065874]
[237]
Alvarez-Mora, M.I.; Podlesniy, P.; Riazuelo, T.; Molina-Porcel, L.; Gelpi, E.; Rodriguez-Revenga, L. Reduced mtDNA copy number in the prefrontal cortex of C9ORF72 patients. Mol. Neurobiol., 2022, 59(2), 1230-1237.
[http://dx.doi.org/10.1007/s12035-021-02673-7] [PMID: 34978044]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy