Abstract
Introduction: Protein S-nitrosylation (SNO) and O-GlcNAcylation are important posttranslational modifications. The biological connection between SNO and O-GlcNAcylation is not clear.
Objective: We aim to identify the crosstalk between SNO and O-GlcNAcylation during heat-shock.
Methods: Ex vivo heat-shock on mouse tissues together with in vitro heat-shock on culture cells was performed and global levels of SNO and O-GlcNAcylation were analyzed with Biotin-switch assay (BSA) and RL2 immunoblots.
Results: Heat-shock induces hypo-SNO in parallel with hyper-O-GlcNAcylation. Inverted induction of hypo-SNO and hyper-O-GlcNAcylation is globally progressed in a time-dependent manner.
Discussion: Moreover, heat-shock ubiquitously facilitates S-denitrosylation (SdeNO) of endogenous SNO-proteins including SNO-OGT, SNO-Hsp70, SNO-Hsp90, SNO-Akt, and SNOactin. Particularly, SdeNO of SNO-OGT leads to enhanced OGT activity.
Conclusion: These findings provide mechanistic evidence that heat-shock triggers SdeNO of SNOOGT by which OGT activity is up-regulated, resulting in hyper-O-GlcNAcylation.
Keywords: S-nitrosylation, O-GlcNAcylation, N-acetylglucosaminyltransferase, S-denitrosylation, ex vivo heat-shock, in vitro heat-shock.
Graphical Abstract
[http://dx.doi.org/10.1089/ars.2017.7403] [PMID: 29130312]
[http://dx.doi.org/10.1038/nrm1569] [PMID: 15688001]
[http://dx.doi.org/10.1042/bj3570593] [PMID: 11463332]
[http://dx.doi.org/10.1089/ars.2012.4703] [PMID: 22657837]
[http://dx.doi.org/10.1016/j.cell.2014.09.032] [PMID: 25417112]
[http://dx.doi.org/10.1016/j.tips.2015.10.002] [PMID: 26707925]
[http://dx.doi.org/10.1038/380221a0] [PMID: 8637569]
[http://dx.doi.org/10.1016/S0896-6273(00)80310-4] [PMID: 9182795]
[http://dx.doi.org/10.1016/j.trecan.2017.09.003] [PMID: 29120749]
[http://dx.doi.org/10.1016/j.jmb.2009.10.042] [PMID: 19854201]
[http://dx.doi.org/10.1073/pnas.1008036107] [PMID: 20837516]
[http://dx.doi.org/10.1038/nrm2764] [PMID: 19738628]
[http://dx.doi.org/10.1186/1477-7819-11-118] [PMID: 23718886]
[http://dx.doi.org/10.1042/BCJ20200064] [PMID: 33017470]
[http://dx.doi.org/10.1016/j.nbd.2015.03.017] [PMID: 25796565]
[http://dx.doi.org/10.1016/j.bbadis.2018.11.007] [PMID: 30500433]
[http://dx.doi.org/10.1111/jnc.14242] [PMID: 29049853]
[http://dx.doi.org/10.1021/acs.chemrev.0c00884] [PMID: 33416322]
[http://dx.doi.org/10.1073/pnas.100471497] [PMID: 10801981]
[http://dx.doi.org/10.1016/j.bbrc.2004.08.023] [PMID: 15336570]
[http://dx.doi.org/10.1101/gad.305441.117] [PMID: 28903979]
[http://dx.doi.org/10.1074/jbc.270.32.18961] [PMID: 7642555]
[http://dx.doi.org/10.1074/jbc.M404133200] [PMID: 15199059]
[http://dx.doi.org/10.1016/j.sbi.2018.12.003] [PMID: 30708324]
[http://dx.doi.org/10.1016/j.brainresbull.2016.08.002] [PMID: 27497832]
[http://dx.doi.org/10.1016/j.jmb.2016.05.028] [PMID: 27343361]
[http://dx.doi.org/10.1038/nature12537] [PMID: 24077098]
[http://dx.doi.org/10.1016/j.bbrc.2011.03.115] [PMID: 21453677]
[http://dx.doi.org/10.1016/j.bbapap.2016.02.003] [PMID: 26854602]
[http://dx.doi.org/10.1126/stke.2001.86.pl1] [PMID: 11752655]
[http://dx.doi.org/10.1093/cvr/cvp154] [PMID: 19447776]
[http://dx.doi.org/10.1073/pnas.0407294102] [PMID: 15937123]
[http://dx.doi.org/10.1074/jbc.M411871200] [PMID: 15632167]
[http://dx.doi.org/10.1023/A:1005671319604] [PMID: 10961840]
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00660.x] [PMID: 8670798]
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]