Abstract
Metabolic diseases such as obesity, diabetes, dyslipidemia, and insulin resistance are characterized by glucose and lipid metabolism alterations and represent a global health problem. Many studies have established the crucial role of micro-ribonucleic acids (miRNAs) in controlling metabolic processes in various tissues. miRNAs are single- stranded, highly conserved non-coding RNAs containing 20-24 oligonucleotides that are expressed in a tissue-specific manner. miRNAs mainly interact through base pairing with 3' untranslated regions of target gene mRNAs to promote inhibition of their translation. miRNAs regulate the expression of as many as 30% of the human genes and have a role in crucial physiological processes such as human growth and development, cell proliferation, apoptosis, and metabolism. The number of miRNA molecules with a confirmed role in the pathogenesis of metabolic diseases is quickly expanding due to the availability of high-throughput methodologies for their identification. In this review, we present recent findings regarding the role of miRNAs as endocrine signaling molecules involved in the regulation of insulin production and fat metabolism. We discuss the potential of extracellular miRNAs present in biological fluids miRNAs as biomarkers for the prediction of diabetes and MetS. We also give an updated overview of therapeutic interventions based on antisense oligonucleotides and the CRISPR/Cas9 editing platform for manipulating levels of miRNAs involved in metabolic disorders.
Keywords: miRNAs, metabolic disease, insulin production, fat metabolism, biomarkers, antisense oligonucleotides, CRISPR/Cas9 editing
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166];
(b) Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.009] [PMID: 23454500];
(b) Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040];
(b) Grimson, A.; Farh, K.K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017] [PMID: 17612493]
[http://dx.doi.org/10.1093/nar/gkj469] [PMID: 16436800];
(b) Macvanin, M.; Edgar, R.; Cui, F.; Trostel, A.; Zhurkin, V.; Adhya, S. Noncoding RNAs binding to the nucleoid protein HU in Escherichia coli. J. Bacteriol., 2012, 194(22), 6046-6055.
[http://dx.doi.org/10.1128/JB.00961-12] [PMID: 22942248];
(c) Qian, Z.; Macvanin, M.; Dimitriadis, E.K.; He, X.; Zhurkin, V.; Adhya, S. A new noncoding RNA arranges bacterial chromosome organization. MBio, 2015, 6(4), e00998-15.
[http://dx.doi.org/10.1128/mBio.00998-15] [PMID: 26307168];
(d) Storz, G. An expanding universe of noncoding RNAs. Science, 2002, 296(5571), 1260-1263.
[http://dx.doi.org/10.1126/science.1072249] [PMID: 12016301];
(e) Barad, O.; Meiri, E.; Avniel, A.; Aharonov, R.; Barzilai, A.; Bentwich, I.; Einav, U.; Gilad, S.; Hurban, P.; Karov, Y.; Lobenhofer, E.K.; Sharon, E.; Shiboleth, Y.M.; Shtutman, M.; Bentwich, Z.; Einat, P. MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome Res., 2004, 14(12), 2486-2494.
[http://dx.doi.org/10.1101/gr.2845604] [PMID: 15574827];
(f) Mattick, J.S. The functional genomics of noncoding RNA. Science, 2005, 309(5740), 1527-1528.
[http://dx.doi.org/10.1126/science.1117806] [PMID: 16141063];
(g) Buermans, H.P.; Ariyurek, Y.; van Ommen, G.; den Dunnen, J.T.; ’t Hoen, P.A. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 2010, 11, 716.
[http://dx.doi.org/10.1186/1471-2164-11-716] [PMID: 21171994]
[http://dx.doi.org/10.1093/nar/gkz097] [PMID: 30820533];
(b) Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[http://dx.doi.org/10.1161/CIR.0b013e31828124ad] [PMID: 23239837]
[http://dx.doi.org/10.1210/er.2008-0024] [PMID: 18971485]
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
(b) Tülay Aydın, P.; Göz, M.; Kankılıç, N. Micro-RNA gene expressions during cardiopulmonary bypass. J. Card. Surg., 2021, 36(3), 921-927.
[http://dx.doi.org/10.1111/jocs.15329];
(c) Fransquet, P.D.; Ryan, J. Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease. Clin. Biochem., 2018, 58, 5-14.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.020] [PMID: 29885309];
(d) Margaritis, K.; Margioula-Siarkou, G.; Giza, S. Micro-RNA implications in type-1 diabetes mellitus: A review of literature. Int. J. Mol. Sci., 2021, 22(22), 12165.
[http://dx.doi.org/10.3390/ijms222212165];
(e) Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929];
(f) Panic, A.; Stanimirovic, J. Estradiol-mediated regulation of hepatic iNOS in obese rats: Impact of Src, ERK1/2, AMPKα, and miR-221. Biotechnol. Appl. Biochem., 2018, 65(6), 797-806.
[http://dx.doi.org/10.1172/JCI62876] [PMID: 23281405];
(b) Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 239-250.
[http://dx.doi.org/10.1038/nrm3313] [PMID: 22436747]
[http://dx.doi.org/10.1097/MOL.0000000000000094] [PMID: 24978143]
[http://dx.doi.org/10.1007/s00441-012-1469-6] [PMID: 22842772];
(b) Pallante, P.; Battista, S.; Pierantoni, G.M.; Fusco, A. Deregulation of microRNA expression in thyroid neoplasias. Nat. Rev. Endocrinol., 2014, 10(2), 88-101.
[http://dx.doi.org/10.1038/nrendo.2013.223] [PMID: 24247220];
(c) Derghal, A.; Djelloul, M.; Trouslard, J.; Mounien, L. An emerging role of micro-RNA in the effect of the endocrine disruptors. Front. Neurosci., 2016, 10, 318.
[http://dx.doi.org/10.3389/fnins.2016.00318] [PMID: 27445682]
[http://dx.doi.org/10.1016/S2468-2667(17)30074-9] [PMID: 28626830]
[http://dx.doi.org/10.1016/j.metabol.2018.10.007] [PMID: 30399374]
[http://dx.doi.org/10.3390/genes11111378] [PMID: 33233816];
(b) Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. (Lausanne), 2021, 12, 585887.
[http://dx.doi.org/10.3389/fendo.2021.585887] [PMID: 34084149]
[http://dx.doi.org/10.1155/2017/5350267] [PMID: 28607631]
[http://dx.doi.org/10.2174/15701611113119990131] [PMID: 23627982]
[http://dx.doi.org/10.1111/j.1365-2362.2009.02129.x] [PMID: 19397692];
(b) Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol., 2019, 14(1), 50-59.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037];
(c) De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links. Front. Endocrinol. (Lausanne), 2018, 9, 2.
[http://dx.doi.org/10.3389/fendo.2018.00002] [PMID: 29387042]
[http://dx.doi.org/10.1016/j.jacl.2013.04.001] [PMID: 23890517]
[http://dx.doi.org/10.1042/CS20070115] [PMID: 18184112];
(b) Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 2017, 135(10), e146-e603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885];
(c) Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino, R.B., Sr; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 2015, 131(5), 451-458.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012477] [PMID: 25623155];
(d) Zaric, B.; Obradovic, M.; Trpkovic, A.; Banach, M.; Mikhailidis, D.P.; Isenovic, E.R. Endothelial dysfunction in dyslipidaemia: Molecular mechanisms and clinical implications. Curr. Med. Chem., 2020, 27(7), 1021-1040.
[http://dx.doi.org/10.2174/0929867326666190903112146] [PMID: 31480995]
[http://dx.doi.org/10.1096/fj.09-151340] [PMID: 20371626];
(b) Stienstra, R.; Tack, C.J.; Kanneganti, T.D.; Joosten, L.A.; Netea, M.G. The inflammasome puts obesity in the danger zone. Cell Metab., 2012, 15(1), 10-18.
[http://dx.doi.org/10.1016/j.cmet.2011.10.011] [PMID: 22225872]
[http://dx.doi.org/10.1152/ajpregu.00262.2014] [PMID: 25253086];
(b) Zafirovic, S.; Obradovic, M.; Sudar-Milovanovic, E.; Jovanovic, A.; Stanimirovic, J.; Stewart, A.J.; Pitt, S.J.; Isenovic, E.R. 17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Mol. Cell. Endocrinol., 2017, 446, 12-20.
[http://dx.doi.org/10.1016/j.mce.2017.02.001] [PMID: 28163099]
[http://dx.doi.org/10.1530/JOE-13-0339] [PMID: 24403378];
(b) Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[http://dx.doi.org/10.5603/KP.a2018.0071] [PMID: 29537483]
[http://dx.doi.org/10.1177/0003319713514477] [PMID: 24327768]
[http://dx.doi.org/10.2174/15701611113119990125] [PMID: 23627975]
[http://dx.doi.org/10.2174/157016111796642661] [PMID: 21595628]
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234];
(b) Nair, M. Diabetes mellitus, part 1: Physiology and complications. Br. J. Nurs., 2007, 16(3), 184-188.
[http://dx.doi.org/10.12968/bjon.2007.16.3.22974] [PMID: 17363887];
(c) Fatima, N.; Faisal, S.M.; Zubair, S.; Ajmal, M.; Siddiqui, S.S.; Moin, S.; Owais, M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: Correlation with age and glycemic condition in diabetic human subjects. PLoS One, 2016, 11(8), e0161548.
[http://dx.doi.org/10.1371/journal.pone.0161548] [PMID: 27575603];
(d) Stanimirovic, J.; Obradovic, M.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Pitt, S.J.; Stewart, A.J.; Isenovic, E.R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide, 2016, 54, 51-59.
[http://dx.doi.org/10.1016/j.niox.2016.02.007] [PMID: 26924725]
[http://dx.doi.org/10.4297/najms.2010.2444] [PMID: 22558546]
[http://dx.doi.org/10.1056/NEJMra011775] [PMID: 11961152]
[http://dx.doi.org/10.3748/wjg.v24.i27.2974] [PMID: 30038464]
[http://dx.doi.org/10.1016/j.jhep.2020.03.039] [PMID: 32278004];
(b) Valenti, L.; Bugianesi, E.; Pajvani, U.; Targher, G. Nonalcoholic fatty liver disease: Cause or consequence of type 2 diabetes? Liver Int., 2016, 36(11), 1563-1579.
[http://dx.doi.org/10.1111/liv.13185] [PMID: 27276701];
(c) Ercin, C.N.; Dogru, T.; Genc, H.; Celebi, G.; Aslan, F.; Gurel, H.; Kara, M.; Sertoglu, E.; Tapan, S.; Bagci, S.; Rizzo, M.; Sonmez, A. Insulin resistance but not visceral adiposity index is associated with liver fibrosis in nondiabetic subjects with nonalcoholic fatty liver disease. Metab. Syndr. Relat. Disord., 2015, 13(7), 319-325.
[http://dx.doi.org/10.1089/met.2015.0018] [PMID: 26011302]
[http://dx.doi.org/10.1007/s00431-013-2157-6] [PMID: 24068459];
(b) Alisi, A.; Cianfarani, S.; Manco, M.; Agostoni, C.; Nobili, V. Non-alcoholic fatty liver disease and metabolic syndrome in adolescents: Pathogenetic role of genetic background and intrauterine environment. Ann. Med., 2012, 44(1), 29-40.
[http://dx.doi.org/10.3109/07853890.2010.547869] [PMID: 21355790]
[http://dx.doi.org/10.1016/S2468-1253(20)30340-X] [PMID: 33181118];
(b) Shiha, G.; Alswat, K.; Al Khatry, M.; Sharara, A.I.; Örmeci, N.; Waked, I.; Benazzouz, M.; Al-Ali, F.; Hamed, A.E.; Hamoudi, W.; Attia, D.; Derbala, M.; Sharaf-Eldin, M.; Al-Busafi, S.A.; Zaky, S.; Bamakhrama, K.; Ibrahim, N.; Ajlouni, Y.; Sabbah, M.; Salama, M.; Anushiravani, A.; Afredj, N.; Barakat, S.; Hashim, A.; Fouad, Y.; Soliman, R. Nomenclature and definition of metabolic-associated fatty liver disease: A consensus from the Middle East and north Africa. Lancet Gastroenterol. Hepatol., 2021, 6(1), 57-64.
[http://dx.doi.org/10.1016/S2468-1253(20)30213-2] [PMID: 33181119];
(c) Shiha, G.; Korenjak, M.; Eskridge, W.; Casanovas, T.; Velez-Moller, P.; Högström, S.; Richardson, B.; Munoz, C.; Sigurðardóttir, S.; Coulibaly, A.; Milan, M.; Bautista, F.; Leung, N.W.Y.; Mooney, V.; Obekpa, S.; Bech, E.; Polavarapu, N.; Hamed, A.E.; Radiani, T.; Purwanto, E.; Bright, B.; Ali, M.; Dovia, C.K.; McColaugh, L.; Koulla, Y.; Dufour, J.F.; Soliman, R.; Eslam, M. Redefining fatty liver disease: An international patient perspective. Lancet Gastroenterol. Hepatol., 2021, 6(1), 73-79.
[http://dx.doi.org/10.1016/S2468-1253(20)30294-6] [PMID: 33031758];
(d) Younossi, Z.M.; Rinella, M.E. From NAFLD to MAFLD. Implications of a premature change in terminology. Hepatology, 2021, 73(3), 1194-1198.
[PMID: 32544255];
(e) Ratziu, V.; Rinella, M.; Beuers, U.; Loomba, R.; Anstee, Q.M.; Harrison, S.; Francque, S.; Sanyal, A.; Newsome, P.N.; Younossi, Z. The times they are a-changin’ (for NAFLD as well). J. Hepatol., 2020, 73(6), 1307-1309.
[http://dx.doi.org/10.1016/j.jhep.2020.08.028] [PMID: 32890593]
[http://dx.doi.org/10.1002/wrna.121] [PMID: 22072587]
[http://dx.doi.org/10.1038/nsmb.2931] [PMID: 25565029];
(b) Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649];
(c) Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet., 2011, 12(2), 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[http://dx.doi.org/10.1016/j.molcel.2016.09.004] [PMID: 27720646]
[http://dx.doi.org/10.1073/pnas.0803230105] [PMID: 18812516];
(b) Zhou, H.; Rigoutsos, I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA, 2014, 20(9), 1431-1439.
[http://dx.doi.org/10.1261/rna.045757.114] [PMID: 24984703]
[http://dx.doi.org/10.1261/rna.045633.114] [PMID: 25336585]
[http://dx.doi.org/10.1007/978-1-62703-703-7_2] [PMID: 24166300];
(b) O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[http://dx.doi.org/10.1016/j.molcel.2015.04.027] [PMID: 26140367];
(b) Ameres, S.L.; Horwich, M.D.; Hung, J.H.; Xu, J.; Ghildiyal, M.; Weng, Z.; Zamore, P.D. Target RNA-directed trimming and tailing of small silencing RNAs. Science, 2010, 328(5985), 1534-1539.
[http://dx.doi.org/10.1126/science.1187058] [PMID: 20558712]
[http://dx.doi.org/10.1261/rna.2146903] [PMID: 12554859]
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901];
(b) Erdmann, V.A.; Szymanski, M.; Hochberg, A.; Groot, N.; Barciszewski, J. Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res., 2000, 28(1), 197-200.
[http://dx.doi.org/10.1093/nar/28.1.197] [PMID: 10592224]
[http://dx.doi.org/10.1007/978-1-60761-657-3_14] [PMID: 20387152]
[http://dx.doi.org/10.1073/pnas.0703890104] [PMID: 17965236]
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072];
(b) Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 2006, 13(12), 1097-1101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[http://dx.doi.org/10.1016/j.cell.2006.03.043] [PMID: 16751099]
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[http://dx.doi.org/10.1126/science.1091903] [PMID: 14657504];
(b) Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732), 310-311.
[http://dx.doi.org/10.1126/science.1114519] [PMID: 15919954]
[http://dx.doi.org/10.1242/dev.02070] [PMID: 16224044]
[http://dx.doi.org/10.1016/j.celrep.2013.12.013] [PMID: 24388755];
(b) Miao, L.; Yao, H.; Li, C.; Pu, M.; Yao, X.; Yang, H.; Qi, X.; Ren, J.; Wang, Y. A dual inhibition: MicroRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim. Biophys. Acta, 2016, 1859(4), 650-662.
[http://dx.doi.org/10.1016/j.bbagrm.2016.02.016] [PMID: 26926595]
[http://dx.doi.org/10.1074/jbc.C115.661868] [PMID: 26304123];
(b) Nishi, K.; Takahashi, T.; Suzawa, M.; Miyakawa, T.; Nagasawa, T.; Ming, Y.; Tanokura, M.; Ui-Tei, K. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Res., 2015, 43(20), 9856-9873.
[http://dx.doi.org/10.1093/nar/gkv1026] [PMID: 26446993];
(c) Bose, M.; Barman, B.; Goswami, A.; Bhattacharyya, S.N. Spatiotemporal uncoupling of microrna-mediated translational repression and target RNA degradation controls MicroRNP recycling in mammalian cells. Mol. Cell. Biol., 2017, 37(4), e00464-16.
[http://dx.doi.org/10.1128/MCB.00464-16] [PMID: 27895152];
(d) Barrey, E.; Saint-Auret, G.; Bonnamy, B.; Damas, D.; Boyer, O.; Gidrol, X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One, 2011, 6(5), e20220.
[http://dx.doi.org/10.1371/journal.pone.0020220] [PMID: 21637849]
[http://dx.doi.org/10.1038/s41598-020-71381-4] [PMID: 32884018]
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770];
(b) Das, S.; Ansel, K.M.; Bitzer, M.; Breakefield, X.O.; Charest, A.; Galas, D.J.; Gerstein, M.B.; Gupta, M.; Milosavljevic, A.; McManus, M.T.; Patel, T.; Raffai, R.L.; Rozowsky, J.; Roth, M.E.; Saugstad, J.A.; Van Keuren-Jensen, K.; Weaver, A.M.; Laurent, L.C. The Extracellular RNA Communication Consortium: Establishing foundational knowledge and technologies for extracellular RNA research. Cell, 2019, 177(2), 231-242.
[http://dx.doi.org/10.1016/j.cell.2019.03.023] [PMID: 30951667];
(c) Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; Fissell, W.H.; Patton, J.G.; Rome, L.H.; Burnette, D.T.; Coffey, R.J. Reassessment of exosome composition. Cell, 2019, 177(2), 428-445.e18.
[http://dx.doi.org/10.1016/j.cell.2019.02.029] [PMID: 30951670];
(d) Murillo, O.D.; Thistlethwaite, W.; Rozowsky, J.; Subramanian, S.L.; Lucero, R.; Shah, N.; Jackson, A.R.; Srinivasan, S.; Chung, A.; Laurent, C.D.; Kitchen, R.R.; Galeev, T.; Warrell, J.; Diao, J.A.; Welsh, J.A.; Hanspers, K.; Riutta, A.; Burgstaller-Muehlbacher, S.; Shah, R.V.; Yeri, A.; Jenkins, L.M.; Ahsen, M.E.; Cordon-Cardo, C.; Dogra, N.; Gifford, S.M.; Smith, J.T.; Stolovitzky, G.; Tewari, A.K.; Wunsch, B.H.; Yadav, K.K.; Danielson, K.M.; Filant, J.; Moeller, C.; Nejad, P.; Paul, A.; Simonson, B.; Wong, D.K.; Zhang, X.; Balaj, L.; Gandhi, R.; Sood, A.K.; Alexander, R.P.; Wang, L.; Wu, C.; Wong, D.T.W.; Galas, D.J.; Van Keuren-Jensen, K.; Patel, T.; Jones, J.C.; Das, S.; Cheung, K.H.; Pico, A.R.; Su, A.I.; Raffai, R.L.; Laurent, L.C.; Roth, M.E.; Gerstein, M.B.; Milosavljevic, A. exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell, 2019, 177(2), 463-477.e15.
[http://dx.doi.org/10.1016/j.cell.2019.02.018] [PMID: 30951672];
(e) Srinivasan, S.; Yeri, A.; Cheah, P.S.; Chung, A.; Danielson, K.; De Hoff, P.; Filant, J.; Laurent, C.D.; Laurent, L.D.; Magee, R.; Moeller, C.; Murthy, V.L.; Nejad, P.; Paul, A.; Rigoutsos, I.; Rodosthenous, R.; Shah, R.V.; Simonson, B.; To, C.; Wong, D.; Yan, I.K.; Zhang, X.; Balaj, L.; Breakefield, X.O.; Daaboul, G.; Gandhi, R.; Lapidus, J.; Londin, E.; Patel, T.; Raffai, R.L.; Sood, A.K.; Alexander, R.P.; Das, S.; Laurent, L.C. Small rna sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell, 2019, 177(2), 446-462.e16.
[http://dx.doi.org/10.1016/j.cell.2019.03.024] [PMID: 30951671]
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[http://dx.doi.org/10.1016/j.cmet.2019.07.011] [PMID: 31447320]
[http://dx.doi.org/10.1038/nm.2277] [PMID: 21186369];
(b) Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Brönneke, H.S.; Trifunovic, A.; LoSasso, G.; Wunderlich, F.T.; Kornfeld, J.W.; Blüher, M.; Krönke, M.; Brüning, J.C. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab., 2014, 20(4), 678-686.
[http://dx.doi.org/10.1016/j.cmet.2014.08.002] [PMID: 25295788]
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[http://dx.doi.org/10.1007/s00125-010-1667-2] [PMID: 20198361]
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172];
(b) Jopling, C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol., 2012, 9(2), 137-142.
[http://dx.doi.org/10.4161/rna.18827] [PMID: 22258222];
(c) Sekine, S.; Ogawa, R.; Ito, R.; Hiraoka, N.; McManus, M. T.; Kanai, Y.; Hebrok, M. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology, 2009, 136(7), 2304-2315.e1-4.
[http://dx.doi.org/10.1053/j.gastro.2009.02.067]
[http://dx.doi.org/10.1016/j.ydbio.2015.12.013] [PMID: 26708096];
(b) Koutsoulidou, A.; Mastroyiannopoulos, N.P.; Furling, D.; Uney, J.B.; Phylactou, L.A. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol., 2011, 11, 34.
[http://dx.doi.org/10.1186/1471-213X-11-34] [PMID: 21645416];
(c) Ge, Y.; Chen, J. MicroRNAs in skeletal myogenesis. Cell Cycle, 2011, 10(3), 441-448.
[http://dx.doi.org/10.4161/cc.10.3.14710] [PMID: 21270519]
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[http://dx.doi.org/10.1016/S1534-5807(03)00227-2] [PMID: 12919684];
(b) Kim, H.J.; Cho, H.; Alexander, R.; Patterson, H.C.; Gu, M.; Lo, K.A.; Xu, D.; Goh, V.J.; Nguyen, L.N.; Chai, X.; Huang, C.X.; Kovalik, J.P.; Ghosh, S.; Trajkovski, M.; Silver, D.L.; Lodish, H.; Sun, L. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes, 2014, 63(12), 4045-4056.
[http://dx.doi.org/10.2337/db14-0466] [PMID: 25008181];
(c) Klöting, N.; Berthold, S.; Kovacs, P.; Schön, M.R.; Fasshauer, M.; Ruschke, K.; Stumvoll, M.; Blüher, M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 2009, 4(3), e4699.
[http://dx.doi.org/10.1371/journal.pone.0004699] [PMID: 19259271];
(d) Marson, A.; Levine, S.S.; Cole, M.F.; Frampton, G.M.; Brambrink, T.; Johnstone, S.; Guenther, M.G.; Johnston, W.K.; Wernig, M.; Newman, J.; Calabrese, J.M.; Dennis, L.M.; Volkert, T.L.; Gupta, S.; Love, J.; Hannett, N.; Sharp, P.A.; Bartel, D.P.; Jaenisch, R.; Young, R.A. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008, 134(3), 521-533.
[http://dx.doi.org/10.1016/j.cell.2008.07.020] [PMID: 18692474];
(e) Mori, M.A.; Raghavan, P.; Thomou, T.; Boucher, J.; Robida-Stubbs, S.; Macotela, Y.; Russell, S.J.; Kirkland, J.L.; Blackwell, T.K.; Kahn, C.R. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab., 2012, 16(3), 336-347.
[http://dx.doi.org/10.1016/j.cmet.2012.07.017] [PMID: 22958919];
(f) Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[http://dx.doi.org/10.1152/physiolgenomics.00095.2014] [PMID: 25465031];
(b) Rome, S. Use of miRNAs in biofluids as biomarkers in dietary and lifestyle intervention studies. Genes Nutr., 2015, 10(5), 483.
[http://dx.doi.org/10.1007/s12263-015-0483-1] [PMID: 26233309];
(c) Safdar, A.; Tarnopolsky, M.A. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb. Perspect. Med., 2018, 8(3), a029827.
[http://dx.doi.org/10.1101/cshperspect.a029827] [PMID: 28490541];
(d) Whitham, M.; Parker, B.L.; Friedrichsen, M.; Hingst, J.R.; Hjorth, M.; Hughes, W.E.; Egan, C.L.; Cron, L.; Watt, K.I.; Kuchel, R.P.; Jayasooriah, N.; Estevez, E.; Petzold, T.; Suter, C.M.; Gregorevic, P.; Kiens, B.; Richter, E.A.; James, D.E.; Wojtaszewski, J.F.P.; Febbraio, M.A. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab., 2018, 27(1), 237-251.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.12.001] [PMID: 29320704]
[http://dx.doi.org/10.1186/1471-2164-15-933] [PMID: 25344700]
[http://dx.doi.org/10.1016/j.cell.2017.08.035] [PMID: 28942920]
[http://dx.doi.org/10.1002/oby.22616]
[http://dx.doi.org/10.1038/nature21365] [PMID: 28199304]
[http://dx.doi.org/10.1002/emmm.201302647] [PMID: 24009212];
(b) Bork-Jensen, J.; Scheele, C.; Christophersen, D.V.; Nilsson, E.; Friedrichsen, M.; Fernandez-Twinn, D.S.; Grunnet, L.G.; Litman, T.; Holmstrøm, K.; Vind, B.; Højlund, K.; Beck-Nielsen, H.; Wojtaszewski, J.; Ozanne, S.E.; Pedersen, B.K.; Poulsen, P.; Vaag, A. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: Results from studies of twins with and without type 2 diabetes. Diabetologia, 2015, 58(2), 363-373.
[http://dx.doi.org/10.1007/s00125-014-3434-2] [PMID: 25403480];
(c) Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; Dean, N.M.; Freier, S.M.; Bennett, C.F.; Lollo, B.; Griffey, R. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem., 2004, 279(50), 52361-52365.
[http://dx.doi.org/10.1074/jbc.C400438200] [PMID: 15504739];
(d) Frost, R.J.; Olson, E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21075-21080.
[http://dx.doi.org/10.1073/pnas.1118922109] [PMID: 22160727];
(e) Hou, R.; Wang, D.; Lu, J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol. Lett., 2017, 13(6), 5009-5015.
[http://dx.doi.org/10.3892/ol.2017.6033] [PMID: 28599502];
(f) Karolina, D.S.; Armugam, A.; Tavintharan, S.; Wong, M.T.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011, 6(8), e22839.
[http://dx.doi.org/10.1371/journal.pone.0022839] [PMID: 21829658];
(g) Kim, Y.; Kim, O.K. Potential Roles of Adipocyte Extracellular Vesicle-Derived miRNAs in obesity-mediated insulin resistance. Adv. Nutr., 2021, 12(2), 566-574.
[http://dx.doi.org/10.1093/advances/nmaa105] [PMID: 32879940];
(h) Kornfeld, J.W.; Baitzel, C.; Könner, A.C.; Nicholls, H.T.; Vogt, M.C.; Herrmanns, K.; Scheja, L.; Haumaitre, C.; Wolf, A.M.; Knippschild, U.; Seibler, J.; Cereghini, S.; Heeren, J.; Stoffel, M.; Brüning, J.C. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 2013, 494(7435), 111-115.
[http://dx.doi.org/10.1038/nature11793] [PMID: 23389544];
(i) Pescador, N.; Pérez-Barba, M.; Ibarra, J.M.; Corbatón, A.; Martínez-Larrad, M.T.; Serrano-Ríos, M. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One, 2013, 8(10), e77251.
[http://dx.doi.org/10.1371/journal.pone.0077251] [PMID: 24204780];
(j) Wang, Y.; Liu, J.; Liu, C.; Naji, A.; Stoffers, D.A. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes, 2013, 62(3), 887-895.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022];
(k) Wu, L.; Dai, X.; Zhan, J.; Zhang, Y.; Zhang, H.; Zhang, H.; Zeng, S.; Xi, W. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS, 2015, 123(7), 580-5.;
(l) Ye, S.; Song, W.; Xu, X.; Zhao, X.; Yang, L. IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett., 2016, 590(11), 1641-1650.
[http://dx.doi.org/10.1002/1873-3468.12205] [PMID: 27153315];
(m) Zheng, Y.; Yin, L.; Chen, H.; Yang, S.; Pan, C.; Lu, S.; Miao, M.; Jiao, B. miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett., 2012, 586(16), 2396-2403.
[http://dx.doi.org/10.1016/j.febslet.2012.05.054] [PMID: 22684007]
[http://dx.doi.org/10.1101/gad.374406] [PMID: 16481470]
[http://dx.doi.org/10.1016/j.bbrc.2018.07.084] [PMID: 30033101]
[http://dx.doi.org/10.1002/mnfr.201500107] [PMID: 26179126]
[http://dx.doi.org/10.1016/j.febslet.2014.09.006] [PMID: 25240198]
[http://dx.doi.org/10.1371/journal.pone.0169039]
[http://dx.doi.org/10.1038/nature10112] [PMID: 21654750]
[http://dx.doi.org/10.2337/db08-0913] [PMID: 19074988];
(b) Yang, Y.M.; Seo, S.Y.; Kim, T.H.; Kim, S.G. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology, 2012, 56(6), 2209-2220.
[http://dx.doi.org/10.1002/hep.25912] [PMID: 22807119]
[http://dx.doi.org/10.1371/journal.pone.0017343] [PMID: 21464990];
(b) Jeong, H.J.; Park, S.Y.; Yang, W.M.; Lee, W. The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SK-Hep1 cells. Biochem. Biophys. Res. Commun., 2013, 434(3), 503-508.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.104] [PMID: 23583389];
(c) Wang, Y.; Hu, C.; Cheng, J.; Chen, B.; Ke, Q.; Lv, Z.; Wu, J.; Zhou, Y. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem. Biophys. Res. Commun., 2014, 446(4), 1255-1260.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.107] [PMID: 24690171]
[http://dx.doi.org/10.1073/pnas.1102281108] [PMID: 21576456];
(b) Tang, C.Y.; Man, X.F.; Guo, Y.; Tang, H.N.; Tang, J.; Zhou, C.L.; Tan, S.W.; Wang, M.; Zhou, H.D. IRS-2 partially compensates for the insulin signal defects in IRS-1-/- mice mediated by miR-33. Mol. Cells, 2017, 40(2), 123-132.
[http://dx.doi.org/10.14348/molcells.2017.2228] [PMID: 28190325]
[http://dx.doi.org/10.1242/jcs.119966] [PMID: 23606743];
(b) Massart, J.; Sjögren, R.J.O.; Lundell, L.S.; Mudry, J.M.; Franck, N.; O'Gorman, D.J.; Egan, B.; Zierath, J.R. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle. Front. Endocrinol. (Lausanne), 2017, 66(7), 1807-1818.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.021] [PMID: 23579070]
[http://dx.doi.org/10.1016/j.mce.2010.10.004] [PMID: 20943204]
[http://dx.doi.org/10.3892/ijmm.2016.2499] [PMID: 26936652]
[http://dx.doi.org/10.1016/j.febslet.2014.05.011] [PMID: 24844433]
[http://dx.doi.org/10.2337/db13-1015] [PMID: 24722248]
[http://dx.doi.org/10.1172/JCI75438] [PMID: 25961460]
[http://dx.doi.org/10.1016/j.mce.2013.12.016] [PMID: 24394757]
[http://dx.doi.org/10.1111/j.1440-1681.2009.05207.x] [PMID: 19473196]
[http://dx.doi.org/10.1016/j.yexmp.2011.04.016] [PMID: 21586283]
[http://dx.doi.org/10.1016/j.cell.2011.08.033] [PMID: 21962509]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.879429] [PMID: 19933931]
[http://dx.doi.org/10.1016/j.trsl.2018.09.006] [PMID: 30392876]
[http://dx.doi.org/10.1038/clpt.2013.138] [PMID: 23852395];
(b) Sala, V.; Bergerone, S.; Gatti, S.; Gallo, S.; Ponzetto, A.; Ponzetto, C.; Crepaldi, T. MicroRNAs in myocardial ischemia: Identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cell. Mol. Life Sci., 2014, 71(8), 1439-1452.
[http://dx.doi.org/10.1007/s00018-013-1504-0] [PMID: 24218009];
(c) Synetos, A.; Toutouzas, K.; Stathogiannis, K.; Latsios, G.; Tsiamis, E.; Tousoulis, D.; Stefanadis, C. MicroRNAs in arterial hypertension. Curr. Top. Med. Chem., 2013, 13(13), 1527-1532.
[http://dx.doi.org/10.2174/15680266113139990101] [PMID: 23745804];
(d) Van Aelst, L.N.; Heymans, S. MicroRNAs as biomarkers for ischemic heart disease. J. Cardiovasc. Transl. Res., 2013, 6(4), 458-470.
[http://dx.doi.org/10.1007/s12265-013-9466-z] [PMID: 23716129]
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[http://dx.doi.org/10.1074/jbc.272.21.13597] [PMID: 9153208]
[http://dx.doi.org/10.1073/pnas.76.1.333] [PMID: 218198];
(b) Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 1993, 362(6423), 801-809.
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518];
(c) Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation, 2005, 111(25), 3481-3488.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537878] [PMID: 15983262];
(d) Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99.
[http://dx.doi.org/10.1038/emm.2014.38] [PMID: 24903227]
[http://dx.doi.org/10.1126/science.1189862] [PMID: 20466885]
[http://dx.doi.org/10.1038/nature06783] [PMID: 18368051]
[http://dx.doi.org/10.1073/pnas.0707493105] [PMID: 18227515]
[http://dx.doi.org/10.5935/abc.20180215] [PMID: 30484515]
[http://dx.doi.org/10.1161/ATVBAHA.110.206201] [PMID: 20489169]
[http://dx.doi.org/10.1097/FJC.0000000000000178] [PMID: 25384197]
[http://dx.doi.org/10.1161/ATVBAHA.117.310499] [PMID: 29217510]
[http://dx.doi.org/10.1111/joim.12298] [PMID: 25160930];
(b) Pacurari, M.; Tchounwou, P.B. Role of micrornas in renin-angiotensin-aldosterone system-mediated cardiovascular inflammation and remodeling. Int. J. Inflamm., 2015, 2015, 101527.
[http://dx.doi.org/10.1155/2015/101527] [PMID: 26064773];
(c) Deiuliis, J.; Mihai, G.; Zhang, J.; Taslim, C.; Varghese, J.J.; Maiseyeu, A.; Huang, K.; Rajagopalan, S. Renin-sensitive microRNAs correlate with atherosclerosis plaque progression. J. Hum. Hypertens., 2014, 28(4), 251-258.
[http://dx.doi.org/10.1038/jhh.2013.97] [PMID: 24152824]
[http://dx.doi.org/10.1186/1471-2377-13-178] [PMID: 24237608]
[http://dx.doi.org/10.4161/rna.20378] [PMID: 22699556]
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[http://dx.doi.org/10.3233/JAD-2008-14103] [PMID: 18525125]
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[http://dx.doi.org/10.1073/pnas.1214046110] [PMID: 23440203]
[http://dx.doi.org/10.1093/nar/gkq224] [PMID: 20395217];
(b) Dohm, J.C.; Lottaz, C.; Borodina, T.; Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res., 2008, 36(16), e105.
[http://dx.doi.org/10.1093/nar/gkn425] [PMID: 18660515];
(c) Zheng, W.; Chung, L.M.; Zhao, H. Bias detection and correction in RNA-Sequencing data. BMC Bioinform., 2011, 12, 290.
[http://dx.doi.org/10.1186/1471-2105-12-290] [PMID: 21771300]
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219];
(b) Zhuang, F.; Fuchs, R.T.; Robb, G.B. Small RNA expression profiling by high-throughput sequencing: Implications of enzymatic manipulation. J. Nucleic Acids, 2012, 2012, 360358.
[http://dx.doi.org/10.1155/2012/360358] [PMID: 22778911];
(c) Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, M.; Mueller, R.D.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; Vandesompele, J.; Wittwer, C.T.; Bustin, S.A. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clin. Chem., 2013, 59(6), 892-902.
[http://dx.doi.org/10.1373/clinchem.2013.206375] [PMID: 23570709]
[http://dx.doi.org/10.1007/s00592-019-01406-6] [PMID: 31435783]
[http://dx.doi.org/10.1042/CS20160916];
(b) Chen, Y.; Tian, L.; Wan, S.; Xie, Y.; Chen, X.; Ji, X.; Zhao, Q.; Wang, C.; Zhang, K.; Hock, J.M.; Tian, H.; Yu, X. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell. Endocrinol., 2016, 437, 213-223.
[http://dx.doi.org/10.1016/j.mce.2016.08.037] [PMID: 27568466]
[http://dx.doi.org/10.1186/1423-0127-20-72] [PMID: 24093444]
[http://dx.doi.org/10.1038/s41598-018-32274-9] [PMID: 30250222]
[http://dx.doi.org/10.1080/14728222.2018.1420168] [PMID: 29257914];
(b) Mirra, P.; Raciti, G.A.; Nigro, C.; Fiory, F.; D’Esposito, V.; Formisano, P.; Beguinot, F.; Miele, C. Circulating miRNAs as intercellular messengers, potential biomarkers and therapeutic targets for Type 2 diabetes. Epigenomics, 2015, 7(4), 653-667.
[http://dx.doi.org/10.2217/epi.15.18] [PMID: 26111035]
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304164] [PMID: 25201910]
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[http://dx.doi.org/10.1007/s00125-012-2539-8] [PMID: 22476949]
[http://dx.doi.org/10.1002/oby.20852] [PMID: 25141837]
[http://dx.doi.org/10.3390/ijms19123705] [PMID: 30469501]
[PMID: 31263388]
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249];
(b) Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146];
(c) Barrangou, R.; Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol., 2016, 34(9), 933-941.
[http://dx.doi.org/10.1038/nbt.3659] [PMID: 27606440]
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382];
(b) Yoshino, H.; Yonemori, M.; Miyamoto, K.; Tatarano, S.; Kofuji, S.; Nohata, N.; Nakagawa, M.; Enokida, H. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget, 2017, 8(13), 20881-20894.
[http://dx.doi.org/10.18632/oncotarget.14930] [PMID: 28152509]
[http://dx.doi.org/10.3390/ijms22158129] [PMID: 34360895]
[http://dx.doi.org/10.1371/journal.pone.0013005] [PMID: 20886002];
(b) Joven, J.; Espinel, E.; Rull, A.; Aragonès, G.; Rodríguez-Gallego, E.; Camps, J.; Micol, V.; Herranz-López, M.; Menéndez, J.A.; Borrás, I.; Segura-Carretero, A.; Alonso-Villaverde, C.; Beltrán-Debón, R. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim. Biophys. Acta, 2012, 1820(7), 894-899.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.020] [PMID: 22503922];
(c) Corrêa, T.A.; Rogero, M.M. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition, 2019, 59, 150-157.
[http://dx.doi.org/10.1016/j.nut.2018.08.010] [PMID: 30471527];
(d) Ortega, F.J.; Cardona-Alvarado, M.I.; Mercader, J.M.; Moreno-Navarrete, J.M.; Moreno, M.; Sabater, M.; Fuentes-Batllevell, N.; Ramírez-Chávez, E.; Ricart, W.; Molina-Torres, J.; Pérez-Luque, E.L.; Fernández-Real, J.M. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J. Nutr. Biochem., 2015, 26(10), 1095-1101.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.001] [PMID: 26092372]
[http://dx.doi.org/10.1016/j.nut.2015.06.008] [PMID: 26421388]
[http://dx.doi.org/10.1089/scd.2010.0072] [PMID: 20486779]