Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A Recent Update on the Epigenetic Repertoire and Chromatin Modifying Therapy in Diabetes Mellitus: A Comprehensive Review

Author(s): Xin Wang, Di Zhao, Narasimha Murthy Beeraka*, Spandana Tatineni, Chiriki Devi Sri, Veera Venkata Nishanth, Chinnappa Apatira Uthiah, Zonunsiami Leihang, Kavya Sugur, Junqi Liu, Vladimir Nikolaevich Nikolenko and Ruitai Fan*

Volume 30, Issue 18, 2023

Published on: 26 September, 2022

Page: [2020 - 2038] Pages: 19

DOI: 10.2174/0929867329666220802090446

Price: $65

Abstract

Several epigenome studies reported the ability of genes to modulate the lipogenic and glucogenic pathways during insulin signaling as well as the other pathways involved in cardiometabolic diseases. Epigenetic plasticity and oxidative stress are interrelated in the pathophysiology of insulin resistance (IR) and cardiometabolic disease conditions. This review aims to ascertain the previous research evidence pertaining to the role of the epigenome and the variations of histone and non-histone proteins during cardiometabolic disease conditions and insulin signaling to develop effective disease-based epigenetic biomarkers and epigenetics-based chromatic therapy. Several public databases, including PubMed, National Library of Medicine, Medline, and google scholar, were searched for the peer-reviewed and published reports. This study delineates the consistent body of evidence regarding the epigenetic alterations of DNA/histone complexes pertinent to oxidative stress, insulin signaling, metabolic cardiomyopathy, and endothelial dysfunction in patients with cardiometabolic diseases. It has been described that both DNA methylation and post-translational histone alterations across visceral and subcutaneous adipose tissue could facilitate gene transcription to modulate inflammation, lipogenesis, and adipogenesis as the complex network of chromatin-modifying enzymatic proteins involved in the defensive insulin signaling across vasculature in patients with cardiometabolic diseases. Resveratrol, vorinostat, trichostatin, and apabetalone are reported to have significant implications as epigenetic modulators. Based on the epigenetic alterations, a wide range of protein/gene markers, such as interleukin-4 (IL-4) and interferon-γ (IFNγ) genes, may be considered as biomarkers in these patients due to their ability to the polarization of immune cells involved in tissue inflammation and atherosclerosis. Hence, it is crucial to unravel the cell-specific epigenetic information to develop individual risk assessment strategies for chromatin-modifying therapies in patients with cardiometabolic diseases.

Keywords: Epigenetic landscape, cardiometabolic diseases, chromatin-modifying therapy, diabetes, antioxidants, prognosis.

[1]
Ramazi, S.; Allahverdi, A.; Zahiri, J. Evaluation of post translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J. Biosci., 2020, 45(1), 1-29.
[http://dx.doi.org/10.1007/s12038-020-00099-2] [PMID: 33184251]
[2]
Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19), 2145-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[3]
Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 2013, 502(7472), 472-479.
[http://dx.doi.org/10.1038/nature12750] [PMID: 24153300]
[4]
Miranda, T.B.; Jones, P.A. DNA methylation: The nuts and bolts of repression. J. Cell. Physiol., 2007, 213(2), 384-390.
[http://dx.doi.org/10.1002/jcp.21224] [PMID: 17708532]
[5]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[6]
Shahbazian, M.D.; Grunstein, M. Functions of site specific histone acetylation and deacetylation. Annu. Rev. Biochem., 2007, 76(1), 75-100.
[http://dx.doi.org/10.1146/annurev.biochem.76.052705.162114] [PMID: 17362198]
[7]
Paneni, F.; Costantino, S.; Cosentino, F. Molecular pathways of arterial aging. Clin. Sci., 2015, 128(2), 69-79.
[http://dx.doi.org/10.1042/CS20140302] [PMID: 25236971]
[8]
Cooper, M.E.; El-Osta, A. Epigenetics: Mechanisms and implications for diabetic complications. Circ. Res., 2010, 107(12), 1403-1413.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223552] [PMID: 21148447]
[9]
Gurha, P.; Marian, A.J. Noncoding RNAs in cardiovascular biology and disease. Circ. Res., 2013, 113(12), e115-e120.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302988] [PMID: 24311620]
[10]
Mathiyalagan, P.; Keating, S.T.; Du, X.-J.; El-Osta, A. Interplay of chromatin modifications and non coding RNAs in the heart. Epigenetics, 2014, 9(1), 101-112.
[http://dx.doi.org/10.4161/epi.26405] [PMID: 24247090]
[11]
Magistri, M.; Faghihi, M.A.; St Laurent, G.; Wahlestedt, C. Regulation of chromatin structure by long noncoding RNAs: Focus on natural antisense transcripts. Trends Genet., 2012, 28(8), 389-396.
[http://dx.doi.org/10.1016/j.tig.2012.03.013] [PMID: 22541732]
[12]
Cantone, I.; Fisher, A.G. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol., 2013, 20(3), 282-289.
[http://dx.doi.org/10.1038/nsmb.2489] [PMID: 23463313]
[13]
Baccarelli, A.; Ghosh, S. Environmental exposures, epigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care, 2012, 15(4), 323-329.
[http://dx.doi.org/10.1097/MCO.0b013e328354bf5c] [PMID: 22669047]
[14]
Fraga, M.F.; Ballestar, E.; Paz, M.F.; Ropero, S.; Setien, F.; Ballestar, M.L.; Heine-Suñer, D.; Cigudosa, J.C.; Urioste, M.; Benitez, J.; Boix, C.M.; Sanchez-Aguilera, A.; Ling, C.; Carlsson, E.; Poulsen, P.; Vaag, A.; Stephan, Z.; Spector, T.D.; Wu, Y.Z.; Plass, C.; Esteller, M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10604-10609.
[http://dx.doi.org/10.1073/pnas.0500398102] [PMID: 16009939]
[15]
Gut, P.; Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature, 2013, 502(7472), 489-498.
[http://dx.doi.org/10.1038/nature12752] [PMID: 24153302]
[16]
Hansen, T. In Type 2 diabetes mellitus a multifactorial disease; Annales Universitatis Mariae Curie Sklodowska, 2002, pp. 544-549.
[17]
Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci., 2014, 11(11), 1185-1200.
[http://dx.doi.org/10.7150/ijms.10001] [PMID: 25249787]
[18]
Yagi, K. Lipid peroxides and related radicals in clinical medicine. Adv. Exp. Med. Biol., 1994, 366, 1-15.
[http://dx.doi.org/10.1007/978-1-4615-1833-4_1]
[19]
Suryawanshi, N.P.; Bhutey, A.K.; Nagdeote, A.N.; Jadhav, A.A.; Manoorkar, G.S. Study of lipid peroxide and lipid profile in diabetes mellitus. Indian J. Clin. Biochem., 2006, 21(1), 126-130.
[http://dx.doi.org/10.1007/BF02913080] [PMID: 23105583]
[20]
Agarwal, S.; Banerjee, S.; Chatterjee, S.N. Effects of oxygen on ferrous sulphate induced lipid peroxidation in liposomal membrane. Indian J. Biochem. Biophys., 1985, 22(6), 331-334.
[PMID: 3879981]
[21]
Nair, U.; Bartsch, H.; Nair, J. Lipid peroxidation induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic. Biol. Med., 2007, 43(8), 1109-1120.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.07.012] [PMID: 17854706]
[22]
Smriti, K.; Pai, K.M.; Ravindranath, V.; Pentapati, K.C. Role of salivary malondialdehyde in assessment of oxidative stress among diabetics. J. Oral Biol. Craniofac. Res., 2016, 6(1), 41-44.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.004] [PMID: 26937368]
[23]
Nair, A.; Nair, B.J. Comparative analysis of the oxidative stress and antioxidant status in type II diabetics and nondiabetics: A biochemical study. J. Oral Maxillofac. Pathol., 2017, 21(3), 394-401.
[http://dx.doi.org/10.4103/jomfp.JOMFP_56_16] [PMID: 29391714]
[24]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54, 1615-1625.
[25]
Bruce, C.R.; Carey, A.L.; Hawley, J.A.; Febbraio, M.A. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: Evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes, 2003, 52(9), 2338-2345.
[http://dx.doi.org/10.2337/diabetes.52.9.2338] [PMID: 12941774]
[26]
Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 816-823.
[http://dx.doi.org/10.1161/01.ATV.0000122852.22604.78] [PMID: 14976002]
[27]
Gunawardena, HP; Silva, R; Sivakanesan, R; Ranasinghe, P; Katulanda, P. Poor glycaemic control is associated with increased lipid peroxidation and glutathione peroxidase activity in type 2 diabetes patients. Oxid. Med. Cell. Longev., 2019, 2019, 9471697.
[http://dx.doi.org/10.1155/2019/9471697]
[28]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[29]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress -A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[30]
Fakhruddin, S; Alanazi, W; Jackson, KE Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J. Diabetes Res., 2017, 2017, 8379327.
[http://dx.doi.org/10.1155/2017/8379327]
[31]
Volpe, C.M.O.; Villar, P.H.; Dos Anjos, P.M.F.; Nogueira, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[32]
Rani, A.J.; Mythili, S.V. Study on total antioxidant status in relation to oxidative stress in type 2 diabetes mellitus. J. Clin. Diagn. Res., 2014, 8(3), 108-110.
[http://dx.doi.org/10.7860/JCDR/2014/7603.4121] [PMID: 24783095]
[33]
Mahreen, R.; Mohsin, M.; Nasreen, Z.; Siraj, M.; Ishaq, M. Significantly increased levels of serum malonaldehyde in type 2 diabetics with myocardial infarction. Int. J. Diabetes Dev. Ctries., 2010, 30(1), 49-51.
[http://dx.doi.org/10.4103/0973-3930.60006] [PMID: 20431807]
[34]
Bhutia, Y.; Ghosh, A.; Sherpa, M.L.; Pal, R.; Mohanta, P.K. Serum malondialdehyde level: Surrogate stress marker in the Sikkimese diabetics. J. Nat. Sci. Biol. Med., 2011, 2(1), 107-112.
[http://dx.doi.org/10.4103/0976-9668.82309] [PMID: 22470243]
[35]
Battiprolu, P.K.; Lopez, C.C.; Wang, Z.V.; Nemchenko, A.; Lavandero, S.; Hill, J.A. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci., 2013, 92(11), 609-615.
[http://dx.doi.org/10.1016/j.lfs.2012.10.011] [PMID: 23123443]
[36]
Aneja, A.; Tang, W.H.; Bansilal, S.; Garcia, M.J.; Farkouh, M.E. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options. Am. J. Med., 2008, 121(9), 748-757.
[http://dx.doi.org/10.1016/j.amjmed.2008.03.046] [PMID: 18724960]
[37]
Boudina, S.; Abel, E.D. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord., 2010, 11(1), 31-39.
[http://dx.doi.org/10.1007/s11154-010-9131-7] [PMID: 20180026]
[38]
Daiber, A.; Hahad, O.; Andreadou, I.; Steven, S.; Daub, S.; Münzel, T. Redox-related biomarkers in human cardiovascular disease classical footprints and beyond. Redox Biol., 2021, 42, 101875.
[http://dx.doi.org/10.1016/j.redox.2021.101875] [PMID: 33541847]
[39]
Chao, S.-C.; Chen, Y.-J.; Huang, K.-H.; Kuo, K.-L.; Yang, T.-H.; Huang, K.-Y.; Wang, C.-C.; Tang, C.-H.; Yang, R.-S.; Liu, S.-H. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci. Rep., 2017, 7(1), 3180.
[http://dx.doi.org/10.1038/s41598-017-03635-7] [PMID: 28600541]
[40]
Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; Scherer, B.; Sinclair, D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425(6954), 191-196.
[http://dx.doi.org/10.1038/nature01960] [PMID: 12939617]
[41]
Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195.
[http://dx.doi.org/10.1074/jbc.M501250200] [PMID: 15749705]
[42]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez, L.G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[43]
Matsushima, S.; Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1375-H1389.
[http://dx.doi.org/10.1152/ajpheart.00053.2015] [PMID: 26232232]
[44]
Guo, R.; Liu, W.; Liu, B.; Zhang, B.; Li, W.; Xu, Y. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism. Int. J. Cardiol., 2015, 191, 36-45.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.245] [PMID: 25965594]
[45]
Costantino, S.; Paneni, F.; Mitchell, K.; Mohammed, S.A.; Hussain, S.; Gkolfos, C.; Berrino, L.; Volpe, M.; Schwarzwald, C.; Lüscher, T.F.; Cosentino, F. Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66. Int. J. Cardiol., 2018, 268, 179-186.
[http://dx.doi.org/10.1016/j.ijcard.2018.04.082] [PMID: 30047409]
[46]
Wang, S.; Wang, C.; Turdi, S.; Richmond, K.L.; Zhang, Y.; Ren, J. ALDH2 protects against high fat diet induced obesity cardiomyopathy and defective autophagy: Role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation. Int. J. Obes., 2018, 42(5), 1073-1087.
[http://dx.doi.org/10.1038/s41366-018-0030-4] [PMID: 29535452]
[47]
Hedman, Å.K.; Zilmer, M.; Sundström, J.; Lind, L.; Ingelsson, E. DNA methylation patterns associated with oxidative stress in an ageing population. BMC Med. Genomics, 2016, 9(1), 72.
[http://dx.doi.org/10.1186/s12920-016-0235-0] [PMID: 27884142]
[48]
Placek, K.; Schultze, J.L.; Aschenbrenner, A.C. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J. Clin. Invest., 2019, 129(8), 2994-3005.
[http://dx.doi.org/10.1172/JCI124619] [PMID: 31329166]
[49]
Lee, G.R.; Kim, S.T.; Spilianakis, C.G.; Fields, P.E.; Flavell, R.A. T helper cell differentiation: Regulation by cis elements and epigenetics. Immunity, 2006, 24(4), 369-379.
[http://dx.doi.org/10.1016/j.immuni.2006.03.007] [PMID: 16618596]
[50]
Kondilis, H.D.; Wade, P.A. Epigenetics and the adaptive immune response. Mol. Aspects Med., 2013, 34(4), 813-825.
[http://dx.doi.org/10.1016/j.mam.2012.06.008] [PMID: 22789989]
[51]
Roh, T.Y.; Cuddapah, S.; Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome wide mapping. Genes Dev., 2005, 19(5), 542-552.
[http://dx.doi.org/10.1101/gad.1272505] [PMID: 15706033]
[52]
Wang, Z.; Lu, Q.; Wang, Z. Epigenetic alterations in cellular immunity: New insights into autoimmune diseases. Cell. Physiol. Biochem., 2017, 41(2), 645-660.
[http://dx.doi.org/10.1159/000457944] [PMID: 28214857]
[53]
Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia, N.N.; Gloyn, A.L.; Lindgren, C.M.; Mägi, R.; Morris, A.P.; Randall, J.; Johnson, T.; Elliott, P.; Rybin, D.; Thorleifsson, G.; Steinthorsdottir, V.; Henneman, P.; Grallert, H.; Dehghan, A.; Hottenga, J.J.; Franklin, C.S.; Navarro, P.; Song, K.; Goel, A.; Perry, J.R.; Egan, J.M.; Lajunen, T.; Grarup, N.; Sparsø, T.; Doney, A.; Voight, B.F.; Stringham, H.M.; Li, M.; Kanoni, S.; Shrader, P.; Cavalcanti-Proença, C.; Kumari, M.; Qi, L.; Timpson, N.J.; Gieger, C.; Zabena, C.; Rocheleau, G.; Ingelsson, E.; An, P.; O’Connell, J.; Luan, J.; Elliott, A.; McCarroll, S.A.; Payne, F.; Roccasecca, R.M.; Pattou, F.; Sethupathy, P.; Ardlie, K.; Ariyurek, Y.; Balkau, B.; Barter, P.; Beilby, J.P.; Ben-Shlomo, Y.; Benediktsson, R.; Bennett, A.J.; Bergmann, S.; Bochud, M.; Boerwinkle, E.; Bonnefond, A.; Bonnycastle, L.L.; Borch-Johnsen, K.; Böttcher, Y.; Brunner, E.; Bumpstead, S.J.; Charpentier, G.; Chen, Y.D.; Chines, P.; Clarke, R.; Coin, L.J.; Cooper, M.N.; Cornelis, M.; Crawford, G.; Crisponi, L.; Day, I.N.; de Geus, E.J.; Delplanque, J.; Dina, C.; Erdos, M.R.; Fedson, A.C.; Fischer-Rosinsky, A.; Forouhi, N.G.; Fox, C.S.; Frants, R.; Franzosi, M.G.; Galan, P.; Goodarzi, M.O.; Graessler, J.; Groves, C.J.; Grundy, S.; Gwilliam, R.; Gyllensten, U.; Hadjadj, S.; Hallmans, G.; Hammond, N.; Han, X.; Hartikainen, A.L.; Hassanali, N.; Hayward, C.; Heath, S.C.; Hercberg, S.; Herder, C.; Hicks, A.A.; Hillman, D.R.; Hingorani, A.D.; Hofman, A.; Hui, J.; Hung, J.; Isomaa, B.; Johnson, P.R.; Jørgensen, T.; Jula, A.; Kaakinen, M.; Kaprio, J.; Kesaniemi, Y.A.; Kivimaki, M.; Knight, B.; Koskinen, S.; Kovacs, P.; Kyvik, K.O.; Lathrop, G.M.; Lawlor, D.A.; Le Bacquer, O.; Lecoeur, C.; Li, Y.; Lyssenko, V.; Mahley, R.; Mangino, M.; Manning, A.K.; Martínez-Larrad, M.T.; McAteer, J.B.; McCulloch, L.J.; McPherson, R.; Meisinger, C.; Melzer, D.; Meyre, D.; Mitchell, B.D.; Morken, M.A.; Mukherjee, S.; Naitza, S.; Narisu, N.; Neville, M.J.; Oostra, B.A.; Orrù, M.; Pakyz, R.; Palmer, C.N.; Paolisso, G.; Pattaro, C.; Pearson, D.; Peden, J.F.; Pedersen, N.L.; Perola, M.; Pfeiffer, A.F.; Pichler, I.; Polasek, O.; Posthuma, D.; Potter, S.C.; Pouta, A.; Province, M.A.; Psaty, B.M.; Rathmann, W.; Rayner, N.W.; Rice, K.; Ripatti, S.; Rivadeneira, F.; Roden, M.; Rolandsson, O.; Sandbaek, A.; Sandhu, M.; Sanna, S.; Sayer, A.A.; Scheet, P.; Scott, L.J.; Seedorf, U.; Sharp, S.J.; Shields, B.; Sigurethsson, G.; Sijbrands, E.J.; Silveira, A.; Simpson, L.; Singleton, A.; Smith, N.L.; Sovio, U.; Swift, A.; Syddall, H.; Syvänen, A.C.; Tanaka, T.; Thorand, B.; Tichet, J.; Tönjes, A.; Tuomi, T.; Uitterlinden, A.G.; van Dijk, K.W.; van Hoek, M.; Varma, D.; Visvikis-Siest, S.; Vitart, V.; Vogelzangs, N.; Waeber, G.; Wagner, P.J.; Walley, A.; Walters, G.B.; Ward, K.L.; Watkins, H.; Weedon, M.N.; Wild, S.H.; Willemsen, G.; Witteman, J.C.; Yarnell, J.W.; Zeggini, E.; Zelenika, D.; Zethelius, B.; Zhai, G.; Zhao, J.H.; Zillikens, M.C.; Borecki, I.B.; Loos, R.J.; Meneton, P.; Magnusson, P.K.; Nathan, D.M.; Williams, G.H.; Hattersley, A.T.; Silander, K.; Salomaa, V.; Smith, G.D.; Bornstein, S.R.; Schwarz, P.; Spranger, J.; Karpe, F.; Shuldiner, A.R.; Cooper, C.; Dedoussis, G.V.; Serrano, R.M.; Morris, A.D.; Lind, L.; Palmer, L.J.; Hu, F.B.; Franks, P.W.; Ebrahim, S.; Marmot, M.; Kao, W.H.; Pankow, J.S.; Sampson, M.J.; Kuusisto, J.; Laakso, M.; Hansen, T.; Pedersen, O.; Pramstaller, P.P.; Wichmann, H.E.; Illig, T.; Rudan, I.; Wright, A.F.; Stumvoll, M.; Campbell, H.; Wilson, J.F.; Bergman, R.N.; Buchanan, T.A.; Collins, F.S.; Mohlke, K.L.; Tuomilehto, J.; Valle, T.T.; Altshuler, D.; Rotter, J.I.; Siscovick, D.S.; Penninx, B.W.; Boomsma, D.I.; Deloukas, P.; Spector, T.D.; Frayling, T.M.; Ferrucci, L.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K.; van Duijn, C.M.; Aulchenko, Y.S.; Cao, A.; Scuteri, A.; Schlessinger, D.; Uda, M.; Ruokonen, A.; Jarvelin, M.R.; Waterworth, D.M.; Vollenweider, P.; Peltonen, L.; Mooser, V.; Abecasis, G.R.; Wareham, N.J.; Sladek, R.; Froguel, P.; Watanabe, R.M.; Meigs, J.B.; Groop, L.; Boehnke, M.; McCarthy, M.I.; Florez, J.C.; Barroso, I. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet., 2010, 42(2), 105-116.
[http://dx.doi.org/10.1038/ng.520] [PMID: 20081858]
[54]
Saxena, R.; Hivert, M-F.; Langenberg, C.; Tanaka, T.; Pankow, J.S.; Vollenweider, P.; Lyssenko, V.; Bouatia-Naji, N.; Dupuis, J.; Jackson, A.U.; Kao, W.H.; Li, M.; Glazer, N.L.; Manning, A.K.; Luan, J.; Stringham, H.M.; Prokopenko, I.; Johnson, T.; Grarup, N.; Boesgaard, T.W.; Lecoeur, C.; Shrader, P.; O’Connell, J.; Ingelsson, E.; Couper, D.J.; Rice, K.; Song, K.; Andreasen, C.H.; Dina, C.; Köttgen, A.; Le Bacquer, O.; Pattou, F.; Taneera, J.; Steinthorsdottir, V.; Rybin, D.; Ardlie, K.; Sampson, M.; Qi, L.; van Hoek, M.; Weedon, M.N.; Aulchenko, Y.S.; Voight, B.F.; Grallert, H.; Balkau, B.; Bergman, R.N.; Bielinski, S.J.; Bonnefond, A.; Bonnycastle, L.L.; Borch-Johnsen, K.; Böttcher, Y.; Brunner, E.; Buchanan, T.A.; Bumpstead, S.J.; Cavalcanti-Proença, C.; Charpentier, G.; Chen, Y.D.; Chines, P.S.; Collins, F.S.; Cornelis, M.; J Crawford, G.; Delplanque, J.; Doney, A.; Egan, J.M.; Erdos, M.R.; Firmann, M.; Forouhi, N.G.; Fox, C.S.; Goodarzi, M.O.; Graessler, J.; Hingorani, A.; Isomaa, B.; Jørgensen, T.; Kivimaki, M.; Kovacs, P.; Krohn, K.; Kumari, M.; Lauritzen, T.; Lévy-Marchal, C.; Mayor, V.; McAteer, J.B.; Meyre, D.; Mitchell, B.D.; Mohlke, K.L.; Morken, M.A.; Narisu, N.; Palmer, C.N.; Pakyz, R.; Pascoe, L.; Payne, F.; Pearson, D.; Rathmann, W.; Sandbaek, A.; Sayer, A.A.; Scott, L.J.; Sharp, S.J.; Sijbrands, E.; Singleton, A.; Siscovick, D.S.; Smith, N.L.; Sparsø, T.; Swift, A.J.; Syddall, H.; Thorleifsson, G.; Tönjes, A.; Tuomi, T.; Tuomilehto, J.; Valle, T.T.; Waeber, G.; Walley, A.; Waterworth, D.M.; Zeggini, E.; Zhao, J.H.; Illig, T.; Wichmann, H.E.; Wilson, J.F.; van Duijn, C.; Hu, F.B.; Morris, A.D.; Frayling, T.M.; Hattersley, A.T.; Thorsteinsdottir, U.; Stefansson, K.; Nilsson, P.; Syvänen, A.C.; Shuldiner, A.R.; Walker, M.; Bornstein, S.R.; Schwarz, P.; Williams, G.H.; Nathan, D.M.; Kuusisto, J.; Laakso, M.; Cooper, C.; Marmot, M.; Ferrucci, L.; Mooser, V.; Stumvoll, M.; Loos, R.J.; Altshuler, D.; Psaty, B.M.; Rotter, J.I.; Boerwinkle, E.; Hansen, T.; Pedersen, O.; Florez, J.C.; McCarthy, M.I.; Boehnke, M.; Barroso, I.; Sladek, R.; Froguel, P.; Meigs, J.B.; Groop, L.; Wareham, N.J.; Watanabe, R.M. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet., 2010, 42(2), 142-148.
[http://dx.doi.org/10.1038/ng.521] [PMID: 20081857]
[55]
Morris, A.P.; Voight, B.F.; Teslovich, T.M.; Ferreira, T.; Segrè, A.V.; Steinthorsdottir, V.; Strawbridge, R.J.; Khan, H.; Grallert, H.; Mahajan, A.; Prokopenko, I.; Kang, H.M.; Dina, C.; Esko, T.; Fraser, R.M.; Kanoni, S.; Kumar, A.; Lagou, V.; Langenberg, C.; Luan, J.; Lindgren, C.M.; Müller-Nurasyid, M.; Pechlivanis, S.; Rayner, N.W.; Scott, L.J.; Wiltshire, S.; Yengo, L.; Kinnunen, L.; Rossin, E.J.; Raychaudhuri, S.; Johnson, A.D.; Dimas, A.S.; Loos, R.J.; Vedantam, S.; Chen, H.; Florez, J.C.; Fox, C.; Liu, C.T.; Rybin, D.; Couper, D.J.; Kao, W.H.; Li, M.; Cornelis, M.C.; Kraft, P.; Sun, Q.; van Dam, R.M.; Stringham, H.M.; Chines, P.S.; Fischer, K.; Fontanillas, P.; Holmen, O.L.; Hunt, S.E.; Jackson, A.U.; Kong, A.; Lawrence, R.; Meyer, J.; Perry, J.R.; Platou, C.G.; Potter, S.; Rehnberg, E.; Robertson, N.; Sivapalaratnam, S.; Stančáková, A.; Stirrups, K.; Thorleifsson, G.; Tikkanen, E.; Wood, A.R.; Almgren, P.; Atalay, M.; Benediktsson, R.; Bonnycastle, L.L.; Burtt, N.; Carey, J.; Charpentier, G.; Crenshaw, A.T.; Doney, A.S.; Dorkhan, M.; Edkins, S.; Emilsson, V.; Eury, E.; Forsen, T.; Gertow, K.; Gigante, B.; Grant, G.B.; Groves, C.J.; Guiducci, C.; Herder, C.; Hreidarsson, A.B.; Hui, J.; James, A.; Jonsson, A.; Rathmann, W.; Klopp, N.; Kravic, J.; Krjutškov, K.; Langford, C.; Leander, K.; Lindholm, E.; Lobbens, S.; Männistö, S.; Mirza, G.; Mühleisen, T.W.; Musk, B.; Parkin, M.; Rallidis, L.; Saramies, J.; Sennblad, B.; Shah, S.; Sigurðsson, G.; Silveira, A.; Steinbach, G.; Thorand, B.; Trakalo, J.; Veglia, F.; Wennauer, R.; Winckler, W.; Zabaneh, D.; Campbell, H.; van Duijn, C.; Uitterlinden, A.G.; Hofman, A.; Sijbrands, E.; Abecasis, G.R.; Owen, K.R.; Zeggini, E.; Trip, M.D.; Forouhi, N.G.; Syvänen, A.C.; Eriksson, J.G.; Peltonen, L.; Nöthen, M.M.; Balkau, B.; Palmer, C.N.; Lyssenko, V.; Tuomi, T.; Isomaa, B.; Hunter, D.J.; Qi, L.; Shuldiner, A.R.; Roden, M.; Barroso, I.; Wilsgaard, T.; Beilby, J.; Hovingh, K.; Price, J.F.; Wilson, J.F.; Rauramaa, R.; Lakka, T.A.; Lind, L.; Dedoussis, G.; Njølstad, I.; Pedersen, N.L.; Khaw, K.T.; Wareham, N.J.; Keinanen-Kiukaanniemi, S.M.; Saaristo, T.E.; Korpi, H.E.; Saltevo, J.; Laakso, M.; Kuusisto, J.; Metspalu, A.; Collins, F.S.; Mohlke, K.L.; Bergman, R.N.; Tuomilehto, J.; Boehm, B.O.; Gieger, C.; Hveem, K.; Cauchi, S.; Froguel, P.; Baldassarre, D.; Tremoli, E.; Humphries, S.E.; Saleheen, D.; Danesh, J.; Ingelsson, E.; Ripatti, S.; Salomaa, V.; Erbel, R.; Jöckel, K.H.; Moebus, S.; Peters, A.; Illig, T.; de Faire, U.; Hamsten, A.; Morris, A.D.; Donnelly, P.J.; Frayling, T.M.; Hattersley, A.T.; Boerwinkle, E.; Melander, O.; Kathiresan, S.; Nilsson, P.M.; Deloukas, P.; Thorsteinsdottir, U.; Groop, L.C.; Stefansson, K.; Hu, F.; Pankow, J.S.; Dupuis, J.; Meigs, J.B.; Altshuler, D.; Boehnke, M.; McCarthy, M.I. Large scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet., 2012, 44(9), 981-990.
[http://dx.doi.org/10.1038/ng.2383] [PMID: 22885922]
[56]
Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S.; Kanoni, S.; Rasmussen-Torvik, L.J.; Yengo, L.; Lecoeur, C.; Shungin, D.; Sanna, S.; Sidore, C.; Johnson, P.C.; Jukema, J.W.; Johnson, T.; Mahajan, A.; Verweij, N.; Thorleifsson, G.; Hottenga, J.J.; Shah, S.; Smith, A.V.; Sennblad, B.; Gieger, C.; Salo, P.; Perola, M.; Timpson, N.J.; Evans, D.M.; Pourcain, B.S.; Wu, Y.; Andrews, J.S.; Hui, J.; Bielak, L.F.; Zhao, W.; Horikoshi, M.; Navarro, P.; Isaacs, A.; O’Connell, J.R.; Stirrups, K.; Vitart, V.; Hayward, C.; Esko, T.; Mihailov, E.; Fraser, R.M.; Fall, T.; Voight, B.F.; Raychaudhuri, S.; Chen, H.; Lindgren, C.M.; Morris, A.P.; Rayner, N.W.; Robertson, N.; Rybin, D.; Liu, C.T.; Beckmann, J.S.; Willems, S.M.; Chines, P.S.; Jackson, A.U.; Kang, H.M.; Stringham, H.M.; Song, K.; Tanaka, T.; Peden, J.F.; Goel, A.; Hicks, A.A.; An, P.; Müller-Nurasyid, M.; Franco-Cereceda, A.; Folkersen, L.; Marullo, L.; Jansen, H.; Oldehinkel, A.J.; Bruinenberg, M.; Pankow, J.S.; North, K.E.; Forouhi, N.G.; Loos, R.J.; Edkins, S.; Varga, T.V.; Hallmans, G.; Oksa, H.; Antonella, M.; Nagaraja, R.; Trompet, S.; Ford, I.; Bakker, S.J.; Kong, A.; Kumari, M.; Gigante, B.; Herder, C.; Munroe, P.B.; Caulfield, M.; Antti, J.; Mangino, M.; Small, K.; Miljkovic, I.; Liu, Y.; Atalay, M.; Kiess, W.; James, A.L.; Rivadeneira, F.; Uitterlinden, A.G.; Palmer, C.N.; Doney, A.S.; Willemsen, G.; Smit, J.H.; Campbell, S.; Polasek, O.; Bonnycastle, L.L.; Hercberg, S.; Dimitriou, M.; Bolton, J.L.; Fowkes, G.R.; Kovacs, P.; Lindström, J.; Zemunik, T.; Bandinelli, S.; Wild, S.H.; Basart, H.V.; Rathmann, W.; Grallert, H.; Maerz, W.; Kleber, M.E.; Boehm, B.O.; Peters, A.; Pramstaller, P.P.; Province, M.A.; Borecki, I.B.; Hastie, N.D.; Rudan, I.; Campbell, H.; Watkins, H.; Farrall, M.; Stumvoll, M.; Ferrucci, L.; Waterworth, D.M.; Bergman, R.N.; Collins, F.S.; Tuomilehto, J.; Watanabe, R.M.; de Geus, E.J.; Penninx, B.W.; Hofman, A.; Oostra, B.A.; Psaty, B.M.; Vollenweider, P.; Wilson, J.F.; Wright, A.F.; Hovingh, G.K.; Metspalu, A.; Uusitupa, M.; Magnusson, P.K.; Kyvik, K.O.; Kaprio, J.; Price, J.F.; Dedoussis, G.V.; Deloukas, P.; Meneton, P.; Lind, L.; Boehnke, M.; Shuldiner, A.R.; van Duijn, C.M.; Morris, A.D.; Toenjes, A.; Peyser, P.A.; Beilby, J.P.; Körner, A.; Kuusisto, J.; Laakso, M.; Bornstein, S.R.; Schwarz, P.E.; Lakka, T.A.; Rauramaa, R.; Adair, L.S.; Smith, G.D.; Spector, T.D.; Illig, T.; de Faire, U.; Hamsten, A.; Gudnason, V.; Kivimaki, M.; Hingorani, A.; Keinanen-Kiukaanniemi, S.M.; Saaristo, T.E.; Boomsma, D.I.; Stefansson, K.; van der Harst, P.; Dupuis, J.; Pedersen, N.L.; Sattar, N.; Harris, T.B.; Cucca, F.; Ripatti, S.; Salomaa, V.; Mohlke, K.L.; Balkau, B.; Froguel, P.; Pouta, A.; Jarvelin, M.R.; Wareham, N.J.; Bouatia-Naji, N.; McCarthy, M.I.; Franks, P.W.; Meigs, J.B.; Teslovich, T.M.; Florez, J.C.; Langenberg, C.; Ingelsson, E.; Prokopenko, I.; Barroso, I. Large scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet., 2012, 44(9), 991-1005.
[http://dx.doi.org/10.1038/ng.2385] [PMID: 22885924]
[57]
Deloukas, P.; Kanoni, S.; Willenborg, C.; Farrall, M.; Assimes, T.L.; Thompson, J.R.; Ingelsson, E.; Saleheen, D.; Erdmann, J.; Goldstein, B.A.; Stirrups, K.; König, I.R.; Cazier, J.B.; Johansson, A.; Hall, A.S.; Lee, J.Y.; Willer, C.J.; Chambers, J.C.; Esko, T.; Folkersen, L.; Goel, A.; Grundberg, E.; Havulinna, A.S.; Ho, W.K.; Hopewell, J.C.; Eriksson, N.; Kleber, M.E.; Kristiansson, K.; Lundmark, P.; Lyytikäinen, L.P.; Rafelt, S.; Shungin, D.; Strawbridge, R.J.; Thorleifsson, G.; Tikkanen, E.; Van Zuydam, N.; Voight, B.F.; Waite, L.L.; Zhang, W.; Ziegler, A.; Absher, D.; Altshuler, D.; Balmforth, A.J.; Barroso, I.; Braund, P.S.; Burgdorf, C.; Claudi-Boehm, S.; Cox, D.; Dimitriou, M.; Do, R.; Doney, A.S.; El Mokhtari, N.; Eriksson, P.; Fischer, K.; Fontanillas, P.; Franco-Cereceda, A.; Gigante, B.; Groop, L.; Gustafsson, S.; Hager, J.; Hallmans, G.; Han, B.G.; Hunt, S.E.; Kang, H.M.; Illig, T.; Kessler, T.; Knowles, J.W.; Kolovou, G.; Kuusisto, J.; Langenberg, C.; Langford, C.; Leander, K.; Lokki, M.L.; Lundmark, A.; McCarthy, M.I.; Meisinger, C.; Melander, O.; Mihailov, E.; Maouche, S.; Morris, A.D.; Müller-Nurasyid, M.; Nikus, K.; Peden, J.F.; Rayner, N.W.; Rasheed, A.; Rosinger, S.; Rubin, D.; Rumpf, M.P.; Schäfer, A.; Sivananthan, M.; Song, C.; Stewart, A.F.; Tan, S.T.; Thorgeirsson, G.; van der Schoot, C.E.; Wagner, P.J.; Wells, G.A.; Wild, P.S.; Yang, T.P.; Amouyel, P.; Arveiler, D.; Basart, H.; Boehnke, M.; Boerwinkle, E.; Brambilla, P.; Cambien, F.; Cupples, A.L.; de Faire, U.; Dehghan, A.; Diemert, P.; Epstein, S.E.; Evans, A.; Ferrario, M.M.; Ferrières, J.; Gauguier, D.; Go, A.S.; Goodall, A.H.; Gudnason, V.; Hazen, S.L.; Holm, H.; Iribarren, C.; Jang, Y.; Kähönen, M.; Kee, F.; Kim, H.S.; Klopp, N.; Koenig, W.; Kratzer, W.; Kuulasmaa, K.; Laakso, M.; Laaksonen, R.; Lee, J.Y.; Lind, L.; Ouwehand, W.H.; Parish, S.; Park, J.E.; Pedersen, N.L.; Peters, A.; Quertermous, T.; Rader, D.J.; Salomaa, V.; Schadt, E.; Shah, S.H.; Sinisalo, J.; Stark, K.; Stefansson, K.; Trégouët, D.A.; Virtamo, J.; Wallentin, L.; Wareham, N.; Zimmermann, M.E.; Nieminen, M.S.; Hengstenberg, C.; Sandhu, M.S.; Pastinen, T.; Syvänen, A.C.; Hovingh, G.K.; Dedoussis, G.; Franks, P.W.; Lehtimäki, T.; Metspalu, A.; Zalloua, P.A.; Siegbahn, A.; Schreiber, S.; Ripatti, S.; Blankenberg, S.S.; Perola, M.; Clarke, R.; Boehm, B.O.; O’Donnell, C.; Reilly, M.P.; März, W.; Collins, R.; Kathiresan, S.; Hamsten, A.; Kooner, J.S.; Thorsteinsdottir, U.; Danesh, J.; Palmer, C.N.; Roberts, R.; Watkins, H.; Schunkert, H.; Samani, N.J. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet., 2013, 45(1), 25-33.
[http://dx.doi.org/10.1038/ng.2480] [PMID: 23202125]
[58]
Wolffe, A.P.; Guschin, D. Review: Chromatin structural features and targets that regulate transcription. J. Struct. Biol., 2000, 129(2-3), 102-122.
[http://dx.doi.org/10.1006/jsbi.2000.4217] [PMID: 10806063]
[59]
Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome wide association studies for common human diseases. Nat. Rev. Genet., 2011, 12(8), 529-541.
[http://dx.doi.org/10.1038/nrg3000] [PMID: 21747404]
[60]
Feinberg, AP; Irizarry, RA; Fradin, D; Aryee, MJ; Murakami, P; Aspelund, T; Eiriksdottir, G; Harris, TB; Launer, L; Gudnason, V Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci. Transl. Med., 2010, 2, 49ra67.
[http://dx.doi.org/10.1126/scitranslmed.3001262]
[61]
Dick, K.J.; Nelson, C.P.; Tsaprouni, L.; Sandling, J.K.; Aïssi, D.; Wahl, S.; Meduri, E.; Morange, P.E.; Gagnon, F.; Grallert, H.; Waldenberger, M.; Peters, A.; Erdmann, J.; Hengstenberg, C.; Cambien, F.; Goodall, A.H.; Ouwehand, W.H.; Schunkert, H.; Thompson, J.R.; Spector, T.D.; Gieger, C.; Trégouët, D.A.; Deloukas, P.; Samani, N.J. DNA methylation and body-mass index: A genome wide analysis. Lancet, 2014, 383(9933), 1990-1998.
[http://dx.doi.org/10.1016/S0140-6736(13)62674-4] [PMID: 24630777]
[62]
Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet., 2002, 3(6), 415-428.
[http://dx.doi.org/10.1038/nrg816] [PMID: 12042769]
[63]
Gervin, K.; Vigeland, M.D.; Mattingsdal, M.; Hammerø, M.; Nygård, H.; Olsen, A.O.; Brandt, I.; Harris, J.R.; Undlien, D.E.; Lyle, R. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: Identification of epigenetically dysregulated genes. PLoS Genet., 2012, 8(1), e1002454.
[http://dx.doi.org/10.1371/journal.pgen.1002454] [PMID: 22291603]
[64]
Shenker, N.S.; Polidoro, S.; van Veldhoven, K.; Sacerdote, C.; Ricceri, F.; Birrell, M.A.; Belvisi, M.G.; Brown, R.; Vineis, P.; Flanagan, J.M. Epigenome wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum. Mol. Genet., 2013, 22(5), 843-851.
[http://dx.doi.org/10.1093/hmg/dds488] [PMID: 23175441]
[65]
Campos, A.C.; Molognoni, F.; Melo, F.H.; Galdieri, L.C.; Carneiro, C.R.; D’Almeida, V.; Correa, M.; Jasiulionis, M.G. Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia, 2007, 9(12), 1111-1121.
[http://dx.doi.org/10.1593/neo.07712] [PMID: 18084618]
[66]
Zawia, N.H.; Lahiri, D.K.; Cardozo, P.F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic. Biol. Med., 2009, 46(9), 1241-1249.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.006] [PMID: 19245828]
[67]
Wrigley, B.J.; Lip, G.Y.; Shantsila, E. The role of monocytes and inflammation in the pathophysiology of heart failure. Eur. J. Heart Fail., 2011, 13(11), 1161-1171.
[http://dx.doi.org/10.1093/eurjhf/hfr122] [PMID: 21952932]
[68]
Jagannathan, B.M.; McDonnell, M.E.; Shin, H.; Rehman, Q.; Hasturk, H.; Apovian, C.M.; Nikolajczyk, B.S. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J. Immunol., 2011, 186(2), 1162-1172.
[http://dx.doi.org/10.4049/jimmunol.1002615] [PMID: 21169542]
[69]
Bacos, K.; Gillberg, L.; Volkov, P.; Olsson, A.H.; Hansen, T.; Pedersen, O.; Gjesing, A.P.; Eiberg, H.; Tuomi, T.; Almgren, P.; Groop, L.; Eliasson, L.; Vaag, A.; Dayeh, T.; Ling, C. Blood-based biomarkers of age associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun., 2016, 7(1), 11089.
[http://dx.doi.org/10.1038/ncomms11089] [PMID: 27029739]
[70]
Lehmann, W.R.; Neiman, D.; Zemmour, H.; Moss, J.; Magenheim, J.; Vaknin-Dembinsky, A.; Rubertsson, S.; Nellgård, B.; Blennow, K.; Zetterberg, H.; Spalding, K.; Haller, M.J.; Wasserfall, C.H.; Schatz, D.A.; Greenbaum, C.J.; Dorrell, C.; Grompe, M.; Zick, A.; Hubert, A.; Maoz, M.; Fendrich, V.; Bartsch, D.K.; Golan, T.; Ben Sasson, S.A.; Zamir, G.; Razin, A.; Cedar, H.; Shapiro, A.M.; Glaser, B.; Shemer, R.; Dor, Y. Identification of tissue specific cell death using methylation patterns of circulating DNA. Proc. Natl. Acad. Sci. USA, 2016, 113(13), E1826-E1834.
[http://dx.doi.org/10.1073/pnas.1519286113] [PMID: 26976580]
[71]
Walton, E.; Hass, J.; Liu, J.; Roffman, J.L.; Bernardoni, F.; Roessner, V.; Kirsch, M.; Schackert, G.; Calhoun, V.; Ehrlich, S. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophr. Bull., 2016, 42(2), 406-414.
[http://dx.doi.org/10.1093/schbul/sbv074] [PMID: 26056378]
[72]
Hardy, T.; Zeybel, M.; Day, C.P.; Dipper, C.; Masson, S.; McPherson, S.; Henderson, E.; Tiniakos, D.; White, S.; French, J.; Mann, D.A.; Anstee, Q.M.; Mann, J. Plasma DNA methylation: A potential biomarker for stratification of liver fibrosis in non alcoholic fatty liver disease. Gut, 2017, 66(7), 1321-1328.
[http://dx.doi.org/10.1136/gutjnl-2016-311526] [PMID: 27002005]
[73]
Huang, Y.T.; Chu, S.; Loucks, E.B.; Lin, C.L.; Eaton, C.B.; Buka, S.L.; Kelsey, K.T. Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood. Epigenetics, 2016, 11(3), 227-236.
[http://dx.doi.org/10.1080/15592294.2016.1146853] [PMID: 26891033]
[74]
Irizarry, R.A.; Ladd, A.C.; Wen, B.; Wu, Z.; Montano, C.; Onyango, P.; Cui, H.; Gabo, K.; Rongione, M.; Webster, M.; Ji, H.; Potash, J.; Sabunciyan, S.; Feinberg, A.P. The human colon cancer methylome shows similar hypo and hypermethylation at conserved tissue specific CpG island shores. Nat. Genet., 2009, 41(2), 178-186.
[http://dx.doi.org/10.1038/ng.298] [PMID: 19151715]
[75]
Ziller, M.J.; Gu, H.; Müller, F.; Donaghey, J.; Tsai, L.T.Y.; Kohlbacher, O.; De Jager, P.L.; Rosen, E.D.; Bennett, D.A.; Bernstein, B.E.; Gnirke, A.; Meissner, A. Charting a dynamic DNA methylation landscape of the human genome. Nature, 2013, 500(7463), 477-481.
[http://dx.doi.org/10.1038/nature12433] [PMID: 23925113]
[76]
Pilbrow, A.P.; Folkersen, L.; Pearson, J.F.; Brown, C.M.; McNoe, L.; Wang, N.M.; Sweet, W.E.; Tang, W.H.; Black, M.A.; Troughton, R.W.; Richards, A.M.; Franco, C.A.; Gabrielsen, A.; Eriksson, P.; Moravec, C.S.; Cameron, V.A. The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues. PLoS One, 2012, 7(6), e39574.
[http://dx.doi.org/10.1371/journal.pone.0039574] [PMID: 22768093]
[77]
Calabrese, V.; Cornelius, C.; Leso, V.; Trovato, S.A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; Castellino, P. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta, 2012, 1822(5), 729-736.
[http://dx.doi.org/10.1016/j.bbadis.2011.12.003] [PMID: 22186191]
[78]
Jain, S.K.; Micinski, D.; Huning, L.; Kahlon, G.; Bass, P.F.; Levine, S.N. Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur. J. Clin. Nutr., 2014, 68(10), 1148-1153.
[http://dx.doi.org/10.1038/ejcn.2014.114] [PMID: 24961547]
[79]
Yang, X.; Jansson, P.A.; Nagaev, I.; Jack, M.M.; Carvalho, E.; Sunnerhagen, K.S.; Cam, M.C.; Cushman, S.W.; Smith, U. Evidence of impaired adipogenesis in insulin resistance. Biochem. Biophys. Res. Commun., 2004, 317(4), 1045-1051.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.152] [PMID: 15094374]
[80]
Zhai, G.; Teumer, A.; Stolk, L.; Perry, J.R.; Vandenput, L.; Coviello, A.D.; Koster, A.; Bell, J.T.; Bhasin, S.; Eriksson, J.; Eriksson, A.; Ernst, F.; Ferrucci, L.; Frayling, T.M.; Glass, D.; Grundberg, E.; Haring, R.; Hedman, A.K.; Hofman, A.; Kiel, D.P.; Kroemer, H.K.; Liu, Y.; Lunetta, K.L.; Maggio, M.; Lorentzon, M.; Mangino, M.; Melzer, D.; Miljkovic, I.; Nica, A.; Penninx, B.W.; Vasan, R.S.; Rivadeneira, F.; Small, K.S.; Soranzo, N.; Uitterlinden, A.G.; Völzke, H.; Wilson, S.G.; Xi, L.; Zhuang, W.V.; Harris, T.B.; Murabito, J.M.; Ohlsson, C.; Murray, A.; de Jong, F.H.; Spector, T.D.; Wallaschofski, H. Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet., 2011, 7(4), e1002025.
[http://dx.doi.org/10.1371/journal.pgen.1002025] [PMID: 21533175]
[81]
Frostegård, J.; Nilsson, J.; Haegerstrand, A.; Hamsten, A.; Wigzell, H.; Gidlund, M. Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937. Proc. Natl. Acad. Sci. USA, 1990, 87(3), 904-908.
[http://dx.doi.org/10.1073/pnas.87.3.904] [PMID: 2300583]
[82]
Matsuura, E.; Kobayashi, K.; Tabuchi, M.; Lopez, L.R. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog. Lipid Res., 2006, 45(6), 466-486.
[http://dx.doi.org/10.1016/j.plipres.2006.05.001] [PMID: 16790279]
[83]
Park, K.; Gross, M.; Lee, D.H.; Holvoet, P.; Himes, J.H.; Shikany, J.M.; Jacobs, D.R., Jr. Oxidative stress and insulin resistance: The coronary artery risk development in young adults study. Diabetes Care, 2009, 32(7), 1302-1307.
[http://dx.doi.org/10.2337/dc09-0259] [PMID: 19389821]
[84]
Scotland, R.L.; Allen, L.; Hennings, L.J.; Post, G.R.; Post, S.R. The ral exchange factor RGL2 promotes cardiomyocyte survival and inhibits cardiac fibrosis. PLoS One, 2013, 8(9), e73599.
[http://dx.doi.org/10.1371/journal.pone.0073599] [PMID: 24069211]
[85]
Cui, M.Z.; Penn, M.S.; Chisolm, G.M. Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J. Biol. Chem., 1999, 274(46), 32795-32802.
[http://dx.doi.org/10.1074/jbc.274.46.32795] [PMID: 10551840]
[86]
McCaffrey, T.A.; Fu, C.; Du, B.; Eksinar, S.; Kent, K.C.; Bush, H., Jr; Kreiger, K.; Rosengart, T.; Cybulsky, M.I.; Silverman, E.S.; Collins, T. High level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J. Clin. Invest., 2000, 105(5), 653-662.
[http://dx.doi.org/10.1172/JCI8592] [PMID: 10712437]
[87]
Hershkovitz, D.; Gross, Y.; Nahum, S.; Yehezkel, S.; Sarig, O.; Uitto, J.; Sprecher, E. Functional characterization of SAMD9, a protein deficient in normophosphatemic familial tumoral calcinosis. J. Invest. Dermatol., 2011, 131(3), 662-669.
[http://dx.doi.org/10.1038/jid.2010.387] [PMID: 21160498]
[88]
Wrann, C.D.; Eguchi, J.; Bozec, A.; Xu, Z.; Mikkelsen, T.; Gimble, J.; Nave, H.; Wagner, E.F.; Ong, S.E.; Rosen, E.D. FOSL2 promotes leptin gene expression in human and mouse adipocytes. J. Clin. Invest., 2012, 122(3), 1010-1021.
[http://dx.doi.org/10.1172/JCI58431] [PMID: 22326952]
[89]
Sotoodehnia, N.; Isaacs, A.; de Bakker, P.I.; Dörr, M.; Newton-Cheh, C.; Nolte, I.M.; van der Harst, P.; Müller, M.; Eijgelsheim, M.; Alonso, A.; Hicks, A.A.; Padmanabhan, S.; Hayward, C.; Smith, A.V.; Polasek, O.; Giovannone, S.; Fu, J.; Magnani, J.W.; Marciante, K.D.; Pfeufer, A.; Gharib, S.A.; Teumer, A.; Li, M.; Bis, J.C.; Rivadeneira, F.; Aspelund, T.; Köttgen, A.; Johnson, T.; Rice, K.; Sie, M.P.; Wang, Y.A.; Klopp, N.; Fuchsberger, C.; Wild, S.H.; Mateo Leach, I.; Estrada, K.; Völker, U.; Wright, A.F.; Asselbergs, F.W.; Qu, J.; Chakravarti, A.; Sinner, M.F.; Kors, J.A.; Petersmann, A.; Harris, T.B.; Soliman, E.Z.; Munroe, P.B.; Psaty, B.M.; Oostra, B.A.; Cupples, L.A.; Perz, S.; de Boer, R.A.; Uitterlinden, A.G.; Völzke, H.; Spector, T.D.; Liu, F.Y.; Boerwinkle, E.; Dominiczak, A.F.; Rotter, J.I.; van Herpen, G.; Levy, D.; Wichmann, H.E.; van Gilst, W.H.; Witteman, J.C.; Kroemer, H.K.; Kao, W.H.; Heckbert, S.R.; Meitinger, T.; Hofman, A.; Campbell, H.; Folsom, A.R.; van Veldhuisen, D.J.; Schwienbacher, C.; O’Donnell, C.J.; Volpato, C.B.; Caulfield, M.J.; Connell, J.M.; Launer, L.; Lu, X.; Franke, L.; Fehrmann, R.S.; te Meerman, G.; Groen, H.J.; Weersma, R.K.; van den Berg, L.H.; Wijmenga, C.; Ophoff, R.A.; Navis, G.; Rudan, I.; Snieder, H.; Wilson, J.F.; Pramstaller, P.P.; Siscovick, D.S.; Wang, T.J.; Gudnason, V.; van Duijn, C.M.; Felix, S.B.; Fishman, G.I.; Jamshidi, Y.; Stricker, B.H.; Samani, N.J.; Kääb, S.; Arking, D.E. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat. Genet., 2010, 42(12), 1068-1076.
[http://dx.doi.org/10.1038/ng.716] [PMID: 21076409]
[90]
Dhingra, R.; Pencina, M.J.; Wang, T.J.; Nam, B.H.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Kannel, W.B.; D’Agostino, R.B., Sr; Vasan, R.S. Electrocardiographic QRS duration and the risk of congestive heart failure: The Framingham Heart Study. Hypertension, 2006, 47(5), 861-867.
[http://dx.doi.org/10.1161/01.HYP.0000217141.20163.23] [PMID: 16585411]
[91]
Ilkhanoff, L.; Liu, K.; Ning, H.; Nazarian, S.; Bluemke, D.A.; Soliman, E.Z.; Lloyd, D.M. Association of QRS duration with left ventricular structure and function and risk of heart failure in middle aged and older adults: The Multi Ethnic Study of Atherosclerosis (MESA). Eur. J. Heart Fail., 2012, 14(11), 1285-1292.
[http://dx.doi.org/10.1093/eurjhf/hfs112] [PMID: 22791081]
[92]
Cotlarciuc, I.; Malik, R.; Holliday, E.G.; Ahmadi, K.R.; Paré, G.; Psaty, B.M.; Fornage, M.; Hasan, N.; Rinne, P.E.; Ikram, M.A.; Markus, H.S.; Rosand, J.; Mitchell, B.D.; Kittner, S.J.; Meschia, J.F.; van Meurs, J.B.; Uitterlinden, A.G.; Worrall, B.B.; Dichgans, M.; Sharma, P. Effect of genetic variants associated with plasma homocysteine levels on stroke risk. Stroke, 2014, 45(7), 1920-1924.
[http://dx.doi.org/10.1161/STROKEAHA.114.005208] [PMID: 24846872]
[93]
Park, J.H.; Saposnik, G.; Ovbiagele, B.; Markovic, D.; Towfighi, A. Effect of B-vitamins on stroke risk among individuals with vascular disease who are not on antiplatelets: A meta-analysis. Int. J. Stroke, 2016, 11(2), 206-211.
[http://dx.doi.org/10.1177/1747493015616512] [PMID: 26783312]
[94]
Clarke, R.; Halsey, J.; Lewington, S.; Lonn, E.; Armitage, J.; Manson, J.E.; Bønaa, K.H.; Spence, J.D.; Nygård, O.; Jamison, R.; Gaziano, J.M.; Guarino, P.; Bennett, D.; Mir, F.; Peto, R.; Collins, R. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Arch. Intern. Med., 2010, 170(18), 1622-1631.
[http://dx.doi.org/10.1001/archinternmed.2010.348] [PMID: 20937919]
[95]
Clarke, R.; Bennett, D.A.; Parish, S.; Verhoef, P.; Dötsch-Klerk, M.; Lathrop, M.; Xu, P.; Nordestgaard, B.G.; Holm, H.; Hopewell, J.C.; Saleheen, D.; Tanaka, T.; Anand, S.S.; Chambers, J.C.; Kleber, M.E.; Ouwehand, W.H.; Yamada, Y.; Elbers, C.; Peters, B.; Stewart, A.F.; Reilly, M.M.; Thorand, B.; Yusuf, S.; Engert, J.C.; Assimes, T.L.; Kooner, J.; Danesh, J.; Watkins, H.; Samani, N.J.; Collins, R.; Peto, R. Homocysteine and coronary heart disease: Meta-analysis of MTHFR case-control studies, avoiding publication bias. PLoS Med., 2012, 9(2), e1001177.
[http://dx.doi.org/10.1371/journal.pmed.1001177] [PMID: 22363213]
[96]
Martí-Carvajal, A.J.; Solà, I.; Lathyris, D.; Dayer, M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev., 2017, 8, CD006612.
[PMID: 28816346]
[97]
Mathiyalagan, P.; Keating, S.T.; Du, X-J.; El-Osta, A. Chromatin modifications remodel cardiac gene expression. Cardiovasc. Res., 2014, 103(1), 7-16.
[http://dx.doi.org/10.1093/cvr/cvu122] [PMID: 24812277]
[98]
Yang, X.; Wang, X.; Liu, D.; Yu, L.; Xue, B.; Shi, H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol., 2014, 28(4), 565-574.
[http://dx.doi.org/10.1210/me.2013-1293] [PMID: 24597547]
[99]
Wang, X.; Cao, Q.; Yu, L.; Shi, H.; Xue, B.; Shi, H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight, 2016, 1(19), e87748.
[http://dx.doi.org/10.1172/jci.insight.87748] [PMID: 27882346]
[100]
Reddy, M.A.; Natarajan, R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc. Res., 2011, 90(3), 421-429.
[http://dx.doi.org/10.1093/cvr/cvr024] [PMID: 21266525]
[101]
Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ. Cardiovasc. Genet., 2015, 8(1), 150-158.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000671] [PMID: 25472959]
[102]
El-Osta, A.; Brasacchio, D.; Yao, D.; Pocai, A.; Jones, P.L.; Roeder, R.G.; Cooper, M.E.; Brownlee, M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med., 2008, 205(10), 2409-2417.
[http://dx.doi.org/10.1084/jem.20081188] [PMID: 18809715]
[103]
Okabe, J.; Orlowski, C.; Balcerczyk, A.; Tikellis, C.; Thomas, M.C.; Cooper, M.E.; El-Osta, A. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ. Res., 2012, 110(8), 1067-1076.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266171] [PMID: 22403242]
[104]
Costantino, S.; Paneni, F. The Epigenome in Atherosclerosis. Prevent. Treat. Atherosclerosis, 2020, 2020, 511.
[105]
Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high risk state for diabetes development. Lancet, 2012, 379(9833), 2279-2290.
[http://dx.doi.org/10.1016/S0140-6736(12)60283-9] [PMID: 22683128]
[106]
Crujeiras, A.B.; Diaz-Lagares, A.; Moreno-Navarrete, J.M.; Sandoval, J.; Hervas, D.; Gomez, A.; Ricart, W.; Casanueva, F.F.; Esteller, M.; Fernandez-Real, R. Genome wide DNA methylation pattern in visceral adipose tissue differentiates insulin resistant from insulin sensitive obese subjects. Transl. Res., 2016, 178, 13-24.
[http://dx.doi.org/10.1016/j.trsl.2016.07.002]
[107]
Muniandy, M.; Heinonen, S.; Yki-Järvinen, H.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Kaprio, J.; Rissanen, A.; Ollikainen, M.; Pietiläinen, K.H. Gene expression profile of subcutaneous adipose tissue in BMI discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub types of obesity. Int. J. Obes., 2017, 41(8), 1176-1184.
[http://dx.doi.org/10.1038/ijo.2017.95] [PMID: 28439093]
[108]
You, D.; Nilsson, E.; Tenen, D.E.; Lyubetskaya, A.; Lo, J.C.; Jiang, R.; Deng, J.; Dawes, B.A.; Vaag, A.; Ling, C.; Rosen, E.D.; Kang, S. DNMT3a is an epigenetic mediator of adipose insulin resistance. eLife, 2017, 6, e30766.
[http://dx.doi.org/10.7554/eLife.30766] [PMID: 29091029]
[109]
Ge, K. Epigenetic regulation of adipogenesis by histone methylation. Biochim. Biophys. Acta, 2012, 1819, 727-732.
[110]
Lee, J.E.; Ge, K. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci., 2014, 4(1), 29.
[http://dx.doi.org/10.1186/2045-3701-4-29] [PMID: 24904744]
[111]
Wang, L.H.; Aberin, M.A.E.; Wu, S.; Wang, S.P. The MLL3/4 H3K4 methyltransferase complex in establishing an active enhancer landscape. Biochem. Soc. Trans., 2021, 49(3), 1041-1054.
[http://dx.doi.org/10.1042/BST20191164] [PMID: 34156443]
[112]
Wang, L.; Jin, Q.; Lee, J.E.; Su, I.H.; Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7317-7322.
[http://dx.doi.org/10.1073/pnas.1000031107] [PMID: 20368440]
[113]
Zhuang, L.; Jang, Y.; Park, Y.K.; Lee, J.E.; Jain, S.; Froimchuk, E.; Broun, A.; Liu, C.; Gavrilova, O.; Ge, K. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat. Commun., 2018, 9(1), 1796.
[http://dx.doi.org/10.1038/s41467-018-04127-6] [PMID: 29728617]
[114]
Yang, F.; Zeng, X.; Ning, K.; Liu, K.L.; Lo, C-C.; Wang, W.; Chen, J.; Wang, D.; Huang, R.; Chang, X.; Chain, P.S.; Xie, G.; Ling, J.; Xu, J. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J., 2012, 6(1), 1-10.
[http://dx.doi.org/10.1038/ismej.2011.71] [PMID: 21716312]
[115]
Hussain, Q.A.; McKay, I.J.; Gonzales, M.C.; Allaker, R.P. Detection of adrenomedullin and nitric oxide in different forms of periodontal disease. J. Periodontal Res., 2016, 51(1), 16-25.
[http://dx.doi.org/10.1111/jre.12273] [PMID: 25866935]
[116]
Wang, Y; Springer, S; Mulvey, CL; Silliman, N; Schaefer, J; Sausen, M; James, N; Rettig, EM; Guo, T; Pickering, CR Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl. Med., 2015, 7(293), 293ra104.
[http://dx.doi.org/10.1126/scitranslmed.aaa8507]
[117]
Delaleu, N.; Mydel, P.; Kwee, I.; Brun, J.G.; Jonsson, M.V.; Jonsson, R. High fidelity between saliva proteomics and the biologic state of salivary glands defines biomarker signatures for primary Sjögren’s syndrome. Arthritis Rheumatol., 2015, 67(4), 1084-1095.
[http://dx.doi.org/10.1002/art.39015] [PMID: 25545990]
[118]
Aitken, J.P.; Ortiz, C.; Morales, B.I.; Rojas, A.G.; Baeza, M.; Beltran, C.; Escobar, A. α-2-macroglobulin in saliva is associated with glycemic control in patients with type 2 diabetes mellitus. Disease Markers, 2015, 2015, 128653.
[119]
Zheng, H.; Li, R.; Zhang, J.; Zhou, S.; Ma, Q.; Zhou, Y.; Chen, F.; Lin, J. Salivary biomarkers indicate obstructive sleep apnea patients with cardiovascular diseases. Sci. Rep., 2014, 4(1), 7046.
[http://dx.doi.org/10.1038/srep07046] [PMID: 25395095]
[120]
Nefzi, F.; Ben Salem, N.A.; Khelif, A.; Feki, S.; Aouni, M.; Gautheret, D.A. Quantitative analysis of human herpesvirus-6 and human cytomegalovirus in blood and saliva from patients with acute leukemia. J. Med. Virol., 2015, 87(3), 451-460.
[http://dx.doi.org/10.1002/jmv.24059] [PMID: 25163462]
[121]
Zheng, X.; Chen, F.; Zhang, J.; Zhang, Q.; Lin, J. Exosome analysis: A promising biomarker system with special attention to saliva. J. Membr. Biol., 2014, 247(11), 1129-1136.
[http://dx.doi.org/10.1007/s00232-014-9717-1] [PMID: 25135166]
[122]
Brooks, M.N.; Wang, J.; Li, Y.; Zhang, R.; Elashoff, D.; Wong, D.T. Salivary protein factors are elevated in breast cancer patients. Mol. Med. Rep., 2008, 1(3), 375-378.
[http://dx.doi.org/10.3892/mmr.1.3.375] [PMID: 19844594]
[123]
Hizir, M.S.; Balcioglu, M.; Rana, M.; Robertson, N.M.; Yigit, M.V. Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS Appl. Mater. Interfaces, 2014, 6(17), 14772-14778.
[http://dx.doi.org/10.1021/am504190a] [PMID: 25158299]
[124]
Wei, F.; Lin, C-C.; Joon, A.; Feng, Z.; Troche, G.; Lira, M.E.; Chia, D.; Mao, M.; Ho, C-L.; Su, W-C.; Wong, D.T. Noninvasive saliva based EGFR gene mutation detection in patients with lung cancer. Am. J. Respir. Crit. Care Med., 2014, 190(10), 1117-1126.
[http://dx.doi.org/10.1164/rccm.201406-1003OC] [PMID: 25317990]
[125]
Kaiyu, Y.; Yuqing, L.; Xuedong, Z. Overview of researches for Helicobacter pylori in oral cavity and stomach. West China J. Stomatol., 2014, 2014, 32.
[126]
Zhang, C.Z.; Cheng, X.Q.; Li, J.Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral Sci., 2016, 8(3), 133-137.
[http://dx.doi.org/10.1038/ijos.2016.38] [PMID: 27585820]
[127]
Al-Rawi, N.H. Oxidative stress, antioxidant status and lipid profile in the saliva of type 2 diabetics. Diab. Vasc. Dis. Res., 2011, 8(1), 22-28.
[http://dx.doi.org/10.1177/1479164110390243] [PMID: 21262867]
[128]
Schenkels, L.C.; Veerman, E.C.; Nieuw, A.A.V. Biochemical composition of human saliva in relation to other mucosal fluids. Crit. Rev. Oral Biol. Med., 1995, 6(2), 161-175.
[http://dx.doi.org/10.1177/10454411950060020501] [PMID: 7548622]
[129]
Streckfus, C.F.; Bigler, L.R. Saliva as a diagnostic fluid. Oral Dis., 2002, 8(2), 69-76.
[http://dx.doi.org/10.1034/j.1601-0825.2002.1o834.x] [PMID: 11991307]
[130]
Lee, R.; Margaritis, M.; Channon, K.M.; Antoniades, C. Evaluating oxidative stress in human cardiovascular disease: Methodological aspects and considerations. Curr. Med. Chem., 2012, 19(16), 2504-2520.
[http://dx.doi.org/10.2174/092986712800493057] [PMID: 22489713]
[131]
Tiwari, B.K.; Pandey, K.B.; Abidi, A.; Rizvi, S.I. Markers of oxidative stress during diabetes mellitus. J. Biomarkers, 2013, 2013, 378790.
[http://dx.doi.org/10.1155/2013/378790]
[132]
Gupta, S.; Nayak, M.T.; Sunitha, J.D.; Dawar, G.; Sinha, N.; Rallan, N.S. Correlation of salivary glucose level with blood glucose level in diabetes mellitus. J. Oral Maxillofac. Pathol., 2017, 21(3), 334-339.
[http://dx.doi.org/10.4103/jomfp.JOMFP_222_15] [PMID: 29391704]
[133]
Maude, H.; Sanchez, C.C.; Cebola, I. Epigenetics of hepatic insulin resistance. Front. Endocrinol. (Lausanne), 2021, 12, 681356.
[http://dx.doi.org/10.3389/fendo.2021.681356] [PMID: 34046015]
[134]
Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the study of liver diseases. Hepatology, 2018, 67(1), 328-357.
[http://dx.doi.org/10.1002/hep.29367] [PMID: 28714183]
[135]
Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One, 2014, 9(3), e90972.
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[136]
Musaddaq, G.; Shahzad, N.; Ashraf, M.A.; Arshad, M.I. Circulating liver specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human. Biomarkers, 2019, 24(2), 103-109.
[http://dx.doi.org/10.1080/1354750X.2018.1528631] [PMID: 30252499]
[137]
Oses, M.; Margareto Sanchez, J.; Portillo, M.P.; Aguilera, C.M.; Labayen, I. Circulating miRNAs as biomarkers of obesity and obesity associated comorbidities in children and adolescents: A systematic review. Nutrients, 2019, 11(12), 2890.
[http://dx.doi.org/10.3390/nu11122890] [PMID: 31783635]
[138]
Wahl, S.; Drong, A.; Lehne, B.; Loh, M.; Scott, W.R.; Kunze, S.; Tsai, P.C.; Ried, J.S.; Zhang, W.; Yang, Y.; Tan, S.; Fiorito, G.; Franke, L.; Guarrera, S.; Kasela, S.; Kriebel, J.; Richmond, R.C.; Adamo, M.; Afzal, U.; Ala-Korpela, M.; Albetti, B.; Ammerpohl, O.; Apperley, J.F.; Beekman, M.; Bertazzi, P.A.; Black, S.L.; Blancher, C.; Bonder, M.J.; Brosch, M.; Carstensen-Kirberg, M.; de Craen, A.J.; de Lusignan, S.; Dehghan, A.; Elkalaawy, M.; Fischer, K.; Franco, O.H.; Gaunt, T.R.; Hampe, J.; Hashemi, M.; Isaacs, A.; Jenkinson, A.; Jha, S.; Kato, N.; Krogh, V.; Laffan, M.; Meisinger, C.; Meitinger, T.; Mok, Z.Y.; Motta, V.; Ng, H.K.; Nikolakopoulou, Z.; Nteliopoulos, G.; Panico, S.; Pervjakova, N.; Prokisch, H.; Rathmann, W.; Roden, M.; Rota, F.; Rozario, M.A.; Sandling, J.K.; Schafmayer, C.; Schramm, K.; Siebert, R.; Slagboom, P.E.; Soininen, P.; Stolk, L.; Strauch, K.; Tai, E.S.; Tarantini, L.; Thorand, B.; Tigchelaar, E.F.; Tumino, R.; Uitterlinden, A.G.; van Duijn, C.; van Meurs, J.B.; Vineis, P.; Wickremasinghe, A.R.; Wijmenga, C.; Yang, T.P.; Yuan, W.; Zhernakova, A.; Batterham, R.L.; Smith, G.D.; Deloukas, P.; Heijmans, B.T.; Herder, C.; Hofman, A.; Lindgren, C.M.; Milani, L.; van der Harst, P.; Peters, A.; Illig, T.; Relton, C.L.; Waldenberger, M.; Järvelin, M.R.; Bollati, V.; Soong, R.; Spector, T.D.; Scott, J.; McCarthy, M.I.; Elliott, P.; Bell, J.T.; Matullo, G.; Gieger, C.; Kooner, J.S.; Grallert, H.; Chambers, J.C. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 2017, 541(7635), 81-86.
[http://dx.doi.org/10.1038/nature20784] [PMID: 28002404]
[139]
van Dijk, S.J.; Peters, T.J.; Buckley, M.; Zhou, J.; Jones, P.A.; Gibson, R.A.; Makrides, M.; Muhlhausler, B.S.; Molloy, P.L. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int. J. Obes., 2018, 42(1), 28-35.
[http://dx.doi.org/10.1038/ijo.2017.228] [PMID: 29064478]
[140]
Sadeh, R.; Sharkia, I.; Fialkoff, G.; Rahat, A.; Gutin, J.; Chappleboim, A.; Nitzan, M.; Fox, F.I.; Neiman, D.; Meler, G.; Kamari, Z.; Yaish, D.; Peretz, T.; Hubert, A.; Cohen, J.E.; Salah, A.; Temper, M.; Grinshpun, A.; Maoz, M.; Abu-Gazala, S.; Ben Ya’acov, A.; Shteyer, E.; Safadi, R.; Kaplan, T.; Shemer, R.; Planer, D.; Galun, E.; Glaser, B.; Zick, A.; Dor, Y.; Friedman, N. ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nat. Biotechnol., 2021, 39(5), 586-598.
[http://dx.doi.org/10.1038/s41587-020-00775-6] [PMID: 33432199]
[141]
Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet., 2018, 19(9), 581-590.
[http://dx.doi.org/10.1038/s41576-018-0018-x] [PMID: 29789686]
[142]
Udler, M.S.; Kim, J.; von Grotthuss, M.; Bonàs-Guarch, S.; Cole, J.B.; Chiou, J.; Boehnke, M.; Laakso, M.; Atzmon, G.; Glaser, B.; Mercader, J.M.; Gaulton, K.; Flannick, J.; Getz, G.; Florez, J.C. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med., 2018, 15(9), e1002654.
[http://dx.doi.org/10.1371/journal.pmed.1002654] [PMID: 30240442]
[143]
Udler, M.S. Type 2 diabetes: Multiple genes, multiple diseases. Curr. Diab. Rep., 2019, 19(8), 55.
[http://dx.doi.org/10.1007/s11892-019-1169-7] [PMID: 31292748]
[144]
Agardh, E.; Lundstig, A.; Perfilyev, A.; Volkov, P.; Freiburghaus, T.; Lindholm, E.; Rönn, T.; Agardh, C.D.; Ling, C. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med., 2015, 13(1), 182.
[http://dx.doi.org/10.1186/s12916-015-0421-5] [PMID: 26248552]
[145]
Advani, A.; Huang, Q.; Thai, K.; Advani, S.L.; White, K.E.; Kelly, D.J.; Yuen, D.A.; Connelly, K.A.; Marsden, P.A.; Gilbert, R.E. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am. J. Pathol., 2011, 178(5), 2205-2214.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.044] [PMID: 21514434]
[146]
Xie, M.; Kong, Y.; Tan, W.; May, H.; Battiprolu, P.K.; Pedrozo, Z.; Wang, Z.V.; Morales, C.; Luo, X.; Cho, G.; Jiang, N.; Jessen, M.E.; Warner, J.J.; Lavandero, S.; Gillette, T.G.; Turer, A.T.; Hill, J.A. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation, 2014, 129(10), 1139-1151.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002416] [PMID: 24396039]
[147]
Sciarretta, S.; Boppana, V.S.; Umapathi, M.; Frati, G.; Sadoshima, J. Boosting autophagy in the diabetic heart: A translational perspective. Cardiovasc. Diagn. Ther., 2015, 5(5), 394-402.
[PMID: 26543826]
[148]
Zhang, L.; Qin, X.; Zhao, Y.; Fast, L.; Zhuang, S.; Liu, P.; Cheng, G.; Zhao, T.C. Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J. Pharmacol. Exp. Ther., 2012, 341(1), 285-293.
[http://dx.doi.org/10.1124/jpet.111.189910] [PMID: 22271820]
[149]
Hu, X.; Zhang, K.; Xu, C.; Chen, Z.; Jiang, H. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Exp. Ther. Med., 2014, 8(1), 229-232.
[http://dx.doi.org/10.3892/etm.2014.1726] [PMID: 24944626]
[150]
Pollack, R.M.; Crandall, J.P. Resveratrol: Therapeutic potential for improving cardiometabolic health. Am. J. Hypertens., 2013, 26(11), 1260-1268.
[http://dx.doi.org/10.1093/ajh/hpt165] [PMID: 24025725]
[151]
Srivastava, G.; Mehta, J.L. Currying the heart: Curcumin and cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2009, 14(1), 22-27.
[http://dx.doi.org/10.1177/1074248408329608] [PMID: 19153099]
[152]
Title, L.M.; Ur, E.; Giddens, K.; McQueen, M.J.; Nassar, B.A. Folic acid improves endothelial dysfunction in type 2 diabetes-an effect independent of homocysteine-lowering. Vasc. Med., 2006, 11(2), 101-109.
[http://dx.doi.org/10.1191/1358863x06vm664oa] [PMID: 16886840]
[153]
Gallo, P.; Latronico, M.V.; Gallo, P.; Grimaldi, S.; Borgia, F.; Todaro, M.; Jones, P.; Gallinari, P.; De Francesco, R.; Ciliberto, G.; Steinkühler, C.; Esposito, G.; Condorelli, G. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc. Res., 2008, 80(3), 416-424.
[http://dx.doi.org/10.1093/cvr/cvn215] [PMID: 18697792]
[154]
Cardinale, J.P.; Sriramula, S.; Pariaut, R.; Guggilam, A.; Mariappan, N.; Elks, C.M.; Francis, J. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension, 2010, 56(3), 437-444.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.154567] [PMID: 20679181]
[155]
Plutzky, J. The PPAR-RXR transcriptional complex in the vasculature: Energy in the balance. Circ. Res., 2011, 108(8), 1002-1016.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226860] [PMID: 21493923]
[156]
Wasiak, S.; Gilham, D.; Tsujikawa, L.M.; Halliday, C.; Calosing, C.; Jahagirdar, R.; Johansson, J.; Sweeney, M.; Wong, N.C.; Kulikowski, E. Downregulation of the complement cascade in vitro, in mice and in patients with cardiovascular disease by the BET protein inhibitor apabetalone (RVX-208). J. Cardiovasc. Transl. Res., 2017, 10(4), 337-347.
[http://dx.doi.org/10.1007/s12265-017-9755-z] [PMID: 28567671]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy