Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Expanding Arsenal against Neurodegenerative Diseases Using Quercetin Based Nanoformulations: Breakthroughs and Bottlenecks

Author(s): Sukriti Vishwas, Rajesh Kumar, Rubiya Khursheed, Arya Kadukkattil Ramanunny, Rajan Kumar, Ankit Awasthi, Leander Corrie, Omji Porwal, Mohammed F. Arshad, Mohammed Kanan Alshammari, Abdulrahman A. Alghitran, Ashwaq N. Qumayri, Saif M. Alkhaldi, Abdulaziz Khalaf Alshammari, Dinesh Kumar Chellappan*, Gaurav Gupta, Trudi Collet, Jon Adams, Kamal Dua, Monica Gulati and Sachin Kumar Singh*

Volume 21, Issue 7, 2023

Published on: 07 December, 2022

Page: [1558 - 1574] Pages: 17

DOI: 10.2174/1570159X20666220810105421

Price: $65

Abstract

Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer’s, Parkinson’s, Huntington’s, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu’s therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.

Keywords: Quercetin, Antioxidant, Neuroinflammation, Neurodegenerative disease, Novel drug delivery systems, Alzheimer’s disease

Graphical Abstract

[1]
Solanki, I.; Parihar, P.; Parihar, M.S. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem. Int., 2016, 95, 100-108.
[http://dx.doi.org/10.1016/j.neuint.2015.11.001] [PMID: 26550708]
[2]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[3]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[4]
Baquero, M.; Martín, N. Depressive symptoms in neurodegenerative diseases. World J. Clin. Cases, 2015, 3(8), 682-693.
[http://dx.doi.org/10.12998/wjcc.v3.i8.682] [PMID: 26301229]
[5]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[6]
Mendoza, E.E.; Burd, R. Quercetin as a systemic chemopreventative agent: Structural and functional mechanisms. Mini Rev. Med. Chem., 2011, 11(14), 1216-1221.
[PMID: 22070678]
[7]
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today, 2019, 25(1), 209-222.
[http://dx.doi.org/10.1016/j.drudis.2019.11.001] [PMID: 31707120]
[8]
Wach, A.; Pyrzyńska, K.; Biesaga, M. Quercetin content in some food and herbal samples. Food Chem., 2007, 100(2), 699-704.
[http://dx.doi.org/10.1016/j.foodchem.2005.10.028]
[9]
Yang, Q.; Kang, Z.H.; Zhang, J.; Qu, F.; Song, B. Neuroprotective effects of isoquercetin: An in vitro and in vivo study. Cell J., 2021, 23(3), 355-365.
[PMID: 34308580]
[10]
Wang, K.; Lu, C.; Wang, T.; Qiao, C.; Lu, L.; Wu, D.; Lu, M.; Chen, R.; Fan, L.; Tang, J. Hyperoside suppresses NLRP3 inflammasome in Parkinson’s disease via pituitary adenylate cyclase-activating polypeptide. Neurochem. Int., 2022, 152, 105254.
[http://dx.doi.org/10.1016/j.neuint.2021.105254] [PMID: 34883151]
[11]
Wagner, C.; Fachinetto, R.; Dalla, C.C.L.; Brito, V.B.; Severo, D.; de Oliveira Costa Dias, G.; Morel, A.F.; Nogueira, C.W.; Rocha, J.B. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res., 2006, 1107(1), 192-198.
[http://dx.doi.org/10.1016/j.brainres.2006.05.084] [PMID: 16828712]
[12]
Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev., 2018, 2018, 6241017.
[http://dx.doi.org/10.1155/2018/6241017] [PMID: 30050657]
[13]
Khan, F.; Niaz, K.; Maqbool, F.; Ismail, H.F.; Abdollahi, M.; Nagulapalli, V.K.C.; Nabavi, S.M.; Bishayee, A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 2016, 8(9), 529.
[http://dx.doi.org/10.3390/nu8090529] [PMID: 27589790]
[14]
Aguirre, L.; Arias, N.; Teresa Macarulla, M.; Gracia, A. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J., 2011, 4(1), 189-198.
[http://dx.doi.org/10.2174/1876396001104010189]
[15]
Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr., 2007, 137(11), 2405-2411.
[http://dx.doi.org/10.1093/jn/137.11.2405] [PMID: 17951477]
[16]
Xiao, D.; Gu, Z.L.; Qian, Z.N. Effects of quercetin on platelet and reperfusion-induced arrhythmias in rats. Chung Kuo Yao Li Hsueh Pao, 1993, 14(6), 505-508.
[PMID: 8010047]
[17]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[18]
Elumalai, P.; Lakshmi, S. Role of quercetin benefits in neurodegeneration. In: The Benefits of Natural Products for Neurodegenerative Diseases; Springer, 2016; pp. 229-245.
[http://dx.doi.org/10.1007/978-3-319-28383-8_12]
[19]
Shafabakhsh, R.; Asemi, Z. Quercetin: A natural compound for ovarian cancer treatment. J. Ovarian Res., 2019, 12(1), 55.
[http://dx.doi.org/10.1186/s13048-019-0530-4] [PMID: 31202269]
[20]
Ramanunny, A.K.; Wadhwa, S.; Gulati, M.; Vishwas, S.; Khursheed, R.; Paudel, K.R.; Gupta, S.; Porwal, O.; Alshahrani, S.M.; Jha, N.K.; Chellappan, D.K.; Prasher, P.; Gupta, G.; Adams, J.; Dua, K.; Tewari, D.; Singh, S.K. Journey of Alpinia galanga from kitchen spice to nutraceutical to folk medicine to nanomedicine. J. Ethnopharmacol., 2022, 291, 115144.
[http://dx.doi.org/10.1016/j.jep.2022.115144] [PMID: 35227783]
[21]
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016, 2016, 2986796.
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[22]
Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[23]
Kelly, G.S. Quercetin. Monograph. Altern. Med. Rev., 2011, 16(2), 172-194.
[PMID: 21649459]
[24]
Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H-S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 155, 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[25]
Liu, Q.; Wang, Z.; Mukhamadiev, A.; Feng, J.; Gao, Y.; Zhuansun, X.; Han, R.; Chong, Y.; Jafari, S.M. Formulation optimization and characterization of carvacrol-loaded nanoemulsions: In vitro antibacterial activity/mechanism and safety evaluation. Ind. Crops Prod., 2022, 181, 114816.
[http://dx.doi.org/10.1016/j.indcrop.2022.114816]
[26]
Kadukkattil Ramanunny, A.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Kapoor, B.; Khursheed, R.; Kuppusamy, G.; Dua, K.; Dureja, H.; Chellappan, D.K.; Jha, N.K.; Gupta, P.K.; Vishwas, S. Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opin. Drug Deliv., 2022, 19(1), 23-45.
[http://dx.doi.org/10.1080/17425247.2022.2019218] [PMID: 34913772]
[27]
Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Kapoor, B.; Vyas, M.; Khursheed, R.; Awasthi, A.; Kaur, J.; Corrie, L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson’s disease rat model. Food Chem. Toxicol., 2020, 144, 111590.
[http://dx.doi.org/10.1016/j.fct.2020.111590] [PMID: 32710995]
[28]
Pandey, N.K.; Singh, S.K.; Kumar, B.; Gulati, M.; Vishwas, S.; Khursheed, R.; Dureja, H.; Chellappan, D.K.; Jha, N.K.; Sharma, A.; Jha, S.K.; Gupta, P.K.; Gupta, S.; Gupta, G.; Prasher, P.; Dua, K. Expanding arsenal against diabetes mellitus through nanoformulations loaded with glimepiride and simvastatin: A comparative study. Environ. Sci. Pollut. Res. Int., 2022, 1-13.
[http://dx.doi.org/10.1007/s11356-022-19371-z] [PMID: 35254621]
[29]
Pandian, S.R.K.; Pavadai, P.; Vellaisamy, S.; Ravishankar, V.; Palanisamy, P.; Sundar, L.M.; Chandramohan, V.; Sankaranarayanan, M.; Panneerselvam, T.; Kunjiappan, S. Formulation and evaluation of rutin-loaded solid lipid nanoparticles for the treatment of brain tumor. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(4), 735-749.
[http://dx.doi.org/10.1007/s00210-020-02015-9] [PMID: 33156389]
[30]
Kaur, J.; Gulati, M.; Gowthamarajan, K.; Vishwas, S.; Kumar Chellappan, D.; Gupta, G.; Dua, K.; Pandey, N.K.; Kumar, B.; Singh, S.K. Combination therapy of vanillic acid and oxaliplatin co-loaded in polysaccharide based functionalized polymeric micelles could offer effective treatment for colon cancer: A hypothesis. Med. Hypotheses, 2021, 156, 110679.
[http://dx.doi.org/10.1016/j.mehy.2021.110679] [PMID: 34555619]
[31]
Khursheed, R.; Paudel, K.R.; Gulati, M.; Vishwas, S.; Jha, N.K.; Hansbro, P.M.; Oliver, B.G.; Dua, K.; Singh, S.K. Expanding thearsenal against pulmonary diseases using surface-functionalized polymeric micelles: Breakthroughs and bottlenecks. Nanomedicine(Lond.), 2022.
[http://dx.doi.org/ 10.2217/nnm-2021-0451] [PMID: 35332783]
[32]
Khursheed, R.; Dua, K.; Vishwas, S.; Gulati, M.; Jha, N.K.; Aldhafeeri, G.M.; Alanazi, F.G.; Goh, B.H.; Gupta, G.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; Singh, S.K. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed. Pharmacother., 2022, 150, 112951.
[http://dx.doi.org/10.1016/j.biopha.2022.112951] [PMID: 35447546]
[33]
Alzheimer's and dementia in India. 2021. Available from: https://www.alz.org/in/dementia-alzheimers-en.asp Accessed on: 4 April 2021
[34]
Dementia statistics. Dementia Australia. 2021. Available from: https://www.dementia.org.au/statistics Accessed on: 3 April 2021
[35]
Association As 2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[36]
Alzheimer’s disease. 2021. Available from: https://www.efpia.eu/we-wont-rest/innovation/alzheimer-s-disease/ Accessed on: 3 April 2021
[37]
[38]
Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.; Wei, C.; Tang, Y.; Qin, Q.; Wang, F.; Qiao, Y.; Shi, S.; Wang, Y.J.; Du, Y.; Zhang, J.; Zhang, J.; Luo, B.; Qu, Q.; Zhou, C.; Gauthier, S.; Jia, J. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol., 2020, 19(1), 81-92.
[http://dx.doi.org/10.1016/S1474-4422(19)30290-X] [PMID: 31494009]
[39]
Vishwas, S.; Singh, S.K.; Gulati, M.; Awasthi, A.; Khursheed, R.; Corrie, L.; Kumar, R.; Collet, T.; Loebenberg, R.; Porwal, O.; Gupta, S.; Jha, N.K.; Gupta, P.K.; Devkota, H.P.; Chellappan, D.K.; Gupta, G.; Adams, J.; Dua, K. Harnessing the therapeutic potential of fisetin and its nanoparticles: Journey so far and road ahead. Chem. Biol. Interact., 2022, 356, 109869.
[http://dx.doi.org/10.1016/j.cbi.2022.109869] [PMID: 35231453]
[40]
Statistics. 2022. Available from: https://www.parkinson.org/Understanding-Parkinsons/Statistics Accessed on: 18 January 2022
[41]
Je, G.; Arora, S.; Raithatha, S.; Barrette, R.; Valizadeh, N.; Shah, U.; Desai, D.; Deb, A.; Desai, S. Epidemiology of Parkinson’s Disease in Rural Gujarat, India. Neuroepidemiology, 2021, 55(3), 188-195.
[http://dx.doi.org/10.1159/000515030] [PMID: 33951636]
[42]
Kay, C.; Hayden, M.R.; Leavitt, B.R. Epidemiology of Huntington disease. In: Handbook of clinical neurology; Elsevier, 2017; pp. 31-46.
[43]
Uddin, M.S.; Tewari, D.; Sharma, G.; Kabir, M.T.; Barreto, G.E.; Bin-Jumah, M.N.; Perveen, A.; Abdel-Daim, M.M.; Ashraf, G.M. Molecular mechanisms of ER stress and UPR in the pathogenesis of Alzheimer’s disease. Mol. Neurobiol., 2020, 57(7), 2902-2919.
[http://dx.doi.org/10.1007/s12035-020-01929-y] [PMID: 32430843]
[44]
Revilla, F.J. What is the international prevalence of Huntington disease (HD)? 2020. Available from: https://www.medscape.com/answers/1150165-111357/what-is-the-international-prevalence-of-huntington-disease-hd Accessed on: 2 July 2022
[45]
Parkins, K. Unmet needs: A brief history of ALS and its sparse pipeline. 2021. Available from: https://www.pharmaceutical-technology.com/features/history-of-als/ Accessed on: 18 January 2022
[46]
Naeimi, A.F.; Alizadeh, M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci. Technol., 2017, 70, 34-44.
[http://dx.doi.org/10.1016/j.tifs.2017.10.003]
[47]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[48]
Jung, Y.J.; Isaacs, J.S.; Lee, S.; Trepel, J.; Neckers, L. IL 1β mediated up regulation of HIF lα via an NFkB/COX 2 pathway identifies HIF 1 as a critical link between inflammation and oncogenesis. FASEB J., 2003, 17(14), 1-22.
[49]
Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J., 2011, 435(2), 297-312.
[http://dx.doi.org/10.1042/BJ20110162] [PMID: 21726199]
[50]
Castellani, R.; Hirai, K.; Aliev, G.; Drew, K.L.; Nunomura, A.; Takeda, A.; Cash, A.D.; Obrenovich, M.E.; Perry, G.; Smith, M.A. Role of mitochondrial dysfunction in Alzheimer’s disease. J. Neurosci. Res., 2002, 70(3), 357-360.
[http://dx.doi.org/10.1002/jnr.10389] [PMID: 12391597]
[51]
Maruszak, A.; Żekanowski, C. Mitochondrial dysfunction and Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(2), 320-330.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.004] [PMID: 20624441]
[52]
Nuytemans, K.; Theuns, J.; Cruts, M.; Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum. Mutat., 2010, 31(7), 763-780.
[http://dx.doi.org/10.1002/humu.21277] [PMID: 20506312]
[53]
Johri, A.; Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther., 2012, 342(3), 619-630.
[http://dx.doi.org/10.1124/jpet.112.192138] [PMID: 22700435]
[54]
Burchell, V.S.; Gandhi, S.; Deas, E.; Wood, N.W.; Abramov, A.Y.; Plun-Favreau, H. Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opin. Ther. Targets, 2010, 14(4), 369-385.
[http://dx.doi.org/10.1517/14728221003652489] [PMID: 20184395]
[55]
Querfurth, H.W.; LaFerla, F.M. Alzheimer's Disease. N Engl J Med, 2010, 362(4), 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[56]
Vishwas, S.; Awasthi, A.; Corrie, L.; Kumar Singh, S.; Gulati, M. Multiple target-based combination therapy of galantamine, memantine and lycopene for the possible treatment of Alzheimer’s disease. Med. Hypotheses, 2020, 143, 109879.
[http://dx.doi.org/10.1016/j.mehy.2020.109879] [PMID: 32474382]
[57]
Cummings, J.L.; Cole, G. Alzheimer disease. JAMA, 2002, 287(18), 2335-2338.
[http://dx.doi.org/10.1001/jama.287.18.2335] [PMID: 11988038]
[58]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 2019, 10(1), 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[59]
Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J. Neurochem., 2017, 141(5), 766-782.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[60]
Shelat, P.B.; Chalimoniuk, M.; Wang, J.H.; Strosznajder, J.B.; Lee, J.C.; Sun, A.Y.; Simonyi, A.; Sun, G.Y. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J. Neurochem., 2008, 106(1), 45-55.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05347.x] [PMID: 18346200]
[61]
Barreca, D; Bellocco, E Neuroprotective effects of quercetin: From chemistry to medicine. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 964-975.
[http://dx.doi.org/10.2174/1871527315666160813175406] [PMID: 27528470]
[62]
Jung, M.; Park, M. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules, 2007, 12(9), 2130-2139.
[http://dx.doi.org/10.3390/12092130] [PMID: 17962731]
[63]
Godoy, J.A.; Lindsay, C.B.; Quintanilla, R.A.; Carvajal, F.J.; Cerpa, W.; Inestrosa, N.C. Quercetin exerts differential neuroprotective effects against H 2 O 2 and Aβ aggregates in hippocampal neurons: The role of mitochondria. Mol. Neurobiol., 2017, 54(9), 7116-7128.
[http://dx.doi.org/10.1007/s12035-016-0203-x] [PMID: 27796749]
[64]
Chen, T-J.; Jeng, J-Y.; Lin, C-W.; Wu, C-Y.; Chen, Y-C. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology, 2006, 223(1-2), 113-126.
[http://dx.doi.org/10.1016/j.tox.2006.03.007] [PMID: 16647178]
[65]
Mehta, V.; Parashar, A.; Udayabanu, M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol. Behav., 2017, 171, 69-78.
[http://dx.doi.org/10.1016/j.physbeh.2017.01.006] [PMID: 28069457]
[66]
Unsal, C.; Kanter, M.; Aktas, C.; Erboga, M. Role of quercetin in cadmium-induced oxidative stress, neuronal damage, and apoptosis in rats. Toxicol. Ind. Health, 2015, 31(12), 1106-1115.
[http://dx.doi.org/10.1177/0748233713486960] [PMID: 23645211]
[67]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacol., 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[68]
Vishwas, S.; Mathappan, R.; Maunika, P. Parkinson’s disease: A brief review. Int. J. Mol. Biot., 2019, 5(1), 11-14.
[http://dx.doi.org/10.37628/ijmb.v5i1.412]
[69]
Tamtaji, O.R.; Hadinezhad, T.; Fallah, M.; Shahmirzadi, A.R.; Taghizadeh, M.; Behnam, M.; Asemi, Z. The therapeutic potential of quercetin in Parkinson's disease: Insights into its molecular and cellular regulation. Curr. Drug Targets, 2020, 21(5), 509-518.
[http://dx.doi.org/10.2174/1389450120666191112155654] [PMID: 31721700]
[70]
Batiha, G.E-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[71]
Singh, S.; Jamwal, S.; Kumar, P. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res., 2017, 12(7), 1137-1144.
[http://dx.doi.org/10.4103/1673-5374.211194] [PMID: 28852397]
[72]
Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Vyas, M.; Dua, K.; Khursheed, R.; Awasthi, A.; Vishwas, S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinson’s model. Environ. Sci. Pollut. Res. Int., 2022, 1-12.
[http://dx.doi.org/10.1007/s11356-022-19428-z] [PMID: 35230633]
[73]
Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Sharma, R.K.; Verma, D.; Bal, A.; Gill, K.D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience, 2016, 324, 163-176.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.055] [PMID: 26944603]
[74]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[75]
Vishwas, S.; Gulati, M.; Kapoor, B.; Gupta, S.; Singh, S.K.; Awasthi, A.; Khan, A.; Goyal, A.; Bansal, A.; Baishnab, S.; Singh, T.G.; Arora, S.; Porwal, O.; Kumar, A.; Kumar, V. Expanding the arsenal against Huntington’s disease-herbal drugs and their nanoformulations. Curr. Neuropharmacol., 2021, 19(7), 957-989.
[http://dx.doi.org/10.2174/1570159X18666201109090824] [PMID: 33167841]
[76]
Gupta, S.; Khan, A.; Vishwas, S.; Gulati, M.; Gurjeet Singh, T.; Dua, K.; Kumar Singh, S.; Najda, A.; Sayed, A.A.; Almeer, R.; Abdel-Daim, M.M. Demethyleneberberine: A possible treatment for Huntington’s disease. Med. Hypotheses, 2021, 153, 110639.
[http://dx.doi.org/10.1016/j.mehy.2021.110639] [PMID: 34229236]
[77]
Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim. Biophys. Acta, 2013, 1832(3), 421-430.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018] [PMID: 23220257]
[78]
Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2017, 377(2), 162-172.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[79]
Rowland, L.P. Ameliorating amyotrophic lateral sclerosis. N. Engl. J. Med., 2010, 362(10), 953-954.
[http://dx.doi.org/10.1056/NEJMcibr0912229] [PMID: 20220193]
[80]
Ip, P.; Sharda, P.R.; Cunningham, A.; Chakrabartty, S.; Pande, V.; Chakrabartty, A. Quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Eng. Des. Sel., 2017, 30(6), 431-40.
[81]
Said Ahmed, M.; Hung, W-Y.; Zu, J.S.; Hockberger, P.; Siddique, T. Increased reactive oxygen species in familial amyotrophic lateral sclerosis with mutations in SOD1. J. Neurol. Sci., 2000, 176(2), 88-94.
[http://dx.doi.org/10.1016/S0022-510X(00)00317-8] [PMID: 10930589]
[82]
Lazo-Gomez, R.; Tapia, R. Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Transl. Neurodegener., 2017, 6(1), 31.
[http://dx.doi.org/10.1186/s40035-017-0102-8] [PMID: 29201361]
[83]
Bhatia, N.K.; Modi, P.; Sharma, S.; Deep, S. Quercetin and baicalein act as potent antiamyloidogenic and fibril destabilizing agents for SOD1 fibrils. ACS Chem. Neurosci., 2020, 11(8), 1129-1138.
[http://dx.doi.org/10.1021/acschemneuro.9b00677] [PMID: 32208672]
[84]
Clinicaltrails.com. 2021. Available from: https://www. clinicaltrials.gov/ct2/results?recrs=&cond=fisetin&term=&cntry=&state=&city=&dist1 Accessed on: 4 May 2021
[85]
Kaşıkcı, M.B.; Bağdatlıoğlu, N. Bioavailability of quercetin. Special Issue Nutrition in Conference, 2016 4(October);, 146-151.
[86]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[87]
Khursheed, R.; Singh, S.K.; Gulati, M.; Wadhwa, S.; Kapoor, B.; Pandey, N.K.; Chellappan, D.K.; Gupta, G.; Jha, N.K.; Dua, K.; Kapoor, D.N.; Karri, V.V.S.R.; Pattanayak, P.; Sharni, A.; Mondal, S. Exploring role of polysaccharides present in Ganoderma lucidium extract powder and probiotics as solid carriers in development of liquisolid formulation loaded with quercetin: A novel study. Int. J. Biol. Macromol., 2021, 183, 1630-1639.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.064] [PMID: 34015408]
[88]
Rifaai, R.A.; Mokhemer, S.A.; Saber, E.A.; El-Aleem, S.A.A.; El-Tahawy, N.F.G. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in alzheimer’s disease. J. Chem. Neuroanat., 2020, 107, 101795.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101795] [PMID: 32464160]
[89]
Patra, A.; Satpathy, S.; Shenoy, A.K.; Bush, J.A.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomed., 2018, 13, 2869-2881.
[http://dx.doi.org/10.2147/IJN.S153094] [PMID: 29844670]
[90]
Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305.
[http://dx.doi.org/10.1021/acsabm.9b00518] [PMID: 35021530]
[91]
Wang, Q.; Hu, C.; Zhang, H.; Zhang, Y.; Liu, T.; Qian, A.; Xia, Q. Evaluation of a new solid non-aqueous self-double-emulsifying drug-delivery system for topical application of quercetin. J. Microencapsul., 2016, 33(8), 785-794.
[http://dx.doi.org/10.1080/02652048.2016.1264494] [PMID: 27875065]
[92]
Qi, Y.; Guo, L.; Jiang, Y.; Shi, Y.; Sui, H.; Zhao, L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv., 2020, 27(1), 745-755.
[http://dx.doi.org/10.1080/10717544.2020.1762262] [PMID: 32397764]
[93]
Karami, Z.; Saghatchi Zanjani, M.R.; Hamidi, M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov. Today, 2019, 24(5), 1104-1115.
[http://dx.doi.org/10.1016/j.drudis.2019.03.021] [PMID: 30914298]
[94]
Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci., 2013, 391, 95-102.
[http://dx.doi.org/10.1016/j.jcis.2012.08.069] [PMID: 23116862]
[95]
Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy, 2010, 1(1), 24-34.
[http://dx.doi.org/10.4103/0975-8453.59509]
[96]
Jaiswal, M.; Dudhe, R.; Sharma, P. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123-7.
[97]
Khursheed, R.; Singh, S.K.; Kumar, B.; Wadhwa, S.; Gulati, M.; Anupriya, A.; Awasthi, A.; Vishwas, S.; Kaur, J.; Corrie, L. Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats. Int. J. Pharm., 2021, 121306.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121306] [PMID: 34813906]
[98]
Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Selfnanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond.), 2010, 5(10), 1595-1616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[99]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Abdur Rub, R.; Ahmad, F.J. Enhancement of quercetin oral bioavailability by self-nanoemulsifying drug delivery system and their quantification through ultra high performance liquid chromatography and mass spectrometry in cerebral ischemia. Drug Res. (Stuttg.), 2017, 67(10), 564-575.
[http://dx.doi.org/10.1055/s-0043-109564] [PMID: 28561230]
[100]
Lingayat, V.J.; Zarekar, N.S.; Shendge, R.S. Solid lipid nanoparticles: A review. Nanosci. Nanotechnol. Res., 2017, 2, 67-72.
[101]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[102]
Liu, Y.; Zhou, H.; Yin, T.; Gong, Y.; Yuan, G.; Chen, L.; Liu, J. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J. Colloid Interface Sci., 2019, 552, 388-400.
[http://dx.doi.org/10.1016/j.jcis.2019.05.066] [PMID: 31151017]
[103]
Liu, Y.; Gong, Y.; Xie, W.; Huang, A.; Yuan, X.; Zhou, H.; Zhu, X.; Chen, X.; Liu, J.; Liu, J.; Qin, X. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale, 2020, 12(11), 6498-6511.
[http://dx.doi.org/10.1039/C9NR09713A] [PMID: 32154811]
[104]
Kaur, J.; Mishra, V.; Singh, S.K.; Gulati, M.; Kapoor, B.; Chellappan, D.K.; Gupta, G.; Dureja, H.; Anand, K.; Dua, K.; Khatik, G.L.; Gowthamarajan, K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J. Control. Release, 2021, 334, 64-95.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.014] [PMID: 33887283]
[105]
Aliabadi, H.M.; Lavasanifar, A. Polymeric micelles for drug delivery. Expert Opin. Drug Deliv., 2006, 3(1), 139-162.
[http://dx.doi.org/10.1517/17425247.3.1.139] [PMID: 16370946]
[106]
Kaur, J.; Gulati, M.; Jha, N.K.; Disouza, J.; Patravale, V.; Dua, K.; Singh, S.K. Recent advances in developing polymeric micelles for treating cancer: Breakthroughs and bottlenecks in their clinical translation. Drug Discov. Today, 2022, 27(5), 1495-1512.
[http://dx.doi.org/10.1016/j.drudis.2022.02.005] [PMID: 35158056]
[107]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 340315.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[108]
Amin, M.C.I.M.; Butt, A.M.; Amjad, M.W.; Kesharwani, P. Polymeric micelles for drug targeting and delivery. In: Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes; Elsevier, 2017; pp. 167-202.
[109]
Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res. Lett., 2014, 9(1), 2406.
[http://dx.doi.org/10.1186/1556-276X-9-684] [PMID: 26088982]
[110]
Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnology, 2007, 5(1), 3.
[http://dx.doi.org/10.1186/1477-3155-5-3] [PMID: 17439648]
[111]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[112]
McCarthy, J.R.; Perez, J.M.; Brückner, C.; Weissleder, R. Polymeric nanoparticle preparation that eradicates tumors. Nano Lett., 2005, 5(12), 2552-2556.
[http://dx.doi.org/10.1021/nl0519229] [PMID: 16351214]
[113]
Moreno, L.C.G.E.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm., 2017, 517(1-2), 50-57.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.061] [PMID: 27915007]
[114]
Palle, S.; Neerati, P. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats. Bull. Fac. Pharm. Cairo Univ., 2017, 55(1), 101-106.
[http://dx.doi.org/10.1016/j.bfopcu.2016.10.004]
[115]
Han, Q.; Wang, X.; Cai, S.; Liu, X.; Zhang, Y.; Yang, L.; Wang, C.; Yang, R. Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(9), 1387-1393.
[http://dx.doi.org/10.1039/C7TB03053C] [PMID: 32254423]
[116]
Ghaffari, F.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of Parkinson disease: Biochemical and behavioral evidence. Basic Clin. Neurosci., 2018, 9(5), 317-324.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy