Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Next-generation Sequencing for Surveillance of Antimicrobial Resistance and Pathogenicity in Municipal Wastewater Treatment Plants

Author(s): Yovany Cuetero-Martínez, Daniel de los Cobos-Vasconcelos, José Felix Aguirre-Garrido, Yolanda Lopez-Vidal and Adalberto Noyola*

Volume 30, Issue 1, 2023

Published on: 26 September, 2022

Page: [5 - 29] Pages: 25

DOI: 10.2174/0929867329666220802093415

Price: $65

Abstract

The World Health Organization (WHO) ranks antimicrobial resistance (AMR) and various pathogens among the top 10 health threats. It is estimated that by 2050, the number of human deaths due to AMR will reach 10 million annually. On the other hand, several infectious outbreaks such as SARS, H1N1 influenza, Ebola, Zika fever, and COVID-19 have severely affected human populations worldwide in the last 20 years. These recent global diseases have generated the need to monitor outbreaks of pathogens and AMR to establish effective public health strategies. This review presents AMR and pathogenicity associated with wastewater treatment plants (WWTP), focusing on Next Generation Sequencing (NGS) monitoring as a complementary system to clinical surveillance. In this regard, WWTP may be monitored at three main points. First, at the inlet (raw wastewater or influent) to identify a broad spectrum of AMR and pathogens contained in the excretions of residents served by sewer networks, with a specific spatio-temporal location. Second, at the effluent, to ensure the elimination of AMR and pathogens in the treated water, considering the rising demand for safe wastewater reuse. Third, in sewage sludge or biosolids, their beneficial use or final disposal can represent a significant risk to public health. This review is divided into two sections to address the importance and implications of AMR and pathogen surveillance in wastewater and WWTP, based on NGS. The first section presents the fundamentals of surveillance techniques applied in WWTP (metataxonomics, metagenomics, functional metagenomics, metaviromics, and metatranscriptomics). Their scope and limitations are analyzed to show how microbiological and qPCR techniques complement NGS surveillance, overcoming its limitations. The second section discusses the contribution of 36 NGS research papers on WWTP surveillance, highlighting the current situation and perspectives. In both sections, research challenges and opportunities are presented.

Keywords: Antibiotic resistance genes, biosolids, pathogens, sewage treatment, wastewater monitoring, SARS CoV-2, next generation sequencing.

[2]
O’Neill, J. Review on antimicrobial resistance. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. 2014. Available from: https://amr-review.org/sites/default/files/AMR Review Paper - Tackling a crisis for the health and wealth of nations_1.pdf
[3]
Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int., 2020, 139, 105689.
[4]
Li, A-D.; Ma, L.; Jiang, X.T.; Zhang, T. Cultivation-dependent and high-throughput sequencing approaches studying the co-occurrence of antibiotic resistance genes in municipal sewage system. Appl. Microbiol. Biotechnol., 2017, 101(22), 8197-8207.
[http://dx.doi.org/10.1007/s00253-017-8573-1] [PMID: 29034431]
[5]
Global antimicrobial resistance surveillance system manual for early implementation. 2015. Available from: http://www.who.int/drugresistance/en/
[6]
Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; Kaas, R.S.; Clausen, P.T.L.C.; Vogt, J.K.; Leekitcharoenphon, P.; van de Schans, M.G.M.; Zuidema, T.; de Roda Husman, A.M.; Rasmussen, S.; Petersen, B.; Amid, C.; Cochrane, G.; Sicheritz-Ponten, T.; Schmitt, H.; Alvarez, J.R.M.; Aidara-Kane, A.; Pamp, S.J.; Lund, O.; Hald, T.; Woolhouse, M.; Koopmans, M.P.; Vigre, H.; Petersen, T.N.; Aarestrup, F.M. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun., 2019, 10(1), 1124.
[http://dx.doi.org/10.1038/s41467-019-08853-3] [PMID: 30850636]
[7]
Crits-Christoph, A.; Kantor, R.S.; Olm, M.R.; Whitney, O.N.; Al-Shayeb, B.; Lou, Y.C.; Flamholz, A.; Kennedy, L.C.; Greenwald, H.; Hinkle, A.; Hetzel, J.; Spitzer, S.; Koble, J.; Tan, A.; Hyde, F.; Schroth, G.; Kuersten, S.; Banfield, J.F.; Nelson, K.L. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. MBio, 2021, 12(1), 1-9.
[http://dx.doi.org/10.1128/mBio.02703-20] [PMID: 33468686]
[8]
Yu, K.; Li, P.; Chen, Y.; Zhang, B.; Huang, Y.; Huang, F.Y.; He, Y. Antibiotic resistome associated with microbial communities in an integrated wastewater reclamation system. Water Res., 2020, 173, 115541.
[http://dx.doi.org/10.1016/j.watres.2020.115541] [PMID: 32036288]
[9]
McCall, C.; Wu, H.; Miyani, B.; Xagoraraki, I. Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water Res., 2020, 184, 116160.
[http://dx.doi.org/10.1016/j.watres.2020.116160] [PMID: 32738707]
[10]
Dafale, N. A.; Srivastava, S.; Purohit, H. J. Zoonosis: An emerging link to antibiotic resistance under ‘one health approach,’. Indian J. Microbiol., 2020, 60, 139-152.
[11]
Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol., 2019, 53(13), 7234-7264.
[http://dx.doi.org/10.1021/acs.est.9b01131] [PMID: 31244081]
[12]
Maritz, J.M.; Rogers, K.H.; Rock, T.M.; Liu, N.; Joseph, S.; Land, K.M.; Carlton, J.M. An 18S rRNA workflow for characterizing protists in sewage, with a focus on zoonotic trichomonads. Microb. Ecol., 2017, 74(4), 923-936.
[http://dx.doi.org/10.1007/s00248-017-0996-9] [PMID: 28540488]
[13]
Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-resistance genes in waste water. Trends Microbiol., 2018, 26(3), 220-228.
[http://dx.doi.org/10.1016/j.tim.2017.09.005] [PMID: 29033338]
[14]
Lira, F.; Vaz-Moreira, I.; Tamames, J.; Manaia, C.M.; Martínez, J.L. Metagenomic analysis of an urban resistome before and after wastewater treatment. Sci. Rep., 2020, 10(1), 8174.
[http://dx.doi.org/10.1038/s41598-020-65031-y] [PMID: 32424207]
[15]
Vere Hodge, A.; Field, H.J. General mechanisms of Antiviral resistance. Genet. Evol. Inf. Diseases, 2011, 339-362.
[16]
Partridge, S. R.; Kwong, S. M.; Firth, N.; Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev., 2018, 31(4), e00088-17.
[http://dx.doi.org/10.1128/CMR.00088-17]
[17]
Sandoval-Motta, S.; Aldana, M. Adaptive resistance to antibiotics in bacteria: A systems biology perspective. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 253-267.
[http://dx.doi.org/10.1002/wsbm.1335] [PMID: 27103502]
[18]
Fairlamb, A. H.; Gow, N. A. R.; Matthews, K. R.; Waters, A. P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol., 2016, 1, 1-15.
[19]
Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.; Djordjevic, S.P.; Donner, E.; Yin, H.; Nghiem, L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ., 2021, 783, 146964.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146964] [PMID: 33866168]
[20]
Li, X.; Cheng, Z.; Dang, C.; Zhang, M.; Zheng, Y.; Xia, Y. Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater. Environ. Sci. Ecotechnology, 2021, 7, 100105.
[http://dx.doi.org/10.1016/j.ese.2021.100105]
[21]
Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun., 2019, 10(1), 80.
[http://dx.doi.org/10.1038/s41467-018-07992-3] [PMID: 30622259]
[22]
Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf., 2013, 91, 1-9.
[23]
Zhao, Q.; Liu, Y. Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge? Sci. Tot. Environ., 2019, 668, 893-902.
[24]
Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 2013, 98(6), 236-238.
[http://dx.doi.org/10.1136/ARCHDISCHILD-2013-304340] [PMID: 23986538]
[25]
Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of next generation sequencing technologies. Curr. Protoc. Mol. Biol., 2018, 122(1), e59.
[http://dx.doi.org/10.1002/cpmb.59.Overview] [PMID: 29851291]
[26]
Yadav, S.; Kapley, A. Antibiotic resistance: Global health crisis and metagenomics. Biotechnol. Rep. (Amst.), 2021, 29, e00604.
[http://dx.doi.org/10.1016/j.btre.2021.e00604] [PMID: 33732632]
[27]
Moreno, Y.; Moreno-Mesonero, L.; Amorós, I.; Pérez, R.; Morillo, J.A.; Alonso, J.L. Multiple identification of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics. Int. J. Hyg. Environ. Health, 2018, 221(1), 102-111.
[http://dx.doi.org/10.1016/j.ijheh.2017.10.008] [PMID: 29066287]
[28]
Escobar-Zepeda, A.; Vera-Ponce de León, A.; Sanchez-Flores, A. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Front. Genet., 2015, 6(348), 348.
[http://dx.doi.org/10.3389/fgene.2015.00348] [PMID: 26734060]
[29]
Di Cesare, A.; Corno, G.; Manaia, C.M.; Rizzo, L. Impact of disinfection processes on bacterial community in urban wastewater: Should we rethink microbial assessment methods? J. Environ. Chem. Eng., 2020, 8(5), p8.
[http://dx.doi.org/10.1016/j.jece.2020.104393]
[30]
Cristescu, M.E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol., 2014, 29(10), 566-571.
[http://dx.doi.org/10.1016/j.tree.2014.08.001] [PMID: 25175416]
[31]
Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome, 2015, 3(1), 31.
[http://dx.doi.org/10.1186/s40168-015-0094-5] [PMID: 26229597]
[32]
Gallardo-Escárate, C.; Valenzuela-Muñoz, V.; Núñez-Acuña, G.; Valenzuela-Miranda, D.; Benaventel, B.P.; Sáez-Vera, C.; Urrutia, H.; Novoa, B.; Figueras, A.; Roberts, S.; Assmann, P.; Bravo, M. The wastewater microbiome: A novel insight for COVID-19 surveillance. Sci. Total Environ., 2021, 764, 142867.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142867] [PMID: 33071116]
[33]
Hendriksen, R.S.; Lukjancenko, O.; Munk, P.; Hjelmsø, M.H.; Verani, J.R.; Ng’eno, E.; Bigogo, G.; Kiplangat, S.; Oumar, T.; Bergmark, L.; Röder, T.; Neatherlin, J.C.; Clayton, O.; Hald, T.; Karlsmose, S.; Pamp, S.J.; Fields, B.; Montgomery, J.M.; Aarestrup, F.M. Pathogen surveillance in the informal settlement, Kibera, Kenya, using a metagenomics approach. PLoS One, 2019, 14(10), e0222531.
[http://dx.doi.org/10.1371/journal.pone.0222531] [PMID: 31600207]
[34]
Assress, H.A.; Selvarajan, R.; Nyoni, H.; Ntushelo, K.; Mamba, B.B.; Msagati, T.A.M. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci. Rep., 2019, 9(1), 14056.
[http://dx.doi.org/10.1038/s41598-019-50624-z] [PMID: 31575971]
[35]
Rusiñol, M.; Martínez-Puchol, S.; Timoneda, N.; Fernández-Cassi, X.; Pérez-Cataluña, A.; Fernández-Bravo, A.; Moreno-Mesonero, L.; Moreno, Y.; Alonso, J.L.; Figueras, M.J.; Abril, J.F.; Bofill-Mas, S.; Girones, R. Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. Int. J. Hyg. Environ. Health, 2020, 224, 113440.
[http://dx.doi.org/10.1016/j.ijheh.2019.113440] [PMID: 31978735]
[36]
Zahedi, A.; Greay, T. L.; Paparini, A.; Linge, K. L.; Joll, C. A.; Ryan, U. M. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Research, 2019, 158, 301-312.
[37]
Alhamlan, F.S.; Ederer, M.M.; Brown, C.J.; Coats, E.R.; Crawford, R.L. Metagenomics-based analysis of viral communities in dairy lagoon wastewater. J. Microbiol. Methods, 2013, 92(2), 183-188.
[http://dx.doi.org/10.1016/j.mimet.2012.11.016] [PMID: 23220059]
[38]
Pérez-Cataluña, A.; Chiner-Oms, A.; Cuevas-Ferrando, E.; Díaz-Reolid, A.; Falcó, I.; Randazzo, W.; Girón-Guzmán, I.; Allende, A.; Bracho, M.A.; Comas, I.; Sánchez, G.A. Detection of genomic variants of SARS-CoV-2 circulating in wastewater by high-throughput sequencing. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.08.21251355]
[39]
Earl, J.P.; Adappa, N.D.; Krol, J.; Bhat, A.S.; Balashov, S.; Ehrlich, R.L.; Palmer, J.N.; Workman, A.D.; Blasetti, M.; Sen, B.; Hammond, J.; Cohen, N.A.; Ehrlich, G.D.; Mell, J.C. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome, 2018, 6(1), 190.
[http://dx.doi.org/10.1186/S40168-018-0569-2] [PMID: 30352611]
[40]
Kai, S.; Matsuo, Y.; Nakagawa, S.; Kryukov, K.; Matsukawa, S.; Tanaka, H.; Iwai, T.; Imanishi, T.; Hirota, K. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION™ nanopore sequencer. FEBS Open Bio, 2019, 9(3), 548-557.
[http://dx.doi.org/10.1002/2211-5463.12590] [PMID: 30868063]
[41]
Mosher, J.J.; Bernberg, E.L.; Shevchenko, O.; Kan, J.; Kaplan, L.A. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. J. Microbiol. Methods, 2013, 95(2), 175-181.
[http://dx.doi.org/10.1016/J.MIMET.2013.08.009] [PMID: 23999276]
[42]
Nygaard, A.B.; Tunsjø, H.S.; Meisal, R.; Charnock, C. A preliminary study on the potential of Nanopore MinION and Illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Sci. Rep., 2020, 10(1), 3209.
[http://dx.doi.org/10.1038/S41598-020-59771-0] [PMID: 32081924]
[43]
Madhav, H. “Long-Range PCR and PacBio sequencing, a novel method for detection of antibiotic resistance genes in class 1 integrons from waste water treatment plant,” Helsinki Institute of Sustainability Science; HELSUS, 2018.
[44]
Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; Garelick, H.; Schmitt, H.; de Vries, D.; Schwermer, C.U.; Meric, S.; Ozkal, C.B.; Pons, M.N.; Kneis, D.; Berendonk, T.U. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res., 2019, 162, 320-330.
[http://dx.doi.org/10.1016/j.watres.2019.06.039] [PMID: 31288142]
[45]
Karkman, A.; Berglund, F.; Flach, C.F.; Kristiansson, E.; Larsson, D.G.J. Predicting clinical resistance prevalence using sewage metagenomic data. Commun. Biol., 2020, 3(1), 711.
[http://dx.doi.org/10.1038/s42003-020-01439-6] [PMID: 33244050]
[46]
Garrido-Cardenas, J.A.; Polo-López, M.I.; Oller-Alberola, I. Advanced microbial analysis for wastewater quality monitoring: Metagenomics trend. Appl. Microbiol. Biotechnol., 2017, 101(20), 7445-7458.
[http://dx.doi.org/10.1007/S00253-017-8490-3/FIGURES/3] [PMID: 28894894]
[47]
Wu, L.; Ning, D.; Zhang, B.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.R.; Li, Z.; Van Nostrand, J.D.; Ling, F.; Xiao, N.; Zhang, Y.; Vierheilig, J.; Wells, G.F.; Yang, Y.; Deng, Y.; Tu, Q.; Wang, A.; Zhang, T.; He, Z.; Keller, J.; Nielsen, P.H.; Alvarez, P.J.J.; Criddle, C.S.; Wagner, M.; Tiedje, J.M.; He, Q.; Curtis, T.P.; Stahl, D.A.; Alvarez-Cohen, L.; Rittmann, B.E.; Wen, X.; Zhou, J. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol., 2019, 4(7), 1183-1195.
[http://dx.doi.org/10.1038/s41564-019-0426-5] [PMID: 31086312]
[48]
Gupta, S.K.; Shin, H.; Han, D.; Hur, H.G.; Unno, T. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. J. Microbiol., 2018, 56(6), 408-415.
[http://dx.doi.org/10.1007/s12275-018-8195-z] [PMID: 29858829]
[49]
Bibby, K.; Peccia, J. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ. Sci. Technol., 2013, 47(4), 1945-1951.
[http://dx.doi.org/10.1038/jid.2014.371] [PMID: 23346855]
[50]
Zambon, M. C. Surveillance for antiviral resistance. Influenza Other Respi, 2013, 7, 37.
[51]
Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; Palacpac, N.M.Q.; Odongo-Aginya, E.I.; Ogwang, M.; Horii, T.; Mita, T. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med., 2021, 385(13), 1163-1171.
[http://dx.doi.org/10.1056/nejmoa2101746] [PMID: 34551228]
[52]
Lam, K.N.; Cheng, J.; Engel, K.; Neufeld, J.D.; Charles, T.C. Current and future resources for functional metagenomics. Front. Microbiol., 2015, 6, 1196.
[http://dx.doi.org/10.3389/fmicb.2015.01196] [PMID: 26579102]
[53]
Zhang, L.; Calvo-Bado, L.; Murray, A.K.; Amos, G.C.A.; Hawkey, P.M.; Wellington, E.M.; Gaze, W.H. Novel clinically relevant antibiotic resistance genes associated with sewage sludge and industrial waste streams revealed by functional metagenomic screening. Environ. Int., 2019, 132, 105120.
[http://dx.doi.org/10.1016/j.envint.2019.105120] [PMID: 31487611]
[54]
Petrovich, M.L.; Ben Maamar, S.; Hartmann, E.M.; Murphy, B.T.; Poretsky, R.S.; Wells, G.F. Viral composition and context in metagenomes from biofilm and suspended growth municipal wastewater treatment plants. Microb. Biotechnol., 2019, 12(6), 1324-1336.
[http://dx.doi.org/10.1111/1751-7915.13464] [PMID: 31410982]
[55]
Fernandez-Cassi, X.; Timoneda, N.; Gonzales-Gustavson, E.; Abril, J.F.; Bofill-Mas, S.; Girones, R. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water. Int. J. Food Microbiol., 2017, 257, 80-90.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.001] [PMID: 28646670]
[56]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[57]
Liu, Z.; Klümper, U.; Liu, Y.; Yang, Y.; Wei, Q.; Lin, J.G.; Gu, J.D.; Li, M. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ. Int., 2019, 129, 208-220.
[http://dx.doi.org/10.1016/j.envint.2019.05.036] [PMID: 31129497]
[58]
Jumat, M. R.; Haroon, M. F.; Al-Jassim, N.; Cheng, H.; Hong, P.-Y. An increase of abundance and transcriptional activity for Acinetobacter junii post wastewater treatment. 2018, 10, 436.
[59]
Sekse, C.; Holst-Jensen, A.; Dobrindt, U.; Johannessen, G.S.; Li, W.; Spilsberg, B.; Shi, J. High throughput sequencing for detection of foodborne pathogens. Front. Microbiol., 2017, 8, 2029.
[http://dx.doi.org/10.3389/FMICB.2017.02029] [PMID: 29104564]
[60]
Wan, J.; Jing, Y.; Rao, Y.; Zhang, S.; Luo, G. Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion for efficient hydrogen and methane production from waste-activated sludge: Dynamics of bacterial pathogens as revealed by the combination of metagenomic and quantitative PCR ana. Appl. Environ. Microbiol., 2018, 84(6), 1-14.
[http://dx.doi.org/10.1128/AEM.02632-17] [PMID: 29330191]
[61]
Maus, I.; Koeck, D.E.; Cibis, K.G.; Hahnke, S.; Kim, Y.S.; Langer, T.; Kreubel, J.; Erhard, M.; Bremges, A.; Off, S.; Stolze, Y.; Jaenicke, S.; Goesmann, A.; Sczyrba, A.; Scherer, P.; König, H.; Schwarz, W.H.; Zverlov, V.V.; Liebl, W.; Pühler, A.; Schlüter, A.; Klocke, M. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol. Biofuels, 2016, 9(1), 171.
[http://dx.doi.org/10.1186/s13068-016-0581-3] [PMID: 27525040]
[62]
Wang, Y.; Yan, Y.; Thompson, K.N.; Bae, S.; Accorsi, E.K.; Zhang, Y.; Shen, J.; Vlamakis, H.; Hartmann, E.M.; Huttenhower, C. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome, 2021, 9(1), 17.
[http://dx.doi.org/10.1186/s40168-020-00961-3] [PMID: 33478576]
[63]
Assress, H.A.; Selvarajan, R.; Nyoni, H.; Ogola, H.J.O.; Mamba, B.B.; Msagati, T.A.M. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. Environ. Sci. Pollut. Res. Int., 2021, 28(3), 3217-3229.
[http://dx.doi.org/10.1007/s11356-020-10688-1] [PMID: 32914303]
[64]
Sheludchenko, M.; Padovan, A.; Katouli, M.; Stratton, H. Removal of fecal indicators, pathogenic bacteria, adenovirus, cryptosporidium and giardia (oo)cysts in waste stabilization ponds in Northern and Eastern Australia. Int. J. Environ. Res. Public Health, 2016, 13(1), 96.
[http://dx.doi.org/10.3390/ijerph13010096] [PMID: 26729150]
[65]
Jünemann, S.; Kleinbölting, N.; Jaenicke, S.; Henke, C.; Hassa, J.; Nelkner, J.; Stolze, Y.; Albaum, S.P.; Schlüter, A.; Goesmann, A.; Sczyrba, A.; Stoye, J. Bioinformatics for NGS-based metagenomics and the application to biogas research. J. Biotechnol., 2017, 261(August), 10-23.
[http://dx.doi.org/10.1016/j.jbiotec.2017.08.012] [PMID: 28823476]
[66]
Johnning, A.; Moore, E.R.B.; Svensson-Stadler, L.; Shouche, Y.S.; Larsson, D.G.; Kristiansson, E. Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl. Environ. Microbiol., 2013, 79(23), 7256-7263.
[http://dx.doi.org/10.1128/AEM.02141-13] [PMID: 24038701]
[67]
Singh, N.K.; Khatri, I.; Subramanian, S.; Mayilraj, S. Genome sequencing and annotation of Acinetobacter gerneri strain MTCC 9824(T). Genom. Data, 2013, 2, 7-9.
[http://dx.doi.org/10.1016/j.gdata.2013.10.003] [PMID: 26484054]
[68]
Mullis, K.B. The unusual origin of the polymerase chain reaction. Sci. Am., 1990, 262(4), 56-61, 64-65.
[http://dx.doi.org/10.1038/scientificamerican0490-56] [PMID: 2315679]
[69]
Valasek, M.A.; Repa, J.J. The power of real-time PCR. Adv. Physiol. Educ., 2005, 29(3), 151-159.
[http://dx.doi.org/10.1152/advan] [PMID: 16109794]
[70]
Waseem, H. Contributions and challenges of high throughput qPCR for determining antimicrobial resistance in the environment: A critical review. Molecules, 2019, 24, 163.
[71]
Cuevas-Ferrando, E.; Randazzo, W.; Pérez-Cataluña, A.; Falcó, I.; Navarro, D.; Martin-Latil, S.; Díaz-Reolid, A.; Girón-Guzmán, I.; Allende, A.; Sánchez, G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci. Rep., 2021, 11(1), 18120.
[http://dx.doi.org/10.1038/s41598-021-97700-x] [PMID: 34518622]
[72]
Su, J.Q.; Wei, B.; Ou-Yang, W.Y.; Huang, F.Y.; Zhao, Y.; Xu, H.J.; Zhu, Y.G. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol., 2015, 49(12), 7356-7363.
[http://dx.doi.org/10.1021/acs.est.5b01012] [PMID: 26018772]
[73]
Zahedi, A.; Gofton, A.W.; Greay, T.; Monis, P.; Oskam, C.; Ball, A.; Bath, A.; Watkinson, A.; Robertson, I.; Ryan, U. Profiling the diversity of cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. Sci. Total Environ., 2018, 644, 635-648.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.024] [PMID: 30743878]
[74]
Stedtfeld, R.D.; Guo, X.; Stedtfeld, T.M.; Sheng, H.; Williams, M.R.; Hauschild, K.; Gunturu, S.; Tift, L.; Wang, F.; Howe, A.; Chai, B.; Yin, D.; Cole, J.R.; Tiedje, J.M.; Hashsham, S.A. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol., 2018, 94(9), fiy130.
[http://dx.doi.org/10.1093/femsec/fiy130] [PMID: 30052926]
[75]
Barbau-Piednoir, E.; Mahillon, J.; Pillyser, J.; Coucke, W.; Roosens, N.H.; Botteldoorn, N. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J. Microbiol. Methods, 2014, 103, 131-137.
[http://dx.doi.org/10.1016/J.MIMET.2014.06.003] [PMID: 24927988]
[76]
Golpayegani, A.; Douraghi, M.; Rezaei, F.; Alimohammadi, M.; Nodehi, R.N. Propidium MonoAzide-quantitative Polymerase Chain Reaction (PMA-qPCR) assay for rapid detection of viable and Viable But Non-Culturable (VBNC) Pseudomonas aeruginosa in swimming pools. J. Environ. Health Sci. Eng., 2019, 17(1), 407-416.
[http://dx.doi.org/10.1007/S40201-019-00359-W] [PMID: 31297217]
[77]
Soejima, T.; Iwatsuki, K.J. Innovative use of palladium compounds to selectively detect live Enterobacteriaceae in milk by PCR. Appl. Environ. Microbiol., 2016, 82(23), 6930-6941.
[http://dx.doi.org/10.1128/AEM.01613-16] [PMID: 27663023]
[78]
Li, R.; Tun, H.M.; Jahan, M.; Zhang, Z.; Kumar, A.; Dilantha Fernando, W.G.; Farenhorst, A.; Khafipour, E. Comparison of DNA-, PMA-, and RNA-based 16S rRNA illumina sequencing for detection of live bacteria in water. Sci. Rep., 2017, 7(1), 5752.
[http://dx.doi.org/10.1038/s41598-017-02516-3] [PMID: 28720878]
[79]
Kibbee, R.J.; Örmeci, B. Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J. Microbiol. Methods, 2017, 132, 139-147.
[http://dx.doi.org/10.1016/J.MIMET.2016.12.004] [PMID: 27932085]
[80]
Li, D.; Tong, T.; Zeng, S.; Lin, Y.; Wu, S.; He, M. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). J. Environ. Sci., 2014, 26(2), 299-306.
[http://dx.doi.org/10.1016/S1001-0742(13)60425-8] [PMID: 25076521]
[81]
Hiller, C.X.; Hübner, U.; Fajnorova, S.; Schwartz, T.; Drewes, J.E. Antibiotic Microbial Resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Sci. Total Environ., 2019, 685, 596-608.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.315] [PMID: 31195321]
[82]
Qin, K. A review of ARGs in WWTPs: Sources, stressors and elimination. Chin. Chem. Lett., 2020, 31(10), 2603-2613.
[http://dx.doi.org/10.1016/j.cclet.2020.04.057]
[83]
Wang, J.; Chen, X. Removal of Antibiotic Resistance Genes (ARGs) in various wastewater treatment processes: An overview. Crit. Rev. Environ. Sci. Technol., 2022, 52, 571-630.
[84]
Xue, G. Critical review of ARGs reduction behavior in various sludge and sewage treatment processes in wastewater treatment plants. Crit. Rev. Environ. Sci. Technol., 2019, 49(18), 1623-1674.
[http://dx.doi.org/10.1080/10643389.2019.1579629]
[85]
Zarei-Baygi, A.; Smith, A.L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresour. Technol., 2021, 319, 124181.
[86]
Maritz, J.M.; Ten Eyck, T.A.; Elizabeth Alter, S.; Carlton, J.M. Patterns of protist diversity associated with raw sewage in New York City. ISME J., 2019, 13(11), 2750-2763.
[http://dx.doi.org/10.1038/s41396-019-0467-z] [PMID: 31289345]
[87]
Mthethwa, N.P.; Amoah, I.D.; Reddy, P.; Bux, F.; Kumari, S. A review on application of next-generation sequencing methods for profiling of protozoan parasites in water: Current methodologies, challenges, and perspectives. J. Microbiol. Methods, 2021, 187, 106269.
[http://dx.doi.org/10.1016/j.mimet.2021.106269] [PMID: 34129906]
[88]
Sun, C.; Li, W.; Chen, Z.; Qin, W.; Wen, X. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int., 2019, 133(Pt A), 105156.
[http://dx.doi.org/10.1016/j.envint.2019.105156] [PMID: 31675532]
[89]
Ju, F.; Li, B.; Ma, L.; Wang, Y.; Huang, D.; Zhang, T. Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.watres.2015.11.071] [PMID: 26773390]
[90]
Xu, R.; Yang, Z.H.; Zheng, Y.; Wang, Q.P.; Bai, Y.; Liu, J.B.; Zhang, Y.R.; Xiong, W.P.; Lu, Y.; Fan, C.Z. Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk. Bioresour. Technol., 2019, 282, 179-188.
[http://dx.doi.org/10.1016/j.biortech.2019.02.120] [PMID: 30861447]
[91]
Huang, K.; Xia, H.; Zhang, Y.; Li, J.; Cui, G.; Li, F.; Bai, W.; Jiang, Y.; Wu, N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol., 2020, 297, 122451.
[http://dx.doi.org/10.1016/j.biortech.2019.122451] [PMID: 31787516]
[92]
Niu, L.; Li, Y.; Xu, L.; Wang, P.; Zhang, W.; Wang, C.; Cai, W.; Wang, L. Ignored fungal community in activated sludge wastewater treatment plants: Diversity and altitudinal characteristics. Environ. Sci. Pollut. Res. Int., 2017, 24(4), 4185-4193.
[http://dx.doi.org/10.1007/s11356-016-8137-4] [PMID: 27943140]
[93]
Bengtsson-Palme, J.; Milakovic, M.; Švecová, H.; Ganjto, M.; Jonsson, V.; Grabic, R.; Udikovic-Kolic, N. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Res., 2019, 162, 437-445.
[http://dx.doi.org/10.1016/j.watres.2019.06.073] [PMID: 31301473]
[94]
Heß, S.; Kneis, D.; Österlund, T.; Li, B.; Kristiansson, E.; Berendonk, T.U. Sewage from airplanes exhibits high abundance and diversity of antibiotic resistance genes. Environ. Sci. Technol., 2019, 53(23), 13898-13905.
[http://dx.doi.org/10.1021/acs.est.9b03236] [PMID: 31713420]
[95]
Caucci, S.; Karkman, A.; Cacace, D.; Rybicki, M.; Timpel, P.; Voolaid, V.; Gurke, R.; Virta, M.; Berendonk, T.U. Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. FEMS Microbiol. Ecol., 2016, 92(5), fiw060.
[http://dx.doi.org/10.1093/femsec/fiw060] [PMID: 27073234]
[96]
McCall, C.A.; Bent, E.; Jørgensen, T.S.; Dunfield, K.E.; Habash, M.B. Metagenomic comparison of antibiotic resistance genes associated with liquid and dewatered biosolids. J. Environ. Qual., 2016, 45(2), 463-470.
[http://dx.doi.org/10.2134/jeq2015.05.0255] [PMID: 27065392]
[97]
Forslund, K.; Sunagawa, S.; Kultima, J.R.; Mende, D.R.; Arumugam, M.; Typas, A.; Bork, P. Country-specific antibiotic use practices impact the human gut resistome. Genome Res., 2013, 23(7), 1163-1169.
[http://dx.doi.org/10.1101/gr.155465.113] [PMID: 23568836]
[98]
Kumar, S.; Sharma, A.K.; Kumar, B.; Shakya, M.; Patel, J.A.; Kumar, B.; Bisht, N.; Chigure, G.M.; Singh, K.; Kumar, R.; Kumar, S.; Srivastava, S.; Rawat, P.; Ghosh, S. Characterization of deltamethrin, cypermethrin, coumaphos and ivermectin resistance in populations of Rhipicephalus microplus in India and efficacy of an antitick natural formulation prepared from ageratum conyzoides. Ticks Tick Borne Dis., 2021, 12(6), 101818.
[http://dx.doi.org/10.1016/j.ttbdis.2021.101818] [PMID: 34537543]
[99]
Dauparaitė, E.; Kupčinskas, T.; von Samson-Himmelstjerna, G.; Petkevičius, S. Anthelmintic resistance of horse strongyle nematodes to ivermectin and pyrantel in Lithuania. Acta Vet. Scand., 2021, 63(1), 5.
[http://dx.doi.org/10.1186/s13028-021-00569-z] [PMID: 33494770]
[100]
WHO. Soil-transmitted helminth infections. Lancet, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
[101]
Marzano, V.; Mancinelli, L.; Bracaglia, G.; Del Chierico, F.; Vernocchi, P.; Di Girolamo, F.; Garrone, S.; Tchidjou Kuekou, H.; D’Argenio, P.; Dallapiccola, B.; Urbani, A.; Putignani, L. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”. PLoS Negl. Trop. Dis., 2017, 11(11), e0005916.
[http://dx.doi.org/10.1371/JOURNAL.PNTD.0005916] [PMID: 29095820]
[102]
Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Cite This Environ. Sci. Technol. Lett, 2020, 7, 511-516.
[http://dx.doi.org/10.1021/acs.estlett.0c00357]
[103]
Balboa, S.; Mauricio-Iglesias, M.; Rodriguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Sci. Total Environ., 2021, 772, 145268.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145268] [PMID: 33556806]
[104]
Kitajima, M.; Iker, B.C.; Pepper, I.L.; Gerba, C.P. Relative abundance and treatment reduction of viruses during wastewater treatment processes--identification of potential viral indicators. Sci. Total Environ., 2014, 488(1), 290-296.
[http://dx.doi.org/10.1016/j.scitotenv.2014.04.087] [PMID: 24836386]
[105]
Crank, K.; Li, X.; North, D.; Ferraro, G.B.; Iaconelli, M.; Mancini, P.; La Rosa, G.; Bibby, K. CrAssphage abundance and correlation with molecular viral markers in Italian wastewater. Water Res., 2020, 184, 116161.
[http://dx.doi.org/10.1016/j.watres.2020.116161] [PMID: 32810770]
[106]
Bengtsson-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.G.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ., 2016, 572, 697-712.
[http://dx.doi.org/10.1016/j.scitotenv.2016.06.228] [PMID: 27542633]
[107]
Rana, D. Comparison of Cellulose Acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water. J. Membr. Sci., 2012, 409, 346-354.
[http://dx.doi.org/10.1016/J.MEMSCI.2012.04.005]
[108]
Narbaitz, R.M. Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: Field testing. Chem. Eng. J., 2013, 225, 848-856.
[http://dx.doi.org/10.1016/J.CEJ.2013.04.050]
[109]
Wang, S.; Ma, X.; Liu, Y.; Yi, X.; Du, G.; Li, J. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. Bioresour. Technol., 2020, 302(January), 122825.
[http://dx.doi.org/10.1016/j.biortech.2020.122825] [PMID: 31986335]
[110]
Ekowati, Y.; van Diepeningen, A.D.; Ferrero, G.; Kennedy, M.D.; de Roda Husman, A.M.; Schets, F.M. Clinically relevant fungi in water and on surfaces in an indoor swimming pool facility. Int. J. Hyg. Environ. Health, 2017, 220(7), 1152-1160.
[http://dx.doi.org/10.1016/j.ijheh.2017.07.002] [PMID: 28716483]
[111]
Li, P.; Wu, Y.; He, Y.; Zhang, B.; Huang, Y.; Yuan, Q.; Chen, Y. Occurrence and fate of antibiotic residues and antibiotic resistance genes in a reservoir with ecological purification facilities for drinking water sources. Sci. Total Environ., 2020, 707, 135276.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135276] [PMID: 31864005]
[112]
Morrison, C.M.; Betancourt, W.Q.; Quintanar, D.R.; Lopez, G.U.; Pepper, I.L.; Gerba, C.P. Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. Water Res., 2020, 177(115812), 115812.
[http://dx.doi.org/10.1016/j.watres.2020.115812] [PMID: 32311575]
[113]
Nnadozie, C. F.; Kumari, S.; Bux, F. Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Rev. Environ. Sci. Biotechnol., 2017, 16, 491-515.
[114]
De Los Cobos-Vasconcelos, D.; Villalba-Pastrana, M.E.; Noyola, A. Effective pathogen removal by low temperature thermal pre-treatment and anaerobic digestion for class a biosolids production from sewage sludge. J. Water Sanit. Hyg. Dev., 2015, 5(1), 56-63.
[http://dx.doi.org/10.2166/washdev.2014.036]
[115]
Popova, T.P.; Marinova-Garvanska, S.M.; Kaleva, M.D.; Zaharinov, B.S.; Gencheva, A.B.; Baykov, B.D. Decontamination of sewage sludge by treatment with calcium oxide. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(9), 184-192.
[116]
An, X.L.; Su, J.Q.; Li, B.; Ouyang, W.Y.; Zhao, Y.; Chen, Q.L.; Cui, L.; Chen, H.; Gillings, M.R.; Zhang, T.; Zhu, Y.G. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environ. Int., 2018, 117, 146-153.
[http://dx.doi.org/10.1016/j.envint.2018.05.011] [PMID: 29751164]
[117]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[118]
Yadav, S.; Kapley, A. Exploration of activated sludge resistome using metagenomics. Sci. Total Environ., 2019, 692, 1155-1164.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.267] [PMID: 31539947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy