Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges

Author(s): Niva Rani Gogoi, Daphisha Marbaniang, Paulami Pal, Subhabrata Ray and Bhaskar Mazumder*

Volume 10, Issue 4, 2022

Published on: 10 October, 2022

Page: [268 - 278] Pages: 11

DOI: 10.2174/2211738510666220806102612

Price: $65

Abstract

The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.

Keywords: Non-invasive drug delivery, Posterior segment of the eye, Retinal drug delivery, Diabetic retinopathy, Ocular pharmacology, Nanotherapies, Ocular barrier

Graphical Abstract

[1]
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Advanced Drug Delivery Reviews BV: Elsevier. 2018; 126: pp. 96-112.
[2]
Peynshaert K, Devoldere J, de Smedt SC, Remaut K. In vitro and Ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev. BV: Elsevier. 2018; 126: pp. 44-57.
[3]
Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007; 4(4): 371-88.
[http://dx.doi.org/10.1517/17425247.4.4.371] [PMID: 17683251]
[4]
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-álvarez A, et al. Drug delivery to the posterior segment of the eye Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. MDPI AG 2020; Vol. 12.
[5]
Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob Health 2017; 5(9): e888-97.
[http://dx.doi.org/10.1016/S2214-109X(17)30293-0] [PMID: 28779882]
[6]
Ameeduzzafar A, Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: Amplify the ocular delivery. Drug Delivery Taylor and Francis Ltd. 2016; 23: 710-26.
[7]
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease Acta Pharmaceutica Sinica B. China: Chinese Academy of Medical Sciences 2017; pp. 281-91.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001]
[8]
Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today 2011; 16(5-6): 270-7.
[http://dx.doi.org/10.1016/j.drudis.2010.12.004] [PMID: 21167306]
[9]
Djebli N, Khier S, Griguer F, et al. Ocular drug distribution after topical administration: Population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet 2017; 42(1): 59-68.
[http://dx.doi.org/10.1007/s13318-016-0319-4] [PMID: 26820265]
[10]
Bansal P, Garg S, Sharma Y, Venkatesh P. Posterior segment drug delivery devices: Current and novel therapies in development J. Ocul Pharmacol Ther Mary Ann Liebert Inc 2016; 32: 135-44.
[11]
Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Ratina 2009; 29(7): 875-912.
[12]
Ambati J, Adamis AP. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res 2002; 21(2): 145-51.
[http://dx.doi.org/10.1016/S1350-9462(01)00018-0] [PMID: 12062532]
[13]
Srirangam R, Hippalgaonkar K, Avula B, Khan IA, Majumdar S. Evaluation of the intravenous and topical routes for ocular delivery of hesperidin and hesperetin. J Ocul Pharmacol Ther 2012; 28(6): 618-27.
[http://dx.doi.org/10.1089/jop.2012.0040] [PMID: 22794525]
[14]
Shikamura Y, Yamazaki Y, Matsunaga T, Sato T, Ohtori A, Tojo K. Hydrogel ring for topical drug delivery to the ocular posterior segment. Curr Eye Res 2016; 41(5): 653-61.
[http://dx.doi.org/10.3109/02713683.2015.1050738] [PMID: 26237665]
[15]
Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009; 26(5): 1197-216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[16]
Miyake K, Ibaraki N. Prostaglandins and cystoid macular edema. Surv Ophthalmol 2002; 47: S203-18.
[http://dx.doi.org/10.1016/S0039-6257(02)00294-1]
[17]
Iwase T, Oveson BC, Hashida N, et al. Topical pazopanib blocks VEGF-induced vascular leakage and neovascularization in the mouse retina but is ineffective in the rabbit. Invest Ophthalmol Vis Sci 2013; 54(1): 503-11.
[http://dx.doi.org/10.1167/iovs.12-10473] [PMID: 23169884]
[18]
Wu H, Chen TC. The effects of intravitreal ophthalmic medications on intraocular pressure. Semin Ophthalmol 2009; 24(2): 100-5.
[http://dx.doi.org/10.1080/08820530902800397] [PMID: 19373694]
[19]
Drug delivery to the retina: Challenges and opportunities. 2006; 46
[20]
Hsu J. Drug delivery methods for posterior segment disease
[http://dx.doi.org/10.1097/ICU.0b013e3281108000]
[21]
Conway BR. Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul 2008; 2(1): 1-8.
[http://dx.doi.org/10.2174/187221108783331410] [PMID: 19075892]
[22]
Cheruvu NPS, Kompella UB. Bovine and porcine transscleral solute transport: Influence of lipophilicity and the Choroid-Bruch’s layer. Invest Ophthalmol Vis Sci 2006; 47(10): 4513-22.
[http://dx.doi.org/10.1167/iovs.06-0404] [PMID: 17003447]
[23]
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004; 1(1): 99-114.
[http://dx.doi.org/10.1517/17425247.1.1.99] [PMID: 16296723]
[24]
Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci 2007; 48(5): 2230-7.
[http://dx.doi.org/10.1167/iovs.06-0954] [PMID: 17460284]
[25]
Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv Drug Deliv Rev 2006; 58(11): 1164-81.
[http://dx.doi.org/10.1016/j.addr.2006.07.025] [PMID: 17069929]
[26]
Mitra AK, Kwatra D, Vadlapudi AD. Drug delivery. 478.
[27]
Barsofti MF, Bartels SP, Freddo TF, Kamm RD. The source of protein in the aqueous humor of the normal monkey eye. Invest Ophthalmol Vis Sci 1992; 33(3): 581-95.
[28]
Mann BK, Stirland DL, Lee HK, Wirostko BM. Ocular translational science: A review of development steps and paths. Advanced Drug Delivery Reviews. Elsevier BV. 2018; 126: pp. 195-203.
[29]
Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation Pharmaceutical Research New York LLC. Springer 2018; Vol. 35.
[30]
Ahn SJ, Hong HK, Na YM, et al. Use of rabbit eyes in pharmacokinetic studies of intraocular drugs. Journal of Visualized Experiments 2016; 2016(113)
[http://dx.doi.org/10.3791/53878]
[31]
Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discovery Today Elsevier Ltd 2019; 24: 1679-84.
[http://dx.doi.org/10.1016/j.drudis.2019.05.035]
[32]
Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Reviews in Medicinal Chemistry 2005; Vol. 5.
[33]
Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye. Dev Ophthalmol 2017; 58: 87-101.
[http://dx.doi.org/10.1159/000455276] [PMID: 28351054]
[34]
Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: A potential approach for ocular drug delivery. J Control Release 2009; 136(1): 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.018] [PMID: 19331856]
[35]
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. Future Medicine Ltd. 2013; 8: pp. 1509-28.
[36]
Tavakoli S, Puranen J, Bahrpeyma S, et al. Liposomal sunitinib for ocular drug delivery: A potential treatment for choroidal neovascularization. Int J Pharm 2022; 620: 121725. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517322002800
[http://dx.doi.org/10.1016/j.ijpharm.2022.121725] [PMID: 35405282]
[37]
Blazaki S, Pachis K, Tzatzarakis M, Tsilimbaris M, Antimisiaris SG. Novel liposome aggregate platform (LAP) system for sustained retention of drugs in the posterior ocular segment following intravitreal injection. Int J Pharm 2020; 576: 118987.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118987] [PMID: 31870961]
[38]
Navarro-Partida J, Altamirano-Vallejo JC, Gonzalez-De la Rosa A, Armendariz-Borunda J, Castro-Castaneda CR, Santos A. Safety and tolerability of topical ophthalmic triamcinolone acetonide-loaded liposomes formulation and evaluation of its biologic activity in patients with diabetic macular edema. Pharmaceutics 2021; 13(3): 1-17.
[http://dx.doi.org/10.3390/pharmaceutics13030322] [PMID: 33801366]
[39]
Hironaka K, Inokuchi Y, Tozuka Y, Shimazawa M, Hara H, Takeuchi H. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 2009; 136(3): 247-53.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.020] [PMID: 19272407]
[40]
Hironaka K, Inokuchi Y, Fujisawa T, et al. Edaravone-loaded liposomes for retinal protection against oxidative stress-induced retinal damage. Eur J Pharm Biopharm 2011; 79(1): 119-25.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.019] [PMID: 21303692]
[41]
Tremblay C, Barza M, Szoka F, Lahav M. Reduced toxicity of liposome-associafed amphotericin b injected intravifreally in rabbits
[42]
Inokuchi Y, Hironaka K, Fujisawa T, et al. Physicochemical properties affecting retinal drug/coumarin-6 delivery from nanocarrier systems via eyedrop administration. Invest Ophthalmol Vis Sci 2010; 51(6): 3162-70.
[http://dx.doi.org/10.1167/iovs.09-4697] [PMID: 20053972]
[43]
Fujisawa T, Miyai H, Hironaka K, et al. Liposomal diclofenac eye drop formulations targeting the retina: Formulation stability improvement using surface modification of liposomes. Int J Pharm 2012; 436(1-2): 564-7.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.024] [PMID: 22828072]
[44]
Davis BM, Normando EM, Guo L, et al. Topical delivery of avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 2014; 10(8): 1575-84.
[http://dx.doi.org/10.1002/smll.201303433] [PMID: 24596245]
[45]
Claro C, Ruiz R, Cordero E, et al. Determination and pharmacokinetic profile of liposomal foscarnet in rabbit ocular tissues after intravitreal administration. Exp Eye Res 2009; 88(3): 528-34.
[http://dx.doi.org/10.1016/j.exer.2008.11.015] [PMID: 19084004]
[46]
Zhang R, He R, Qian J, Guo J, Xue K, Yuan YF. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 2010; 51(7): 3575-82.
[http://dx.doi.org/10.1167/iovs.09-4373] [PMID: 20164461]
[47]
Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv 2019; 26(1): 188-98.
[http://dx.doi.org/10.1080/10717544.2019.1571122] [PMID: 30835587]
[48]
Khalil M, Hashmi U, Riaz R, Rukh Abbas S. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol 2020; 143: 483-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.256] [PMID: 31759018]
[49]
Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H. Retinal drug delivery using eyedrop preparations of poly-L-lysine-modified liposomes. Eur J Pharm Biopharm 2013; 83(3): 364-9.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.014] [PMID: 23153668]
[50]
Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm 2022; 172: 144-56.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.010] [PMID: 35183717]
[51]
Kakkar S, Singh M, Mohan Karuppayil S, et al. Lipo-PEG nano-ocular formulation successfully encapsulates hydrophilic fluconazole and traverses corneal and non-corneal path to reach posterior eye segment. J Drug Target 2021; 29(6): 631-50.
[http://dx.doi.org/10.1080/1061186X.2020.1871483] [PMID: 33410357]
[52]
Araújo J, Nikolic S, Egea MA, Souto EB, Garcia ML. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B Biointerfaces 2011; 88(1): 150-7.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.025] [PMID: 21764568]
[53]
Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin 2016.
[54]
Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 2016; 109: 214-23.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[55]
Lakhani P, Patil A, Wu KW, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm 2019; 572: 118771.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118771] [PMID: 31669555]
[56]
Ustündağ-Okur N, Gökçe EH, Bozbıyık DI, Eğrilmez S, Özer O, Ertan G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci 2014; 63: 204-15.
[http://dx.doi.org/10.1016/j.ejps.2014.07.013] [PMID: 25111119]
[57]
Delrish E, Ghassemi F, Jabbarvand M, et al. Biodistribution of Cy5-labeled thiolated and methylated chitosan-carboxymethyl dextran nanoparticles in an animal model of retinoblastoma. J Ophthalmic Vis Res 2022; 17(1): 58-68.
[PMID: 35194497]
[58]
Silva B, Gonçalves LM, Braz BS, Delgado E. Chitosan and hyaluronic acid nanoparticles as vehicles of epoetin beta for subconjunctival ocular delivery. Mar Drugs 2022; 20(2): 151.
[http://dx.doi.org/10.3390/md20020151] [PMID: 35200680]
[59]
Pinto J, Ahmad M, Guru BR. Enhancing the efficacy of fluocinolone acetonide by encapsulating with PLGA nanoparticles and conjugating with linear PEG polymer. J Biomater Sci Polym Ed 2019; 30(13): 1188-211.
[http://dx.doi.org/10.1080/09205063.2019.1625524] [PMID: 31215325]
[60]
Bolla PK, Gote V, Singh M, Patel M, Clark BA, Renukuntla J. Lutein-loaded, biotin-decorated polymeric nanoparticles enhance lutein uptake in retinal cells. Pharmaceutics 2020; 12(9): 1-17.
[http://dx.doi.org/10.3390/pharmaceutics12090798] [PMID: 32847030]
[61]
Bhatt P, Fnu G, Bhatia D, Shahid A, Sutariya V. Nanodelivery of resveratrol-loaded PLGA nanoparticles for age-related macular degeneration. AAPS PharmSciTech 2020; 21(8): 291.
[http://dx.doi.org/10.1208/s12249-020-01836-4] [PMID: 33085055]
[62]
Tahara K, Karasawa K, Onodera R, Takeuchi H. Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles. Asian J Pharm Sci 2017; 12(4): 394-9.
[http://dx.doi.org/10.1016/j.ajps.2017.03.002] [PMID: 32104351]
[63]
Gonzalez-Pizarro R, Parrotta G, Vera R, et al. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine (Lond) 2019; 14(23): 3089-104.
[http://dx.doi.org/10.2217/nnm-2019-0201] [PMID: 31769335]
[64]
Mousavikhamene Z, Abdekhodaie MJ, Ahmadieh H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Mater Sci Eng C 2017; 79: 812-20.
[http://dx.doi.org/10.1016/j.msec.2017.05.015] [PMID: 28629084]
[65]
Kim H, Robinson MR, Lizak MJ, et al. Controlled drug release from an ocular implant: An evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci 2004; 45(8): 2722-31.
[http://dx.doi.org/10.1167/iovs.04-0091] [PMID: 15277497]
[66]
Laradji A, Karakocak BB, Kolesnikov AV, Kefalov VJ, Ravi N. Hyaluronic acid-based gold nanoparticles for the topical delivery of therapeutics to the retina and the retinal pigment epithelium. Polymers (Basel) 2021; 13(19): 3324.
[http://dx.doi.org/10.3390/polym13193324] [PMID: 34641139]
[67]
Bode C, Kranz H, Siepmann F, Siepmann J. In-situ forming PLGA implants for intraocular dexamethasone delivery. Int J Pharm 2018; 548(1): 337-48.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.013] [PMID: 29981408]
[68]
Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003; 44(8): 3562-9.
[http://dx.doi.org/10.1167/iovs.02-1068] [PMID: 12882808]
[69]
Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: Optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol 2017; 45(7): 1397-407.
[http://dx.doi.org/10.1080/21691401.2016.1243545] [PMID: 27855494]
[70]
Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm 2016; 13(9): 2923-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00335] [PMID: 27286558]
[71]
Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res 2009; 26(2): 329-37.
[http://dx.doi.org/10.1007/s11095-008-9745-6] [PMID: 18958405]
[72]
Zhang L, Li Y, Zhang C, Wang Y. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine 2009. Available from: www.dovepress.com
[73]
Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(5): 422-37.
[http://dx.doi.org/10.1002/wnan.1272]
[74]
Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[75]
Xu X, Sun L, Zhou L, Cheng Y, Cao F. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym 2020; 227: 115356.
[http://dx.doi.org/10.1016/j.carbpol.2019.115356] [PMID: 31590850]
[76]
Nikita AM. Sultana Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur J Pharm Sci 2021; 159: 105735.
[77]
Weng YH, Ma XW, Che J, et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv Sci (Weinh) 2017; 5(1): 1700455.
[http://dx.doi.org/10.1002/advs.201700455] [PMID: 29375972]
[78]
Zhang H, Wang L, Zhang L. Cyclosporine nanomicelle eye drop: A novel medication for corneal graft transplantation treatment. Biol Pharm Bull 2015; 38(6): 893-900.
[http://dx.doi.org/10.1248/bpb.b15-00111]
[79]
Patel S, Garapati C, Chowdhury P, et al. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J Ocul Pharmacol Ther 2015; 31(4): 215-27.
[http://dx.doi.org/10.1089/jop.2014.0152] [PMID: 25839185]
[80]
Pharmaceutics M, Mandal A, Cholkar K, et al. Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem) Topical formulation of self-assembled antiviral prodrug nanomicelles for targeted retinal delivery [Internet]. 2017. Available from: pubs.acs.org
[81]
Cholkar K, Gunda S, Earla R, Pal D, Mitra AK. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech 2015; 16(3): 610-22.
[http://dx.doi.org/10.1208/s12249-014-0244-2] [PMID: 25425389]
[82]
Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Mucoadhesive PLGA nanospheres and nanocapsules for lactoferrin controlled ocular delivery. Pharmaceutics 2022; 14(4): 799. Available from: https://www.mdpi.com/1999-4923/14/4/799
[http://dx.doi.org/10.3390/pharmaceutics14040799] [PMID: 35456633]
[83]
Witkin AJ, Hahn P, Murray TG, et al. Occlusive retinal vasculitis following intravitreal brolucizumab. J Vitreoretin Dis 2020; 4(4): 269-79.
[http://dx.doi.org/10.1177/2474126420930863] [PMID: 32789284]
[84]
Chakraborty D, Sheth JU, Mondal S, Boral S. Role of intravitreal brolucizumab with intravitreal rtPA and pneumatic displacement for submacular hemorrhage: A case series. Am J Ophthalmol Case Rep 2022; 25: 101390.
[http://dx.doi.org/10.1016/j.ajoc.2022.101390] [PMID: 35198814]
[85]
Haug SJ, Hien DL, Uludag G, et al. Retinal arterial occlusive vasculitis following intravitreal brolucizumab administration. Am J Ophthalmol Case Rep 2020; 18: 100680.
[http://dx.doi.org/10.1016/j.ajoc.2020.100680] [PMID: 32258827]
[86]
Khanani AM, Zarbin MA, Barakat MR, et al. Safety outcomes of brolucizumab in neovascular age-related macular degeneration: Results from the IRIS registry and komodo healthcare map. JAMA Ophthalmol 2022; 140(1): 20-8.
[http://dx.doi.org/10.1001/jamaophthalmol.2021.4585] [PMID: 34817566]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy