Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Bourgeoning Cancer Targets

Author(s): Priyanka Kriplani*

Volume 18, Issue 2, 2023

Published on: 13 September, 2022

Page: [147 - 160] Pages: 14

DOI: 10.2174/1574892817666220804142633

Price: $65

Abstract

Identifying cancer genomes has provided acuity into somatically altered genes athwart tumors, transformed our understanding of biology, and helped us design therapeutic strategies. Though the action of most cancer cells remains furtive yet many features of cancer surpass their genomes. Consequently, the characterization of tumor genome does not affect the treatment of many patients. Strategies to know the circuity and function of cancer genes provide corresponding methods to explicate both non-oncogene and oncogene deficiencies. The emerging techniques specify that the therapeutic targets produced by non-oncogene deficiencies are much grander than the mutated genes. In the present review, a framework of the long-drawn-out list of cancer targets viz. synthetic lethal targets, oncogene dependence, response to DNA damage, tumor suppressor rescue, metabolic susceptibility, protein-protein interaction, cell state or master regulators, targeting immune cells, fibroblasts, etc. giving innovative prospects for clinical translation, are discussed.

Keywords: Cancer, checkpoint, extrinsic targets, intrinsic targets, metabolic susceptibility, epigenetic.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Topatana W, Juengpanich S, Li S, et al. Advances in synthetic lethality for cancer therapy: Cellular mechanism and clinical translation. J Hematol Oncol 2020; 13(1): 118.
[http://dx.doi.org/10.1186/s13045-020-00956-5] [PMID: 32883316]
[5]
Cancer Target Discovery and Development Network. Transforming big data into cancer-relevant insight: an initial, multi-tier approach to assess reproducibility and relevance. Mol Cancer Res 2016; 14(8): 675-82.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0090] [PMID: 27401613]
[6]
Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell 2009; 136(5): 823-37.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[7]
Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002; 297(5578): 63-4.
[http://dx.doi.org/10.1126/science.1073096] [PMID: 12098689]
[8]
Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrating genetic approaches into the discovery of anticancer drugs. Science 1997; 278(5340): 1064-8.
[http://dx.doi.org/10.1126/science.278.5340.1064] [PMID: 9353181]
[9]
Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017; 355(6330): 1152-8.
[http://dx.doi.org/10.1126/science.aam7344] [PMID: 28302823]
[10]
Chan EM, Shibue T, McFarland JM, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 2019; 568(7753): 551-6.
[http://dx.doi.org/10.1038/s41586-019-1102-x] [PMID: 30971823]
[11]
Lui GYL, Shaw R, Schaub FX, et al. BET, SRC, and BCL2 family inhibitors are synergistic drug combinations with PARP inhibitors in ovarian cancer. EBioMedicine 2020; 60: 102988.
[http://dx.doi.org/10.1016/j.ebiom.2020.102988] [PMID: 32927276]
[12]
Toyoshima M, Howie HL, Imakura M, et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109(24): 9545-50.
[http://dx.doi.org/10.1073/pnas.1121119109] [PMID: 22623531]
[13]
Nijhawan D, Zack TI, Ren Y, et al. Cancer vulnerabilities unveiled by genomic loss. Cell 2012; 150(4): 842-54.
[http://dx.doi.org/10.1016/j.cell.2012.07.023] [PMID: 22901813]
[14]
Mavrakis KJ, McDonald ER III, Schlabach MR, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 2016; 351(6278): 1208-13.
[http://dx.doi.org/10.1126/science.aad5944] [PMID: 26912361]
[15]
Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 2016; 351(6278): 1214-8.
[http://dx.doi.org/10.1126/science.aad5214] [PMID: 26912360]
[16]
Muller FL, Colla S, Aquilanti E, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 2012; 488(7411): 337-42.
[http://dx.doi.org/10.1038/nature11331] [PMID: 22895339]
[17]
Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell 2017; 170(3): 564-576.e16.
[http://dx.doi.org/10.1016/j.cell.2017.06.010] [PMID: 28753430]
[18]
Helming KC, Wang X, Wilson BG, et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 2014; 20(3): 251-4.
[http://dx.doi.org/10.1038/nm.3480] [PMID: 24562383]
[19]
Niedermaier B, Sak A, Zernickel E, Xu S, Groneberg M, Stuschke M. Targeting ARID1A-mutant colorectal cancer: Depletion of ARID1B increases radiosensitivity and modulates DNA damage response. Sci Rep 2019; 9(1): 18207.
[http://dx.doi.org/10.1038/s41598-019-54757-z] [PMID: 31796878]
[20]
Scott GK, Benz CC. Inhibition of proline catabolism for the treatment of cancer and other therapeutic applications. U.S. Patent 10517844B2, 2019.
[21]
Chunk BK, Romero FA, Don Y, Taylor AM. Therapeutic pyridazine compounds and uses thereof. C.N. Patent 107531668B, 2018.
[22]
Irwin J, Sutphin P, Chan D, et al. Synthetic lethal targeting of glucose transport. U.S. Patent 9079859B2, 2015.
[23]
Han H. Methods and kits to predict therapeutic outcome of BTK inhibitors. U.S. Patent 10322127B2, 2019.
[24]
Amin A, Awad B. Crocin-sorafenib combination therapy for liver cancer. U.S. Patent 20210015835, 2021.
[25]
Amin A, AlMansoori A, Baig B. Safranal-sorafenib combination therapy for liver cancer. U.S. Patent 10568873, 2020.
[26]
Abdalla A, Murali C, Amin A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front Oncol 2022; 11: 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[27]
Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: Promises and perils. EMBO Mol Med 2011; 3(11): 623-36.
[http://dx.doi.org/10.1002/emmm.201100176] [PMID: 21953712]
[28]
Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell 2020; 37(4): 530-42.
[http://dx.doi.org/10.1016/j.ccell.2020.03.006] [PMID: 32289275]
[29]
Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A review. JAMA 2019; 322(8): 764-74.
[http://dx.doi.org/10.1001/jama.2019.11058] [PMID: 31454018]
[30]
Bannon AE, Klug LR, Corless CL, Heinrich MC. Using molecular diagnostic testing to personalize the treatment of patients with gastrointestinal stromal tumors. Expert Rev Mol Diagn 2017; 17(5): 445-57.
[http://dx.doi.org/10.1080/14737159.2017.1308826] [PMID: 28317407]
[31]
Waks AG, Winer EP. Breast cancer treatment: A review. JAMA 2019; 321(3): 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[32]
Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463(7283): 899-905.
[http://dx.doi.org/10.1038/nature08822] [PMID: 20164920]
[33]
Prior IA, Hood FE, Hartley JL. The frequency of ras mutations in cancer. Cancer Res 2020; 80(14): 2969-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3682] [PMID: 32209560]
[34]
Shi Z, Guo H-Q, Cohen PA, Yang D-H. Editorial: Novel targets and biomarkers in solid tumors. Front Pharmacol 2019; 10: 828.
[http://dx.doi.org/10.3389/fphar.2019.00828] [PMID: 31417402]
[35]
Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: Is the undruggable drugged? Nat Rev Drug Discov 2020; 19(8): 533-52.
[http://dx.doi.org/10.1038/s41573-020-0068-6] [PMID: 32528145]
[36]
Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov 2014; 13(11): 828-51.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
[37]
Dang CV. MYC on the path to cancer. Cell 2012; 149(1): 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[38]
Gysin S, Salt M, Young A, McCormick F. Therapeutic strategies for targeting ras proteins. Genes Cancer 2011; 2(3): 359-72.
[http://dx.doi.org/10.1177/1947601911412376] [PMID: 21779505]
[39]
Dong MB, Wang G, Chow RD, et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T Cells. Cell 2019; 178(5): 1189-1204.e23.
[http://dx.doi.org/10.1016/j.cell.2019.07.044] [PMID: 31442407]
[40]
Schaub FX, Dhankani V, Berger AC, et al. Pan cancer alterations of the MYC oncogene and its proximal network across the cancer genome atlas. Cell Syst 2018; 6(3): 282-300.e2.
[http://dx.doi.org/10.1016/j.cels.2018.03.003] [PMID: 29596783]
[41]
Abassi AY, Zhao L, Ke N, Wang X, Xu X. Using impedance-based cell response profiling to identify putative inhibitors for oncogene addicted targets or pathways. U.S. Patent 10620188B2, 2020.
[42]
Azam M, Kesarwani M. Therapy for leukemia. U.S. Patent 20180125799A1, 2018.
[43]
Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in xancer: Beyond PARP inhibitors. Cancer Discov 2017; 7(1): 20-37.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0860] [PMID: 28003236]
[44]
Findlay GM, Daza RM, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 2018; 562(7726): 217-22.
[http://dx.doi.org/10.1038/s41586-018-0461-z] [PMID: 30209399]
[45]
Pettitt SJ, Krastev DB, Brandsma I, et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun 2018; 9(1): 1849.
[http://dx.doi.org/10.1038/s41467-018-03917-2] [PMID: 29748565]
[46]
Hahn CW, Aguirre A, Cook A, et al. Compositions and methods for targeting cancer-specific sequence variations. E.P. Patent 3368687B1, 2018.
[47]
Wang T, Birsoy K, Hughes NW, et al. Identification and characterization of essential genes in the human genome. Science 2015; 350(6264): 1096-101.
[http://dx.doi.org/10.1126/science.aac7041] [PMID: 26472758]
[48]
Levine AJ. The many faces of p53: Something for everyone. J Mol Cell Biol 2019; 11(7): 524-30.
[http://dx.doi.org/10.1093/jmcb/mjz026] [PMID: 30925588]
[49]
Tang C, Mo X, Niu Q, et al. Hypomorph mutation-directed small-molecule protein-protein interaction inducers to restore mutant SMAD4-suppressed TGF-β signaling. Cell Chem Biol 2021; 28(5): 636-647.e5.
[http://dx.doi.org/10.1016/j.chembiol.2020.11.010] [PMID: 33326750]
[50]
Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. Nat Med 2019; 25(5): 850-60.
[http://dx.doi.org/10.1038/s41591-019-0404-8] [PMID: 31068703]
[51]
Wagner AD, Buechner-Steudel P, Wein A, et al. Gemcitabine, oxaliplatin and weekly high-dose 5-FU as 24-h infusion in chemonaive patients with advanced or metastatic pancreatic adenocarcinoma: A multicenter phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Ann Oncol 2007; 18(1): 82-7.
[http://dx.doi.org/10.1093/annonc/mdl340] [PMID: 17030546]
[52]
Zhu G, Li H, Zhang Y, Li Y, Liang S, Liu J. Concomitant pulmonary and thyroid tumors identified by FDG PET/CT and immunohistochemical techniques. World J Surg Oncol 2011; 9: 119.
[http://dx.doi.org/10.1186/1477-7819-9-119] [PMID: 21974801]
[53]
Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell 2018; 173(4): 822-37.
[http://dx.doi.org/10.1016/j.cell.2018.03.055] [PMID: 29727671]
[54]
Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017; 168(4): 657-69.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[55]
Corte´ s-Cros M, Hemmerlin C, Ferretti S, et al. M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth. Proc Natl Acad Sci USA 2013; 110: 489-94.
[56]
Raez LE, Papadopoulos K, Ricart AD, et al. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71(2): 523-30.
[http://dx.doi.org/10.1007/s00280-012-2045-1] [PMID: 23228990]
[57]
DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104(49): 19345-50.
[http://dx.doi.org/10.1073/pnas.0709747104] [PMID: 18032601]
[58]
Jain M, Nilsson R, Sharma S, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336(6084): 1040-4.
[http://dx.doi.org/10.1126/science.1218595] [PMID: 22628656]
[59]
Kim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 2015; 520(7547): 363-7.
[http://dx.doi.org/10.1038/nature14363] [PMID: 25855294]
[60]
Piskounova E, Agathocleous M, Murphy MM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015; 527(7577): 186-91.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[61]
Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 2015; 162(3): 552-63.
[http://dx.doi.org/10.1016/j.cell.2015.07.017] [PMID: 26232225]
[62]
Sullivan LB, Luengo A, Danai LV, et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol 2018; 20(7): 782-8.
[http://dx.doi.org/10.1038/s41556-018-0125-0] [PMID: 29941931]
[63]
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161-80.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.028] [PMID: 28938091]
[64]
Menendez JA, Lupu R. Oncogenic properties of the endogenous fatty acid metabolism: Molecular pathology of fatty acid synthase in cancer cells. Curr Opin Clin Nutr Metab Care 2006; 9(4): 346-57.
[http://dx.doi.org/10.1097/01.mco.0000232893.21050.15] [PMID: 16778562]
[65]
Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017; 547(7664): 453-7.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[66]
Li J, Condello S, Thomes-Pepin J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 2017; 20(3): 303-314.e5.
[http://dx.doi.org/10.1016/j.stem.2016.11.004] [PMID: 28041894]
[67]
Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017; 541(7635): 41-5.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[68]
Ventura R, Mordec K, Waszczuk J, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. Ebio Medicine 2015; 2: 806-22.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.020]
[69]
Giró-Perafita A, Palomeras S, Lum DH, et al. Preclinical evaluation of fatty acid synthase and EGFR inhibition in triple negative breast cancer. Clin Cancer Res 2016; 22(18): 4687-97.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-3133] [PMID: 27106068]
[70]
Sampath D, Zabka TS, Misner DL, O’Brien T, Dragovich PS. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol Ther 2015; 151: 16-31.
[http://dx.doi.org/10.1016/j.pharmthera.2015.02.004] [PMID: 25709099]
[71]
Chini CC, Guerrico AM, Nin V, et al. Targeting of NAD metabolism in pancreatic cancer cells: Potential novel therapy for pancreatic tumors. Clin Cancer Res 2014; 20(1): 120-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0150] [PMID: 24025713]
[72]
Casero RA Jr, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 2007; 6(5): 373-90.
[http://dx.doi.org/10.1038/nrd2243] [PMID: 17464296]
[73]
Alexiou GA, Lianos GD, Ragos V, Galani V, Kyritsis AP. Difluoromethylornithine in cancer: New advances. Future Oncol 2017; 13(9): 809-19.
[http://dx.doi.org/10.2217/fon-2016-0266] [PMID: 28125906]
[74]
Alexiou GA, Tsamis KI, Vartholomatos E, et al. Combination treatment of TRAIL, DFMO and radiation for malignant glioma cells. J Neurooncol 2015; 123(2): 217-24.
[http://dx.doi.org/10.1007/s11060-015-1799-9] [PMID: 25935110]
[75]
Mohammed A, Janakiram NB, Madka V, et al. Eflornithine (DFMO) prevents progression of pancreatic cancer by modulating ornithine decarboxylase signaling. Cancer Prev Res (Phila) 2014; 7(12): 1198-209.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0176] [PMID: 25248858]
[76]
Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease. Sci Adv 2019; 5(5): eaaw4543.
[http://dx.doi.org/10.1126/sciadv.aaw4543] [PMID: 31131326]
[77]
DeNicola GM, Chen PH, Mullarky E, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 2015; 47(12): 1475-81.
[http://dx.doi.org/10.1038/ng.3421] [PMID: 26482881]
[78]
Locasale JW, Grassian AR, Melman T, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43(9): 869-74.
[http://dx.doi.org/10.1038/ng.890] [PMID: 21804546]
[79]
Possemato R, Marks KM, Shaul YD, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476(7360): 346-50.
[http://dx.doi.org/10.1038/nature10350] [PMID: 21760589]
[80]
Samanta D, Park Y, Andrabi SA, Shelton LM, Gilkes DM, Semenza GL. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance and lung metastasis. Cancer Res 2016; 76(15): 4430-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0530] [PMID: 27280394]
[81]
Ilic N, Birsoy K, Aguirre AJ, et al. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase. Proc Natl Acad Sci USA 2017; 114(17): E3434-43.
[http://dx.doi.org/10.1073/pnas.1617922114] [PMID: 28396387]
[82]
Baier D, Schoenhacker-Alte B, Rusz M, et al. The anticancer ruthenium compound BOLD-100 targets glycolysis and generates a metabolic vulnerability towards glucose deprivation. Pharmaceutics 2022; 14(2): 238.
[http://dx.doi.org/10.3390/pharmaceutics14020238] [PMID: 35213972]
[83]
Nassan MA, Aldhahrani A, Amer HH, et al. Investigation of the anticancer effect of α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1h)-one on the DMBA model of breast cancer in albino rats with in silico prediction of their thymidylate synthase inhibitory effect. Molecules 2022; 27(3): 756.
[http://dx.doi.org/10.3390/molecules27030756] [PMID: 35164019]
[84]
Li Z, Ivanov AA, Su R, et al. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun 2017; 8: 14356.
[http://dx.doi.org/10.1038/ncomms14356] [PMID: 28205554]
[85]
Huttlin EL, Bruckner RJ, Paulo JA, et al. Architecture of the human interactome defines protein communities and disease networks. Nature 2017; 545(7655): 505-9.
[http://dx.doi.org/10.1038/nature22366] [PMID: 28514442]
[86]
Zhang QC, Petrey D, Deng L, et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 2012; 490(7421): 556-60.
[http://dx.doi.org/10.1038/nature11503] [PMID: 23023127]
[87]
Stoll R, Renner C, Hansen S, et al. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 2001; 40(2): 336-44.
[http://dx.doi.org/10.1021/bi000930v] [PMID: 11148027]
[88]
Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19(1): 1-11.
[http://dx.doi.org/10.1128/MCB.19.1.1] [PMID: 9858526]
[89]
Cole MD, Cowling VH. Transcription-independent functions of MYC: Regulation of translation and DNA replication. Nat Rev Mol Cell Biol 2008; 9(10): 810-5.
[http://dx.doi.org/10.1038/nrm2467] [PMID: 18698328]
[90]
Herold S, Herkert B, Eilers M. Facilitating replication under stress: An oncogenic function of MYC? Nat Rev Cancer 2009; 9(6): 441-4.
[http://dx.doi.org/10.1038/nrc2640] [PMID: 19461668]
[91]
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653-99.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.653] [PMID: 11031250]
[92]
Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 1992; 359(6394): 423-6.
[http://dx.doi.org/10.1038/359423a0] [PMID: 1406955]
[93]
Blackwood EM, Eisenman RN. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251(4998): 1211-7.
[http://dx.doi.org/10.1126/science.2006410] [PMID: 2006410]
[94]
Berg T, Cohen SB, Desharnais J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 2002; 99(6): 3830-5.
[http://dx.doi.org/10.1073/pnas.062036999] [PMID: 11891322]
[95]
Sonenberg N, Dever TE. Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol 2003; 13(1): 56-63.
[http://dx.doi.org/10.1016/S0959-440X(03)00009-5] [PMID: 12581660]
[96]
Garner AL, Janda KD. Protein-protein interactions and cancer: Targeting the central dogma. Curr Top Med Chem 2011; 11(3): 258-80.
[http://dx.doi.org/10.2174/156802611794072614] [PMID: 21320057]
[97]
Bernhard GH, Weijia O. Specific sites for modifying antigens to make immunoconjugates. J.P. Patent 2018134080A, 2018.
[98]
Williams S, Saunders L. Anti-dll3 antibodies and drug conjugates for use in melanoma. U.S. Patent 20170137533A1, 2019.
[99]
Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 2017; 17(2): 116-30.
[http://dx.doi.org/10.1038/nrc.2016.124] [PMID: 27977008]
[100]
Talos F, Mitrofanova A, Bergren SK, Califano A, Shen MM. A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue. Nat Commun 2017; 8: 14662.
[http://dx.doi.org/10.1038/ncomms14662] [PMID: 28429718]
[101]
Carro MS, Lim WK, Alvarez MJ, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010; 463(7279): 318-25.
[http://dx.doi.org/10.1038/nature08712] [PMID: 20032975]
[102]
Paul P, Malakar AK, Chakraborty S. The significance of gene mutations across eight major cancer types. Mutat Res 2019; 781: 88-99.
[http://dx.doi.org/10.1016/j.mrrev.2019.04.004] [PMID: 31416581]
[103]
Alvarez MJ, Subramaniam PS, Tang LH, et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nat Genet 2018; 50(7): 979-89.
[http://dx.doi.org/10.1038/s41588-018-0138-4] [PMID: 29915428]
[104]
Neftel C, Laffy J, Filbin MG, et al. An Integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 2019; 178(4): 835-849.e21.
[http://dx.doi.org/10.1016/j.cell.2019.06.024] [PMID: 31327527]
[105]
Stadhouders R, Filion GJ, Graf T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569(7756): 345-54.
[http://dx.doi.org/10.1038/s41586-019-1182-7] [PMID: 31092938]
[106]
Chen JC, Alvarez MJ, Talos F, et al. Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 2014; 159(2): 402-14.
[http://dx.doi.org/10.1016/j.cell.2014.09.021] [PMID: 25303533]
[107]
Arendt D, Musser JM, Baker CVH, et al. The origin and evolution of cell types. Nat Rev Genet 2016; 17(12): 744-57.
[http://dx.doi.org/10.1038/nrg.2016.127] [PMID: 27818507]
[108]
Grosse-Wilde A, Fouquier d’Hérouël A, McIntosh E, et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One 2015; 10(5): e0126522.
[http://dx.doi.org/10.1371/journal.pone.0126522] [PMID: 26020648]
[109]
Tsoi J, Robert L, Paraiso K, et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 2018; 33(5): 890-904.e5.
[http://dx.doi.org/10.1016/j.ccell.2018.03.017] [PMID: 29657129]
[110]
Janes KA. Single-cell states versus single-cell atlases - two classes of heterogeneity that differ in meaning and method. Curr Opin Biotechnol 2016; 39: 120-5.
[http://dx.doi.org/10.1016/j.copbio.2016.03.015] [PMID: 27042975]
[111]
MacLean AL, Hong T, Nie Q. Exploring intermediate cell states through the lens of single cells. Curr Opin Syst Biol 2018; 9: 32-41.
[http://dx.doi.org/10.1016/j.coisb.2018.02.009] [PMID: 30450444]
[112]
Kim JW, Abudayyeh OO, Yeerna H, et al. Decomposing oncogenic transcriptional signatures to generate maps of divergent cellular states. Cell Syst 2017; 5(2): 105-118.e9.
[http://dx.doi.org/10.1016/j.cels.2017.08.002] [PMID: 28837809]
[113]
Kupiec JJ. A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet 1997; 255(2): 201-8.
[http://dx.doi.org/10.1007/s004380050490] [PMID: 9236778]
[114]
Raj A, van Oudenaarden A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 2008; 135(2): 216-26.
[http://dx.doi.org/10.1016/j.cell.2008.09.050] [PMID: 18957198]
[115]
Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 2017; 546(7658): 431-5.
[http://dx.doi.org/10.1038/nature22794] [PMID: 28607484]
[116]
Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017; 551(7679): 247-50.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[117]
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019; 176(6): 1248-64.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[118]
Wong KM, Horton KJ, Coveler AL, Hingorani SR, Harris WP. Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep 2017; 19(7): 47.
[http://dx.doi.org/10.1007/s11912-017-0608-3] [PMID: 28589527]
[119]
Monje M. Synaptic communication in brain cancer. Cancer Res 2020; 80(14): 2979-82.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0646] [PMID: 32381657]
[120]
Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019; 573(7775): 539-45.
[http://dx.doi.org/10.1038/s41586-019-1563-y] [PMID: 31534222]
[121]
Noy R, Pollard JW. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014; 41(1): 49-61.
[http://dx.doi.org/10.1016/j.immuni.2014.06.010] [PMID: 25035953]
[122]
Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol 2015; 15(2): 73-86.
[http://dx.doi.org/10.1038/nri3789] [PMID: 25614318]
[123]
Gonzalez H, Robles I, Werb Z. Innate and acquired immune surveillance in the postdissemination phase of metastasis. FEBS J 2018; 285(4): 654-64.
[http://dx.doi.org/10.1111/febs.14325] [PMID: 29131550]
[124]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014-22.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[125]
Palucka AK, Coussens LM. The Basis of oncoimmunology. Cell 2016; 164(6): 1233-47.
[http://dx.doi.org/10.1016/j.cell.2016.01.049] [PMID: 26967289]
[126]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[127]
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined Nivolumab and Ipilimumab in advanced melanoma. N Engl J Med 2019; 381(16): 1535-46.
[http://dx.doi.org/10.1056/NEJMoa1910836] [PMID: 31562797]
[128]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[129]
Socinski MA, Jotte RM, Cappuzzo F, et al. IMpower150 study group. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018; 378(24): 2288-301.
[http://dx.doi.org/10.1056/NEJMoa1716948] [PMID: 29863955]
[130]
Kaneda MM, Messer KS, Ralainirina N, et al. Corrigendum: PI3Kγ is a molecular switch that controls immune suppression. Nature 2017; 542(7639): 124.
[http://dx.doi.org/10.1038/nature21026] [PMID: 27974794]
[131]
Zihua W, Zhiyuan H. Tumor immunotherapy prediction biomarker PD-L1 targeting polypeptide and application thereof. C.N. Patent 107459559B, 2020.
[132]
Hekman RM, Hume AJ, Goel RK, et al. Actionable Cyto pathogenic host responses of human alveolar Type 2 cells to SARS-CoV- 2. Mol Cell 2020; 80(6): 1104-1122.e9.
[http://dx.doi.org/10.1016/j.molcel.2020.11.028] [PMID: 33259812]
[133]
Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R. Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol 2018; 52(Pt 2): 178-88.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.003] [PMID: 29104025]
[134]
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348(6230): 62-8.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[135]
Tran HC, Wan Z, Sheard MA, et al. TGFbR1 blockade with Galunisertib (ly2157299) enhances anti-neuroblastoma activity of the Anti-GD2 antibody Dinutuximab (ch14.18) with natural killer cells. Clin Cancer Res 2017; 23(3): 804-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1743] [PMID: 27756784]
[136]
Ishizuka JJ, Manguso RT, Cheruiyot CK, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2019; 565(7737): 43-8.
[http://dx.doi.org/10.1038/s41586-018-0768-9] [PMID: 30559380]
[137]
Lane-Reticker SK, Manguso RT, Haining WN. Pooled in vivo screens for cancer immunotherapy target discovery. Immunotherapy 2018; 10(3): 167-70.
[http://dx.doi.org/10.2217/imt-2017-0164] [PMID: 29370725]
[138]
Manguso RT, Pope HW, Zimmer MD, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017; 547(7664): 413-8.
[http://dx.doi.org/10.1038/nature23270] [PMID: 28723893]
[139]
Pan D, Kobayashi A, Jiang P, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 2018; 359(6377): 770-5.
[http://dx.doi.org/10.1126/science.aao1710] [PMID: 29301958]
[140]
Patel SJ, Sanjana NE, Kishton RJ, et al. Identification of essential genes for cancer immunotherapy. Nature 2017; 548(7669): 537-42.
[http://dx.doi.org/10.1038/nature23477] [PMID: 28783722]
[141]
Parnas O, Jovanovic M, Eisenhaure TM, et al. A Genome- wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 2015; 162(3): 675-86.
[http://dx.doi.org/10.1016/j.cell.2015.06.059] [PMID: 26189680]
[142]
Shifrut E, Carnevale J, Tobin V, et al. Genome-wide CRISPR screens in primary human t cells reveal key regulators of immune function. Cell 2018; 175: 1958-71.
[143]
Ye L, Park JJ, Dong MB, et al. In vivo CRISPR screening in CD8 T cells with AAV-Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat Biotechnol 2019; 37(11): 1302-13.
[http://dx.doi.org/10.1038/s41587-019-0246-4] [PMID: 31548728]
[144]
Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell 2018; 175(7): 1972-1988.e16.
[http://dx.doi.org/10.1016/j.cell.2018.11.021] [PMID: 30550791]
[145]
Jenkins RW, Aref AR, Lizotte PH, et al. Ex vivo profiling of PD- 1 blockade using organotypic tumor spheroids. Cancer Discov 2018; 8(2): 196-215.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0833] [PMID: 29101162]
[146]
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J. Generation of tumor-reactive T Cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174: 1586-98.
[147]
Mo X, Tang C, Niu Q, Ma T, Du Y, Fu H. HTiP: High-throughput immunomodulator phenotypic screening platform to reveal IAP antagonists as anti-cancer immune enhancers. Cell Chem Biol 2019; 26(3): 331-339.e3.
[http://dx.doi.org/10.1016/j.chembiol.2018.11.011] [PMID: 30639259]
[148]
Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol 2020; 41(8): 652-64.
[http://dx.doi.org/10.1016/j.it.2020.06.010] [PMID: 32654925]
[149]
Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006; 6(12): 940-52.
[http://dx.doi.org/10.1038/nri1983] [PMID: 17124515]
[150]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[151]
Teng MW, Galon J, Fridman WH, Smyth MJ. From mice to humans: Developments in cancer immunoediting. J Clin Invest 2015; 125(9): 3338-46.
[http://dx.doi.org/10.1172/JCI80004] [PMID: 26241053]
[152]
Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012; 482(7385): 400-4.
[http://dx.doi.org/10.1038/nature10755] [PMID: 22318521]
[153]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[154]
Chan IS, Knútsdóttir H, Ramakrishnan G, et al. Cancer cells educate natural killer cells to a metastasis-promoting cell state. J Cell Biol 2020; 219(9): e202001134.
[http://dx.doi.org/10.1083/jcb.202001134] [PMID: 32645139]
[155]
Miller JS, Lanier LL. Natural killer cells in cancer immuno-therapy. Annu Rev Cancer Biol 2019; 3: 77-103.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055653]
[156]
Lanier LL. Plastic fantastic innate lymphoid cells. J Exp Med 2019; 216(8): 1726-7.
[http://dx.doi.org/10.1084/jem.20191183] [PMID: 31337734]
[157]
Ashiru O, Boutet P, Fernández-Messina L, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 2010; 70(2): 481-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1688] [PMID: 20068167]
[158]
Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008; 180(11): 7249-58.
[http://dx.doi.org/10.4049/jimmunol.180.11.7249] [PMID: 18490724]
[159]
Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One 2011; 6(2): e16899.
[http://dx.doi.org/10.1371/journal.pone.0016899] [PMID: 21364924]
[160]
Lundholm M, Schröder M, Nagaeva O, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: Mechanism of immune evasion. PLoS One 2014; 9(9): e108925.
[http://dx.doi.org/10.1371/journal.pone.0108925] [PMID: 25268476]
[161]
Ferrari de Andrade L, Tay RE, Pan D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018; 359(6383): 1537-42.
[http://dx.doi.org/10.1126/science.aao0505] [PMID: 29599246]
[162]
Thompson TW, Kim AB, Li PJ, et al. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. eLife 2017; 6: e30881.
[http://dx.doi.org/10.7554/eLife.30881] [PMID: 29231815]
[163]
Amin A. Prevention of liver cancer with safranal-based formulations. U.S. Patent 202002761332020,
[164]
Abdalla Y, Abdalla A, Hamza AA, Amin A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front Pharmacol 2022; 12: 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[165]
Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev 2021; 101(1): 147-76.
[http://dx.doi.org/10.1152/physrev.00048.2019] [PMID: 32466724]
[166]
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigenpresenting cancer-associated fibroblasts. cancer discov 2019; 9: 1102-23.
[167]
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol 2020; 17(8): 487-505.
[http://dx.doi.org/10.1038/s41575-020-0300-1] [PMID: 32393771]
[168]
LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: Origins, functions and translational impact. Dis Model Mech 2018; 11(4): 029447.
[http://dx.doi.org/10.1242/dmm.029447] [PMID: 29686035]
[169]
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20(3): 174-86.
[http://dx.doi.org/10.1038/s41568-019-0238-1] [PMID: 31980749]
[170]
O¨ Ohlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 2017; 214: 579-96.
[171]
Roerink SF, Sasaki N, Lee-Six H, et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 2018; 556(7702): 457-62.
[http://dx.doi.org/10.1038/s41586-018-0024-3] [PMID: 29643510]
[173]
Available from: https://www.biopharmadive.com/news/biotech-10 clinical trials watch in the first half of 2022
[174]
Hahn WC, Bader JS, Braun TP, et al. An expanded universe of cancer targets. Cell 2021; 184(5): 1142-55.
[http://dx.doi.org/10.1016/j.cell.2021.02.020] [PMID: 33667368]
[175]
Willis RE. Targeted cancer therapy: Vital oncogenes and a new molecular genetic paradigm for cancer initiation progression and treatment. Int J Mol Sci 2016; 17(9): E1552.
[http://dx.doi.org/10.3390/ijms17091552] [PMID: 27649156]
[176]
FDA grants accelerated approval to sotorasib for KRAS G12C mutated NSCLC | FDA.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy