Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Insight into the Tubulin-Targeted Anticancer Potential of Noscapine and its Structural Analogs

Author(s): Sanjay Kumar, Bulbul Sagar, Abhay Gaur, Shefali Shukla*, Ekta Pandey and Shikha Gulati

Volume 23, Issue 6, 2023

Published on: 19 September, 2022

Page: [624 - 641] Pages: 18

DOI: 10.2174/1871520622666220804115551

Price: $65

Abstract

Cancer is known as a notorious disease responsible for threatening millions of lives every year. Natural products which act by disrupting the microtubule assembly and dynamics have proven to be highly successful as anticancer agents but their high toxicity owing to lower selectivity has limited their usage. Recently, Noscapine (NOS), a known anti-tussive, has come out to be an effective anti-tubulin candidate with far lesser toxicity. Since its first report as an anti-mitotic agent in 1998, NOS has been extensively studied and modified by various groups of researchers to optimize its anti-tubulin activity. In this review, the recent advancements about the potential of these therapeutic candidates against various cancers have been compiled and analyzed for their inhibitory mechanism in distinct health conditions. It has been observed that the non-polar substitutions (e.g., halides, aryl groups) at specific sites (9-position and N-sites of isoquinoline ring; and modification of a methoxy group) have an enhanced effect on efficacy. The mechanistic studies of NOS and its modified analogs have shown their inhibitory action primarily through interaction with microtubules dynamics thus disrupting the cell-cycle and leading to apoptosis. This review highlights the latest research in the field by providing a rich resource for the researchers to have a hands-on analysis of NOS analogs and the inhibitory action in comparison to other microtubule disrupting anti-cancer agents. The article also documents the newer investigations in studying the potential of noscapine analogs as possible anti-microbial and antiviral agents.

Keywords: Noscapine, antitubulin, antineoplastic agent, antiviral, antiprotozoal, anticancer agent.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Shukla, S.; Sood, A.K.; Goyal, K.; Singh, A.; Sharma, V.; Guliya, N.; Gulati, S.; Kumar, S. Chalcone scaffolds as anticancer drugs: A review on molecular insight in action of mechanisms and anticancer properties. Anticancer. Agents Med. Chem., 2021, 21(13), 1650-1670.
[http://dx.doi.org/10.2174/1871520620999201124212840] [PMID: 33238850]
[3]
Kumar, S.; Diwan, A.; Singh, P.; Gulati, S.; Choudhary, D.; Mongia, A.; Shukla, S.; Gupta, A. Functionalized gold nanostructures: Promising gene delivery vehicles in cancer treatment. RSC Advances, 2019, 9(41), 23894-23907.
[http://dx.doi.org/10.1039/C9RA03608C] [PMID: 35530631]
[4]
Rida, P.C.G. LiVecche, D.; Ogden, A.; Zhou, J.; Aneja, R. The noscapine chronicle: A pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med. Res. Rev., 2015, 35(5), 1072-1096.
[http://dx.doi.org/10.1002/med.21357] [PMID: 26179481]
[5]
Tomar, R.; Sahni, A.; Chandra, I.; Tomar, V.; Chandra, R. Review of noscapine and its analogues as potential anti-cancer drugs. Mini Rev. Org. Chem., 2018, 15(5), 345-363.
[http://dx.doi.org/10.2174/1570193X15666180221153911]
[6]
Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J.A.; Tekmal, R.R.; Petros, J.; Joshi, H.C. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc. Natl. Acad. Sci. USA, 1998, 95(4), 1601-1606.
[http://dx.doi.org/10.1073/pnas.95.4.1601] [PMID: 9465062]
[7]
Ramesh, G.; Kumar, S.S. Noscapine - a novel anticancer drug for the treatment of primary/secondary brain tumor. Asian J. Pharm., 2018, 12(2), S428-S432.
[8]
Ajeawung, N.F.; Joshi, H.C.; Kamnasaran, D. Investigation of targetin, a microtubule binding agent which regresses the growth of pediatric high and low grade gliomas. J. Pediatr. Oncol., 2013, 1, 32-40.
[http://dx.doi.org/10.14205/2309-3021.2013.01.01.5] [PMID: 24749125]
[9]
Doddapaneni, R.; Patel, K.; Chowdhury, N.; Singh, M. Reversal of drug-resistance by noscapine chemo-sensitization in docetaxel resistant triple negative breast cancer. Sci. Rep., 2017, 7(1), 15824.
[http://dx.doi.org/10.1038/s41598-017-15531-1] [PMID: 29158480]
[10]
Esnaashari, S.S.; Muhammadnejad, S.; Amanpour, S.; Amani, A. A combinational approach towards treatment of breast cancer: An analysis of noscapine-loaded polymeric nanoparticles and doxorubicin. AAPS PharmSciTech, 2020, 21(5), 166.
[http://dx.doi.org/10.1208/s12249-020-01710-3] [PMID: 32504144]
[11]
Verma, P.; Nagireddy, P.K.R.; Prassanawar, S.S.; Nirmala, J.G.; Gupta, A.; Kantevari, S.; Lopus, M. 9-PAN promotes tubulin- and ROS-mediated cell death in human triple-negative breast cancer cells. J. Pharm. Pharmacol., 2020, 72(11), 1585-1594.
[http://dx.doi.org/10.1111/jphp.13349] [PMID: 32959391]
[12]
Dash, S.G.; Kantevari, S.; Pandey, S.K.; Naik, P.K. Synergistic interaction of N-3-Br-benzyl-noscapine and docetaxel abrogates oncogenic potential of breast cancer cells. Chem. Biol. Drug Des., 2021, 98(3), 466-479.
[http://dx.doi.org/10.1111/cbdd.13902] [PMID: 34107169]
[13]
Tian, X.; Liu, M.; Huang, X.; Zhu, Q.; Liu, W.; Chen, W.; Zou, Y.; Cai, Y.; Huang, S.; Chen, A.; Zhan, T.; Huang, M.; Chen, X.; Han, Z.; Tan, J. Noscapine induces apoptosis in human colon cancer cells by regulating mitochondrial damage and warburg effect via PTEN/PI3K/mTOR signaling pathway. OncoTargets Ther., 2020, 13, 5419-5428.
[http://dx.doi.org/10.2147/OTT.S232137] [PMID: 32606759]
[14]
Babanezhad Harikandei, K.; Salehi, P.; Ebrahimi, S.N.; Bararjanian, M.; Kaiser, M.; Khavasi, H.R.; Al-Harrasi, A. N-substituted noscapine derivatives as new antiprotozoal agents: Synthesis, antiparasitic activity and molecular docking study. Bioorg. Chem., 2019, 91, 103116.
[http://dx.doi.org/10.1016/j.bioorg.2019.103116] [PMID: 31377384]
[15]
Kumar, A.; Kumar, D.; Kumar, R.; Singh, P.; Chandra, R.; Kumari, K. DFT and docking studies of designed conjugates of noscapines & repurposing drugs: Promising inhibitors of main protease of SARS-CoV-2 and falcipan-2. J. Biomol. Struct. Dyn., 2022, 40(6), 2600-2620.
[http://dx.doi.org/10.1080/07391102.2020.1841030] [PMID: 33140690]
[16]
Levin, V.A. Chemotherapy for brain tumors of astrocytic and oligodendroglial lineage: The past decade and where we are heading. Neuro-oncol., 1999, 1(1), 69-80.
[http://dx.doi.org/10.1093/neuonc/1.1.69] [PMID: 11550304]
[17]
Lefranc, F.; Sadeghi, N.; Camby, I.; Metens, T.; Dewitte, O.; Kiss, R. Present and potential future issues in glioblastoma treatment. Expert Rev. Anticancer Ther., 2006, 6(5), 719-732.
[http://dx.doi.org/10.1586/14737140.6.5.719] [PMID: 16759163]
[18]
Verma, A.K.; Bansal, S.; Singh, J.; Tiwari, R.K.; Kasi Sankar, V.; Tandon, V.; Chandra, R. Synthesis and in vitro cytotoxicity of haloderivatives of noscapine. Bioorg. Med. Chem., 2006, 14(19), 6733-6736.
[http://dx.doi.org/10.1016/j.bmc.2006.05.069] [PMID: 16784870]
[19]
Çoban, F.K.; Bulduk, İ.; İslam, İ.; Aytuğ, H. An in vitro study on anticancer activity of noscapine. J. Pharm. Res. Int., 2021, 33(11), 72-80.
[http://dx.doi.org/10.9734/jpri/2021/v33i1131246]
[20]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[21]
Balazsi, M.; Blanco, P.; Zoroquiain, P.; Levine, M.D.; Burnier, M.N., Jr Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides. J. Med. Imaging (Bellingham), 2016, 3(2), 027501.
[http://dx.doi.org/10.1117/1.JMI.3.2.027501] [PMID: 27226977]
[22]
Bijnsdorp, I.V.; Giovannetti, E.; Peters, G.J. Chapter 34 Analysis of drug interactions. In: Ian, A.C. (Eds.); Cancer cell culturemethods and protocols 2011, Humana Totowa, NJ, Springer; pp. , 421-434.
[http://dx.doi.org/10.1007/978-1-61779-080-5]
[23]
Mahaddalkar, T.; Manchukonda, N.; Choudhary, S.; Cheriyamundath, S.; Mohanpuria, N.; Kantevari, S.; Lopus, M. Subtle alterations in microtubule assembly dynamics by Br-TMB-noscapine strongly suppress triple-negative breast cancer cell viability without mitotic arrest. ChemistrySelect, 2016, 1(14), 4313-4319.
[http://dx.doi.org/10.1002/slct.201600959]
[24]
Ali, S.; Rasool, M.; Chaoudhry, H.; N., Pushparaj P.; Jha, P.; Hafiz, A.; Mahfooz, M.; Abdus Sami, G.; Azhar Kamal, M.; Bashir, S.; Ali, A.; Sarwar Jamal, M.; Sarwar Jamal, M.S. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation, 2016, 12(3), 135-139.
[http://dx.doi.org/10.6026/97320630012135] [PMID: 28149048]
[25]
Ho, M.Y.; Mackey, J.R. Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manag. Res., 2014, 6, 253-259.
[http://dx.doi.org/10.2147/CMAR.S40601] [PMID: 24904223]
[26]
Kocak, C.; Kocak, F.E.; Ozturk, B.; Tekin, G.; Vatansev, H. Cytotoxic, anti-proliferative and apoptotic effects of noscapine on human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines. Bratisl. Lek Listy, 2020, 121(1), 43-50.
[http://dx.doi.org/10.4149/BLL_2020_007] [PMID: 31950839]
[27]
Verma, P.; Manchukonda, N.K.; Kantevari, S.; Lopus, M. Induction of microtubule hyper stabilization and robust G2/M arrest by N-4-CN in human breast carcinoma MDA-MB-231 cells. Fundam. Clin. Pharmacol., 2021, 35(6), 955-967.
[http://dx.doi.org/10.1111/fcp.12660] [PMID: 33576046]
[28]
Devine, S.M.; Yong, C.; Amenuvegbe, D.; Aurelio, L.; Muthiah, D.; Pouton, C.; Callaghan, R.; Capuano, B.; Scammells, P.J. Synthesis and pharmacological evaluation of noscapine-inspired 5-substituted tetrahydroisoquinolines as cytotoxic agents. J. Med. Chem., 2018, 61(18), 8444-8456.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00986] [PMID: 30156410]
[29]
Yong, C.; Devine, S.M.; Gao, X.; Yan, A.; Callaghan, R.; Capuano, B.; Scammells, P.J. A novel class of N-sulfonyl and N-sulfamoyl noscapine derivatives that promote mitotic arrest in cancer cells. ChemMedChem, 2019, 14(23), 1968-1981.
[http://dx.doi.org/10.1002/cmdc.201900477] [PMID: 31714012]
[30]
Nagireddy, P.K.R.; Kumar, D.; Kommalapati, V.K.; Pedapati, R.K.; Kojja, V.; Tangutur, A.D.; Kantevari, S. 9-Ethynyl noscapine induces G2/M arrest and apoptosis by disrupting tubulin polymerization in cervical cancer. Drug Dev. Res., 2021, 83(3), 605-614.
[http://dx.doi.org/10.1002/ddr.21888] [PMID: 34612529]
[31]
Böhm, B.; Schwenk, W.; Hucke, H.P.; Stock, W. Does methodic long-term follow-up affect survival after curative resection of colorectal carcinoma? Dis. Colon Rectum, 1993, 36(3), 280-286.
[http://dx.doi.org/10.1007/BF02053511] [PMID: 8449134]
[32]
Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[33]
Jacquemin, G.; Margiotta, D.; Kasahara, A.; Bassoy, E.Y.; Walch, M.; Thiery, J.; Lieberman, J.; Martinvalet, D. Granzyme B-induced mitochondrial ROS are required for apoptosis. Cell Death Differ., 2015, 22(5), 862-874.
[http://dx.doi.org/10.1038/cdd.2014.180] [PMID: 25361078]
[34]
Sung, B.; Ahn, K.S.; Aggarwal, B.B. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NF-kappaB signaling pathway. Cancer Res., 2010, 70(8), 3259-3268.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4230] [PMID: 20354190]
[35]
Newcomb, E.W.; Lukyanov, Y.; Smirnova, I.; Schnee, T.; Zagzag, D. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway. Anticancer Drugs, 2008, 19(6), 553-563.
[http://dx.doi.org/10.1097/CAD.0b013e3282ffd68d] [PMID: 18525314]
[36]
Newcomb, E.W.; Lukyanov, Y.; Schnee, T.; Ali, M.A.; Lan, L.; Zagzag, D. Noscapine inhibits hypoxia-mediated HIF-1α expression andangiogenesis in vitro: A novel function for an old drug. Int. J. Oncol., 2006, 28(5), 1121-1130.
[http://dx.doi.org/10.3892/ijo.28.5.1121] [PMID: 16596228]
[37]
Ye, K.; Zhou, J.; Landen, J.W.; Bradbury, E.M.; Joshi, H.C. Sustained activation of p34(cdc2) is required for noscapine-induced apoptosis. J. Biol. Chem., 2001, 276(50), 46697-46700.
[http://dx.doi.org/10.1074/jbc.C100550200] [PMID: 11679575]
[38]
Pellegrini, F.; Budman, D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest., 2005, 23(3), 264-273.
[http://dx.doi.org/10.1081/CNV-200055970] [PMID: 15948296]
[39]
Mahaddalkar, T.; Lopus, M. From natural products to designer drugs: Development and molecular mechanisms action of novel anti-microtubule breast cancer therapeutics. Curr. Top. Med. Chem., 2017, 17(22), 2559-2568.
[http://dx.doi.org/10.2174/1568026617666170104144240] [PMID: 28056739]
[40]
Matalon, S.T.; Ornoy, A.; Lishner, M. Review of the potential effects of three commonly used antineoplastic and immunosuppressive drugs (cyclophosphamide, azathioprine, doxorubicin on the embryo and placenta). Reprod. Toxicol., 2004, 18(2), 219-230.
[http://dx.doi.org/10.1016/j.reprotox.2003.10.014] [PMID: 15019720]
[41]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[42]
Naik, P.K.; Chatterji, B.P.; Vangapandu, S.N.; Aneja, R.; Chandra, R.; Kanteveri, S.; Joshi, H.C. Rational design, synthesis and biological evaluations of amino-noscapine: A high affinity tubulin-binding noscapinoid. J. Comput. Aided Mol. Des., 2011, 25(5), 443-454.
[http://dx.doi.org/10.1007/s10822-011-9430-4] [PMID: 21544622]
[43]
Alisaraie, L.; Tuszynski, J.A. Determination of noscapine’s localization and interaction with the tubulin-α/β heterodimer. Chem. Biol. Drug Des., 2011, 78(4), 535-546.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01189.x] [PMID: 21781284]
[44]
Hiser, L.; Herrington, B.; Lobert, S. Effect of noscapine and vincristine combination on demyelination and cell proliferation in vitro. Leuk. Lymphoma, 2008, 49(8), 1603-1609.
[http://dx.doi.org/10.1080/10428190802213480] [PMID: 18766974]
[45]
Cheriyamundath, S.; Mahaddalkar, T.; Reddy Nagireddy, P.K.; Sridhar, B.; Kantevari, S.; Lopus, M. Insights into the structure and tubulin-targeted anticancer potential of N-(3-bromobenzyl) noscapine. Pharmacol. Rep., 2019, 71(1), 48-53.
[http://dx.doi.org/10.1016/j.pharep.2018.09.002] [PMID: 30465924]
[46]
Tomar, V.; Kumar, N.; Tomar, R.; Sood, D.; Dhiman, N.; Dass, S.K.; Prakash, S.; Madan, J.; Chandra, R. Biological evaluation of noscapine analogues as potent and microtubule-targeted anticancer agents. Sci. Rep., 2019, 9(1), 19542.
[http://dx.doi.org/10.1038/s41598-019-55839-8] [PMID: 31862933]
[47]
Nemati, F.; Salehi, P.; Bararjanian, M.; Hadian, N.; Mohebbi, M.; Lauro, G.; Ruggiero, D.; Terracciano, S.; Bifulco, G.; Bruno, I. Discovery of noscapine derivatives as potential β-tubulin inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(20), 127489.
[http://dx.doi.org/10.1016/j.bmcl.2020.127489] [PMID: 32784088]
[48]
Oliva, M.A.; Prota, A.E.; Rodríguez-Salarichs, J.; Bennani, Y.L.; Jiménez-Barbero, J.; Bargsten, K.; Canales, Á.; Steinmetz, M.O.; Díaz, J.F. Structural basis of noscapine activation for tubulin binding. J. Med. Chem., 2020, 63(15), 8495-8501.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00855] [PMID: 32657585]
[49]
Nagireddy, P.K.R.; Kommalapati, V.K.; Siva Krishna, V.; Sriram, D.; Tangutur, A.D.; Kantevari, S. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega, 2019, 4(21), 19382-19398.
[http://dx.doi.org/10.1021/acsomega.9b02789] [PMID: 31763563]
[50]
Yong, C.; Devine, S.M.; Abel, A.C.; Tomlins, S.D.; Muthiah, D.; Gao, X.; Callaghan, R.; Steinmetz, M.O.; Prota, A.E.; Capuano, B.; Scammells, P.J. 1,3-Benzodioxole-modified noscapine analogues: Synthesis, antiproliferative activity, and tubulin-bound structure. ChemMedChem, 2021, 16(18), 2882-2894.
[http://dx.doi.org/10.1002/cmdc.202100363] [PMID: 34159741]
[51]
Patel, A.K.; Meher, R.K.; Nagireddy, P.K.; Pragyandipta, P.; Pedapati, R.K.; Kantevari, S.; Naik, P.K. 9-Arylimino noscapinoids as potent tubulin binding anticancer agent: Chemical synthesis and cellular evaluation against breast tumour cells. SAR QSAR Environ. Res., 2021, 32(4), 269-291.
[http://dx.doi.org/10.1080/1062936X.2021.1891567] [PMID: 33687299]
[52]
Patel, A.K.; Meher, R.K.; Reddy, P.K.; Pedapati, R.K.; Pragyandipta, P.; Kantevari, S.; Naik, M.R.; Naik, P.K. Rational design, chemical synthesis and cellular evaluation of novel 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents. J. Mol. Graph. Model., 2021, 106, 107933.
[http://dx.doi.org/10.1016/j.jmgm.2021.107933] [PMID: 33991960]
[53]
Mahaddalkar, T.; Naik, P.K.; Choudhary, S.; Manchukonda, N.; Kantevari, S.; Lopus, M. Structural investigations into the binding mode of a novel noscapine analogue, 9-(4-vinylphenyl) noscapine, with tubulin by biochemical analyses and molecular dynamic simulations. J. Biomol. Struct. Dyn., 2017, 35(11), 2475-2484.
[http://dx.doi.org/10.1080/07391102.2016.1222969] [PMID: 27576773]
[54]
Maurya, N.; Maurya, J.K.; Singh, U.K.; Dohare, R.; Zafaryab, M.; Moshahid Alam Rizvi, M.; Kumari, M.; Patel, R. in vitro cytotoxicity and interaction of noscapine with human serum albumin: Effect on structure and esterase activity of HSA. Mol. Pharm., 2019, 16(3), 952-966.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00864] [PMID: 30629454]
[55]
Das, A.; Kumar, G.S. Binding studies of aristololactam-β-d-glucoside and daunomycin to human serum albumin. RSC Advances, 2014, 4(62), 33082-33090.
[http://dx.doi.org/10.1039/C4RA04327H]
[56]
Tu, B.; Chen, Z.F.; Liu, Z.J.; Li, R.R.; Ouyang, Y.; Hu, Y.J. Study of the structure-activity relationship of flavonoids based on their interaction with human serum albumin. RSC Advances, 2015, 5(89), 73290-73300.
[http://dx.doi.org/10.1039/C5RA12824B]
[57]
Parray, M. ud din; Mir, M. U. H; Dohare, N; Maurya, N; Khan, A. B; Borse, M. S; Patel, R Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin. J. Mol. Liq., 2018, 260, 65-77.
[http://dx.doi.org/10.1016/j.molliq.2018.03.070]
[58]
Maurya, J.K.; Mir, M.U.H.; Maurya, N.; Dohare, N.; Ali, A.; Patel, R. A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin. J. Biomol. Struct. Dyn., 2016, 34(10), 2130-2145.
[http://dx.doi.org/10.1080/07391102.2015.1109552] [PMID: 26473302]
[59]
Sood, D.; Kumar, N.; Rathee, G.; Singh, A.; Tomar, V.; Chandra, R. Mechanistic interaction study of bromo-noscapine with bovine serum albumin employing spectroscopic and chemoinformatics approaches. Sci. Rep., 2018, 8(1), 16964.
[http://dx.doi.org/10.1038/s41598-018-35384-6] [PMID: 30446713]
[60]
Navas-Martin, S.; Weiss, S.R. SARS: Lessons learned from other coronaviruses. Viral Immunol., 2003, 16(4), 461-474.
[http://dx.doi.org/10.1089/088282403771926292] [PMID: 14733734]
[61]
Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2), 371-374.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[62]
Aydemir, D.; Ulusu, N.N. Commentary: Challenges for PhD students during COVID-19 pandemic: Turning crisis into an opportunity. Biochem. Mol. Biol. Educ., 2020, 48(5), 428-429.
[http://dx.doi.org/10.1002/bmb.21351] [PMID: 32271978]
[63]
Bayefsky, M.J.; Bartz, D.; Watson, K.L. Abortion during the COVID-19 pandemic - ensuring access to an essential health service. N. Engl. J. Med., 2020, 382(19), e47.
[http://dx.doi.org/10.1056/NEJMp2008006] [PMID: 32272002]
[64]
Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections-more than just the common cold. JAMA, 2020, 323(8), 707-708.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[65]
Kumar, N.; Awasthi, A.; Kumari, A.; Sood, D.; Jain, P.; Singh, T.; Sharma, N.; Grover, A.; Chandra, R. Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: A comprehensive chemoinformatics analysis. J. Biomol. Struct. Dyn., 2020, 40(1), 101-106.
[http://dx.doi.org/10.1080/07391102.2020.1808072] [PMID: 32815796]
[66]
Larki, M.; Sharifi, F.; Roudsari, R.L. Models of maternity care for pregnant women during the COVID-19 pandemic. East. Mediterr. Health J., 2020, 26(9), 994-998.
[http://dx.doi.org/10.26719/emhj.20.097] [PMID: 33047788]
[67]
Liu, C.H.; Pinder-Amaker, S.; Hahm, H.C.; Chen, J.A. Priorities for addressing the impact of the COVID-19 pandemic on college student mental health. J. Am. Coll. Health, 2020, 1-3.
[http://dx.doi.org/10.1080/07448481.2020.1803882] [PMID: 33048654]
[68]
Rebeiro, P.F.; Duda, S.N.; Wools-Kaloustian, K.K.; Nash, D.; Althoff, K.N. Implications of COVID-19 for HIV research: Data sources, indicators and longitudinal analyses. J. Int. AIDS Soc., 2020, 23(10), e25627.
[http://dx.doi.org/10.1002/jia2.25627] [PMID: 33047483]
[69]
Fung, T.S.; Liu, D.X. Human coronavirus: Host-pathogen interaction. Annu. Rev. Microbiol., 2019, 73(1), 529-557.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[70]
Ebrahimi, S.A. Noscapine, a possible drug candidate for attenuation of cytokine release associated with SARS-CoV-2. Drug Dev. Res., 2020, 81(7), 765-767.
[http://dx.doi.org/10.1002/ddr.21676] [PMID: 32337769]
[71]
Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Kumar, R.V.; Dass, S.K.; Chandra, R.; Singh, P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J. Biomol. Struct. Dyn., 2021, 39(7), 2659-2672.
[http://dx.doi.org/10.1080/07391102.2020.1752310] [PMID: 32362235]
[72]
Vishvakarma, V.K.; Shukla, N. Reetu; Kumari, K.; Patel, R.; Singh, P. A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon, 2019, 5(8), e02124.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02124] [PMID: 31406937]
[73]
Kumar, D.; Singh, P.; Jayaraj, A.; Kumar, V.; Kumari, K.; Patel, R. A theoretical model to study the interaction of erythro-noscapines with NsP3 protease of chikungunya virus. ChemistrySelect, 2019, 4(17), 4892-4900.
[http://dx.doi.org/10.1002/slct.201803360]
[74]
Vishvakarma, V.K.; Kumari, K.; Prashant, S. Inhibition of protease of novel corona virus by designed noscapines: Molecular docking and ADMET studies. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12813254.v1]
[75]
Spry, C.; Sewell, A.L.; Hering, Y.; Villa, M.V.J.; Weber, J.; Hobson, S.J.; Harnor, S.J.; Gul, S.; Marquez, R.; Saliba, K.J. Structure-activity analysis of CJ-15,801 analogues that interact with plasmodium falciparum pantothenate kinase and inhibit parasite proliferation. Eur. J. Med. Chem., 2018, 143, 1139-1147.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.050] [PMID: 29233590]
[76]
Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Alonso, C.; Fuertes, M.; González, M.; Rubiales, G.; Palacios, F. Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. Eur. J. Med. Chem., 2016, 124, 740-749.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.017] [PMID: 27639365]
[77]
Ferrins, L.; Rahmani, R.; Baell, J.B. Drug discovery and human African trypanosomiasis: A disease less neglected? Future Med. Chem., 2013, 5(15), 1801-1841.
[http://dx.doi.org/10.4155/fmc.13.162] [PMID: 24144414]
[78]
Salerno, A.; Celentano, A.M.; López, J.; Lara, V.; Gaozza, C.; Balcazar, D.E.; Carrillo, C.; Frank, F.M.; Blanco, M.M. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity. Eur. J. Med. Chem., 2017, 125, 327-334.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.045] [PMID: 27688187]
[79]
Babanezhad Harikandei, K.; Salehi, P.; Ebrahimi, S.N.; Bararjanian, M.; Kaiser, M.; Al-Harrasi, A. Synthesis, in-vitro antiprotozoal activity and molecular docking study of isothiocyanate derivatives. Bioorg. Med. Chem., 2020, 28(1), 115185.
[http://dx.doi.org/10.1016/j.bmc.2019.115185] [PMID: 31784198]
[80]
Griffith, R.; Chanphen, R.; Leach, S.P.; Keller, P.A. New anti-malarial compounds from database searching. Bioorg. Med. Chem. Lett., 2002, 12(4), 539-542.
[http://dx.doi.org/10.1016/S0960-894X(01)00811-3] [PMID: 11844667]
[81]
Leverrier, A.; Bero, J.; Frédérich, M.; Quetin-Leclercq, J.; Palermo, J. Antiparasitic hybrids of Cinchona alkaloids and bile acids. Eur. J. Med. Chem., 2013, 66, 355-363.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.004] [PMID: 23816880]
[82]
Leverrier, A.; Bero, J.; Cabrera, J.; Frédérich, M.; Quetin-Leclercq, J.; Palermo, J.A. Structure-activity relationship of hybrids of Cinchona alkaloids and bile acids with in vitro antiplasmodial and antitrypanosomal activities. Eur. J. Med. Chem., 2015, 100(1), 10-17.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.044] [PMID: 26063305]
[83]
García Liñares, G.; Antonela Zígolo, M.; Simonetti, L.; Longhi, S.A.; Baldessari, A. Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(15), 4804-4814.
[http://dx.doi.org/10.1016/j.bmc.2015.05.035] [PMID: 26072173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy