Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of miRNAs in Metabolic Diseases

Author(s): Mirjana Macvanin*, Milan Obradovic, Sonja Zafirovic, Julijana Stanimirovic and Esma R. Isenovic

Volume 30, Issue 17, 2023

Published on: 07 October, 2022

Page: [1922 - 1944] Pages: 23

DOI: 10.2174/0929867329666220801161536

Price: $65

Abstract

Metabolic diseases such as obesity, diabetes, dyslipidemia, and insulin resistance are characterized by glucose and lipid metabolism alterations and represent a global health problem. Many studies have established the crucial role of micro-ribonucleic acids (miRNAs) in controlling metabolic processes in various tissues. miRNAs are single- stranded, highly conserved non-coding RNAs containing 20-24 oligonucleotides that are expressed in a tissue-specific manner. miRNAs mainly interact through base pairing with 3' untranslated regions of target gene mRNAs to promote inhibition of their translation. miRNAs regulate the expression of as many as 30% of the human genes and have a role in crucial physiological processes such as human growth and development, cell proliferation, apoptosis, and metabolism. The number of miRNA molecules with a confirmed role in the pathogenesis of metabolic diseases is quickly expanding due to the availability of high-throughput methodologies for their identification. In this review, we present recent findings regarding the role of miRNAs as endocrine signaling molecules involved in the regulation of insulin production and fat metabolism. We discuss the potential of extracellular miRNAs present in biological fluids miRNAs as biomarkers for the prediction of diabetes and MetS. We also give an updated overview of therapeutic interventions based on antisense oligonucleotides and the CRISPR/Cas9 editing platform for manipulating levels of miRNAs involved in metabolic disorders.

Keywords: miRNAs, metabolic disease, insulin production, fat metabolism, biomarkers, antisense oligonucleotides, CRISPR/Cas9 editing

[1]
(a) Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet., 2008, 9(2), 102-114.
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166];
(b) Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[2]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[3]
(a) Tétreault, N.; De Guire, V. miRNAs: Their discovery, biogenesis and mechanism of action. Clin. Biochem., 2013, 46(10-11), 842-845.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.009] [PMID: 23454500];
(b) Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[4]
(a) Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63.
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040];
(b) Grimson, A.; Farh, K.K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017] [PMID: 17612493]
[5]
(a) Hüttenhofer, A.; Vogel, J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res., 2006, 34(2), 635-646.
[http://dx.doi.org/10.1093/nar/gkj469] [PMID: 16436800];
(b) Macvanin, M.; Edgar, R.; Cui, F.; Trostel, A.; Zhurkin, V.; Adhya, S. Noncoding RNAs binding to the nucleoid protein HU in Escherichia coli. J. Bacteriol., 2012, 194(22), 6046-6055.
[http://dx.doi.org/10.1128/JB.00961-12] [PMID: 22942248];
(c) Qian, Z.; Macvanin, M.; Dimitriadis, E.K.; He, X.; Zhurkin, V.; Adhya, S. A new noncoding RNA arranges bacterial chromosome organization. MBio, 2015, 6(4), e00998-15.
[http://dx.doi.org/10.1128/mBio.00998-15] [PMID: 26307168];
(d) Storz, G. An expanding universe of noncoding RNAs. Science, 2002, 296(5571), 1260-1263.
[http://dx.doi.org/10.1126/science.1072249] [PMID: 12016301];
(e) Barad, O.; Meiri, E.; Avniel, A.; Aharonov, R.; Barzilai, A.; Bentwich, I.; Einav, U.; Gilad, S.; Hurban, P.; Karov, Y.; Lobenhofer, E.K.; Sharon, E.; Shiboleth, Y.M.; Shtutman, M.; Bentwich, Z.; Einat, P. MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome Res., 2004, 14(12), 2486-2494.
[http://dx.doi.org/10.1101/gr.2845604] [PMID: 15574827];
(f) Mattick, J.S. The functional genomics of noncoding RNA. Science, 2005, 309(5740), 1527-1528.
[http://dx.doi.org/10.1126/science.1117806] [PMID: 16141063];
(g) Buermans, H.P.; Ariyurek, Y.; van Ommen, G.; den Dunnen, J.T.; ’t Hoen, P.A. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 2010, 11, 716.
[http://dx.doi.org/10.1186/1471-2164-11-716] [PMID: 21171994]
[6]
(a) Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.P.; Keller, A.; Meese, E. An estimate of the total number of true human miRNAs. Nucleic Acids Res., 2019, 47(7), 3353-3364.
[http://dx.doi.org/10.1093/nar/gkz097] [PMID: 30820533];
(b) Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[7]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Magid, D.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R.; Moy, C.S.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Schreiner, P.J.; Sorlie, P.D.; Stein, J.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation, 2013, 127(1), e6-e245.
[http://dx.doi.org/10.1161/CIR.0b013e31828124ad] [PMID: 23239837]
[8]
Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev., 2008, 29(7), 777-822.
[http://dx.doi.org/10.1210/er.2008-0024] [PMID: 18971485]
[9]
Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep., 2018, 20(2), 12-12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[10]
(a) Ko, N.Y.; Chen, L.R.; Chen, K.H. The role of micro RNA and long-non-coding RNA in osteoporosis. Int. J. Mol. Sci., 2020, 21(14), 4886.;
(b) Tülay Aydın, P.; Göz, M.; Kankılıç, N. Micro-RNA gene expressions during cardiopulmonary bypass. J. Card. Surg., 2021, 36(3), 921-927.
[http://dx.doi.org/10.1111/jocs.15329];
(c) Fransquet, P.D.; Ryan, J. Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease. Clin. Biochem., 2018, 58, 5-14.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.020] [PMID: 29885309];
(d) Margaritis, K.; Margioula-Siarkou, G.; Giza, S. Micro-RNA implications in type-1 diabetes mellitus: A review of literature. Int. J. Mol. Sci., 2021, 22(22), 12165.
[http://dx.doi.org/10.3390/ijms222212165];
(e) Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929];
(f) Panic, A.; Stanimirovic, J. Estradiol-mediated regulation of hepatic iNOS in obese rats: Impact of Src, ERK1/2, AMPKα, and miR-221. Biotechnol. Appl. Biochem., 2018, 65(6), 797-806.
[11]
(a) Quiat, D.; Olson, E.N. MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment. J. Clin. Invest., 2013, 123(1), 11-18.
[http://dx.doi.org/10.1172/JCI62876] [PMID: 23281405];
(b) Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 239-250.
[http://dx.doi.org/10.1038/nrm3313] [PMID: 22436747]
[12]
Goedeke, L.; Aranda, J.F.; Fernández-Hernando, C. microRNA regulation of lipoprotein metabolism. Curr. Opin. Lipidol., 2014, 25(4), 282-288.
[http://dx.doi.org/10.1097/MOL.0000000000000094] [PMID: 24978143]
[13]
(a) Hossain, M.M.; Sohel, M.M.; Schellander, K.; Tesfaye, D. Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res., 2012, 349(3), 679-690.
[http://dx.doi.org/10.1007/s00441-012-1469-6] [PMID: 22842772];
(b) Pallante, P.; Battista, S.; Pierantoni, G.M.; Fusco, A. Deregulation of microRNA expression in thyroid neoplasias. Nat. Rev. Endocrinol., 2014, 10(2), 88-101.
[http://dx.doi.org/10.1038/nrendo.2013.223] [PMID: 24247220];
(c) Derghal, A.; Djelloul, M.; Trouslard, J.; Mounien, L. An emerging role of micro-RNA in the effect of the endocrine disruptors. Front. Neurosci., 2016, 10, 318.
[http://dx.doi.org/10.3389/fnins.2016.00318] [PMID: 27445682]
[14]
Kivimäki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; Knutsson, A.; Koskenvuo, M.; Nordin, M.; Oksanen, T.; Pentti, J.; Rugulies, R.; Shipley, M.J.; Singh-Manoux, A.; Steptoe, A.; Suominen, S.B.; Theorell, T.; Vahtera, J.; Virtanen, M.; Westerholm, P.; Westerlund, H.; Zins, M.; Hamer, M.; Bell, J.A.; Tabak, A.G.; Jokela, M. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health, 2017, 2(6), e277-e285.
[http://dx.doi.org/10.1016/S2468-2667(17)30074-9] [PMID: 28626830]
[15]
Rohde, K.; Keller, M.; la Cour Poulsen, L.; Blüher, M.; Kovacs, P.; Böttcher, Y. Genetics and epigenetics in obesity. Metabolism, 2019, 92, 37-50.
[http://dx.doi.org/10.1016/j.metabol.2018.10.007] [PMID: 30399374]
[16]
(a) Wallis, N.; Raffan, E. The genetic basis of obesity and related metabolic diseases in humans and companion animals. Genes (Basel), 2020, 11(11), 1378.
[http://dx.doi.org/10.3390/genes11111378] [PMID: 33233816];
(b) Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. (Lausanne), 2021, 12, 585887.
[http://dx.doi.org/10.3389/fendo.2021.585887] [PMID: 34084149]
[17]
Norouzirad, R.; González-Muniesa, P.; Ghasemi, A. Hypoxia in obesity and diabetes: Potential therapeutic effects of hyperoxia and nitrate. Oxid. Med. Cell. Longev., 2017, 2017, 5350267-5350267.
[http://dx.doi.org/10.1155/2017/5350267] [PMID: 28607631]
[18]
Katsiki, N.; Athyros, V.G.; Karagiannis, A.; Mikhailidis, D.P. Characteristics other than the diagnostic criteria associated with metabolic syndrome: An overview. Curr. Vasc. Pharmacol., 2014, 12(4), 627-641.
[http://dx.doi.org/10.2174/15701611113119990131] [PMID: 23627982]
[19]
(a) Jacobs, M.; van Greevenbroek, M.M.; van der Kallen, C.J.; Ferreira, I.; Blaak, E.E.; Feskens, E.J.; Jansen, E.H.; Schalkwijk, C.G.; Stehouwer, C.D. Low-grade inflammation can partly explain the association between the metabolic syndrome and either coronary artery disease or severity of peripheral arterial disease: The CODAM study. Eur. J. Clin. Invest., 2009, 39(6), 437-444.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02129.x] [PMID: 19397692];
(b) Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol., 2019, 14(1), 50-59.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037];
(c) De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links. Front. Endocrinol. (Lausanne), 2018, 9, 2.
[http://dx.doi.org/10.3389/fendo.2018.00002] [PMID: 29387042]
[20]
Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; Samuel, V.T. Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association. J. Clin. Lipidol., 2013, 7(4), 304-383.
[http://dx.doi.org/10.1016/j.jacl.2013.04.001] [PMID: 23890517]
[21]
(a) Aguilera, C.M.; Gil-Campos, M.; Cañete, R.; Gil, A. Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin. Sci. (Lond.), 2008, 114(3), 183-193.
[http://dx.doi.org/10.1042/CS20070115] [PMID: 18184112];
(b) Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 2017, 135(10), e146-e603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885];
(c) Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino, R.B., Sr; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 2015, 131(5), 451-458.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012477] [PMID: 25623155];
(d) Zaric, B.; Obradovic, M.; Trpkovic, A.; Banach, M.; Mikhailidis, D.P.; Isenovic, E.R. Endothelial dysfunction in dyslipidaemia: Molecular mechanisms and clinical implications. Curr. Med. Chem., 2020, 27(7), 1021-1040.
[http://dx.doi.org/10.2174/0929867326666190903112146] [PMID: 31480995]
[22]
(a) Solinas, G.; Karin, M. JNK1 and IKKbeta: Molecular links between obesity and metabolic dysfunction. FASEB J., 2010, 24(8), 2596-2611.
[http://dx.doi.org/10.1096/fj.09-151340] [PMID: 20371626];
(b) Stienstra, R.; Tack, C.J.; Kanneganti, T.D.; Joosten, L.A.; Netea, M.G. The inflammasome puts obesity in the danger zone. Cell Metab., 2012, 15(1), 10-18.
[http://dx.doi.org/10.1016/j.cmet.2011.10.011] [PMID: 22225872]
[23]
(a) Jia, G.; Aroor, A.R.; Martinez-Lemus, L.A.; Sowers, J.R. Overnutrition, mTOR signaling, and cardiovascular diseases. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(10), R1198-R1206.
[http://dx.doi.org/10.1152/ajpregu.00262.2014] [PMID: 25253086];
(b) Zafirovic, S.; Obradovic, M.; Sudar-Milovanovic, E.; Jovanovic, A.; Stanimirovic, J.; Stewart, A.J.; Pitt, S.J.; Isenovic, E.R. 17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Mol. Cell. Endocrinol., 2017, 446, 12-20.
[http://dx.doi.org/10.1016/j.mce.2017.02.001] [PMID: 28163099]
[24]
(a) Cao, H. Adipocytokines in obesity and metabolic disease. J. Endocrinol., 2014, 220(2), T47-T59.
[http://dx.doi.org/10.1530/JOE-13-0339] [PMID: 24403378];
(b) Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[25]
Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol., 2018, 76(4), 713-722.
[http://dx.doi.org/10.5603/KP.a2018.0071] [PMID: 29537483]
[26]
Obradovic, M.; Sudar, E.; Zafirovic, S.; Stanimirovic, J.; Labudovic-Borovic, M.; Isenovic, E.R. Estradiol in vivo induces changes in cardiomyocytes size in obese rats. Angiology, 2015, 66(1), 25-35.
[http://dx.doi.org/10.1177/0003319713514477] [PMID: 24327768]
[27]
Toth, P.P. Insulin resistance, small LDL particles, and risk for atherosclerotic disease. Curr. Vasc. Pharmacol., 2014, 12(4), 653-657.
[http://dx.doi.org/10.2174/15701611113119990125] [PMID: 23627975]
[28]
Mikhailidis, D.P.; Elisaf, M.; Rizzo, M.; Berneis, K.; Griffin, B.; Zambon, A.; Athyros, V.; de Graaf, J.; März, W.; Parhofer, K.G.; Rini, G.B.; Spinas, G.A.; Tomkin, G.H.; Tselepis, A.D.; Wierzbicki, A.S.; Winkler, K.; Florentin, M.; Liberopoulos, E. “European panel on low density lipoprotein (LDL) subclasses”: A statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses. Curr. Vasc. Pharmacol., 2011, 9(5), 533-571.
[http://dx.doi.org/10.2174/157016111796642661] [PMID: 21595628]
[29]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[30]
(a) Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes., 2014, 7, 587-591.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234];
(b) Nair, M. Diabetes mellitus, part 1: Physiology and complications. Br. J. Nurs., 2007, 16(3), 184-188.
[http://dx.doi.org/10.12968/bjon.2007.16.3.22974] [PMID: 17363887];
(c) Fatima, N.; Faisal, S.M.; Zubair, S.; Ajmal, M.; Siddiqui, S.S.; Moin, S.; Owais, M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: Correlation with age and glycemic condition in diabetic human subjects. PLoS One, 2016, 11(8), e0161548.
[http://dx.doi.org/10.1371/journal.pone.0161548] [PMID: 27575603];
(d) Stanimirovic, J.; Obradovic, M.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Pitt, S.J.; Stewart, A.J.; Isenovic, E.R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide, 2016, 54, 51-59.
[http://dx.doi.org/10.1016/j.niox.2016.02.007] [PMID: 26924725]
[31]
Ewing, G.W.; Parvez, S.H. The multi-systemic nature of diabetes mellitus: Genotype or phenotype? N. Am. J. Med. Sci., 2010, 2(10), 444-456.
[http://dx.doi.org/10.4297/najms.2010.2444] [PMID: 22558546]
[32]
Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med., 2002, 346(16), 1221-1231.
[http://dx.doi.org/10.1056/NEJMra011775] [PMID: 11961152]
[33]
Fang, Y-L.; Chen, H.; Wang, C-L.; Liang, L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J. Gastroenterol., 2018, 24(27), 2974-2983.
[http://dx.doi.org/10.3748/wjg.v24.i27.2974] [PMID: 30038464]
[34]
(a) Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; Kawaguchi, T.; Arrese, M.; Valenti, L.; Shiha, G.; Tiribelli, C.; Yki-Järvinen, H.; Fan, J.G.; Grønbæk, H.; Yilmaz, Y.; Cortez-Pinto, H.; Oliveira, C.P.; Bedossa, P.; Adams, L.A.; Zheng, M.H.; Fouad, Y.; Chan, W.K.; Mendez-Sanchez, N.; Ahn, S.H.; Castera, L.; Bugianesi, E.; Ratziu, V.; George, J. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol., 2020, 73(1), 202-209.
[http://dx.doi.org/10.1016/j.jhep.2020.03.039] [PMID: 32278004];
(b) Valenti, L.; Bugianesi, E.; Pajvani, U.; Targher, G. Nonalcoholic fatty liver disease: Cause or consequence of type 2 diabetes? Liver Int., 2016, 36(11), 1563-1579.
[http://dx.doi.org/10.1111/liv.13185] [PMID: 27276701];
(c) Ercin, C.N.; Dogru, T.; Genc, H.; Celebi, G.; Aslan, F.; Gurel, H.; Kara, M.; Sertoglu, E.; Tapan, S.; Bagci, S.; Rizzo, M.; Sonmez, A. Insulin resistance but not visceral adiposity index is associated with liver fibrosis in nondiabetic subjects with nonalcoholic fatty liver disease. Metab. Syndr. Relat. Disord., 2015, 13(7), 319-325.
[http://dx.doi.org/10.1089/met.2015.0018] [PMID: 26011302]
[35]
(a) Berardis, S.; Sokal, E. Pediatric non-alcoholic fatty liver disease: An increasing public health issue. Eur. J. Pediatr., 2014, 173(2), 131-139.
[http://dx.doi.org/10.1007/s00431-013-2157-6] [PMID: 24068459];
(b) Alisi, A.; Cianfarani, S.; Manco, M.; Agostoni, C.; Nobili, V. Non-alcoholic fatty liver disease and metabolic syndrome in adolescents: Pathogenetic role of genetic background and intrauterine environment. Ann. Med., 2012, 44(1), 29-40.
[http://dx.doi.org/10.3109/07853890.2010.547869] [PMID: 21355790]
[36]
(a) Mendez-Sanchez, N.; Arrese, M.; Gadano, A.; Oliveira, C.P.; Fassio, E.; Arab, J.P.; Chávez-Tapia, N.C.; Dirchwolf, M.; Torre, A.; Ridruejo, E.; Pinchemel-Cotrim, H.; Castellanos Fernández, M.I.; Uribe, M.; Girala, M.; Diaz-Ferrer, J.; Restrepo, J.C.; Padilla-Machaca, M.; Dagher, L.; Gatica, M.; Olaechea, B.; Pessôa, M.G.; Silva, M. The Latin American Association for the Study of the Liver (ALEH) position statement on the redefinition of fatty liver disease. Lancet Gastroenterol. Hepatol., 2021, 6(1), 65-72.
[http://dx.doi.org/10.1016/S2468-1253(20)30340-X] [PMID: 33181118];
(b) Shiha, G.; Alswat, K.; Al Khatry, M.; Sharara, A.I.; Örmeci, N.; Waked, I.; Benazzouz, M.; Al-Ali, F.; Hamed, A.E.; Hamoudi, W.; Attia, D.; Derbala, M.; Sharaf-Eldin, M.; Al-Busafi, S.A.; Zaky, S.; Bamakhrama, K.; Ibrahim, N.; Ajlouni, Y.; Sabbah, M.; Salama, M.; Anushiravani, A.; Afredj, N.; Barakat, S.; Hashim, A.; Fouad, Y.; Soliman, R. Nomenclature and definition of metabolic-associated fatty liver disease: A consensus from the Middle East and north Africa. Lancet Gastroenterol. Hepatol., 2021, 6(1), 57-64.
[http://dx.doi.org/10.1016/S2468-1253(20)30213-2] [PMID: 33181119];
(c) Shiha, G.; Korenjak, M.; Eskridge, W.; Casanovas, T.; Velez-Moller, P.; Högström, S.; Richardson, B.; Munoz, C.; Sigurðardóttir, S.; Coulibaly, A.; Milan, M.; Bautista, F.; Leung, N.W.Y.; Mooney, V.; Obekpa, S.; Bech, E.; Polavarapu, N.; Hamed, A.E.; Radiani, T.; Purwanto, E.; Bright, B.; Ali, M.; Dovia, C.K.; McColaugh, L.; Koulla, Y.; Dufour, J.F.; Soliman, R.; Eslam, M. Redefining fatty liver disease: An international patient perspective. Lancet Gastroenterol. Hepatol., 2021, 6(1), 73-79.
[http://dx.doi.org/10.1016/S2468-1253(20)30294-6] [PMID: 33031758];
(d) Younossi, Z.M.; Rinella, M.E. From NAFLD to MAFLD. Implications of a premature change in terminology. Hepatology, 2021, 73(3), 1194-1198.
[PMID: 32544255];
(e) Ratziu, V.; Rinella, M.; Beuers, U.; Loomba, R.; Anstee, Q.M.; Harrison, S.; Francque, S.; Sanyal, A.; Newsome, P.N.; Younossi, Z. The times they are a-changin’ (for NAFLD as well). J. Hepatol., 2020, 73(6), 1307-1309.
[http://dx.doi.org/10.1016/j.jhep.2020.08.028] [PMID: 32890593]
[37]
Vasudevan, S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip. Rev. RNA, 2012, 3(3), 311-330.
[http://dx.doi.org/10.1002/wrna.121] [PMID: 22072587]
[38]
(a) Ipsaro, J.J.; Joshua-Tor, L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol., 2015, 22(1), 20-28.
[http://dx.doi.org/10.1038/nsmb.2931] [PMID: 25565029];
(b) Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649];
(c) Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet., 2011, 12(2), 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[39]
Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the seed supports MicroRNA targeting specificity. Mol. Cell, 2016, 64(2), 320-333.
[http://dx.doi.org/10.1016/j.molcel.2016.09.004] [PMID: 27720646]
[40]
(a) Forman, J.J.; Legesse-Miller, A.; Coller, H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. USA, 2008, 105(39), 14879-14884.
[http://dx.doi.org/10.1073/pnas.0803230105] [PMID: 18812516];
(b) Zhou, H.; Rigoutsos, I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA, 2014, 20(9), 1431-1439.
[http://dx.doi.org/10.1261/rna.045757.114] [PMID: 24984703]
[41]
Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; Zhang, H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA, 2014, 20(12), 1878-1889.
[http://dx.doi.org/10.1261/rna.045633.114] [PMID: 25336585]
[42]
(a) Hesse, M.; Arenz, C. MicroRNA maturation and human disease. Methods Mol. Biol., 2014, 1095, 11-25.
[http://dx.doi.org/10.1007/978-1-62703-703-7_2] [PMID: 24166300];
(b) O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[43]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[44]
(a) Jo, M.H.; Shin, S.; Jung, S.R.; Kim, E.; Song, J.J.; Hohng, S. Human argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell, 2015, 59(1), 117-124.
[http://dx.doi.org/10.1016/j.molcel.2015.04.027] [PMID: 26140367];
(b) Ameres, S.L.; Horwich, M.D.; Hung, J.H.; Xu, J.; Ghildiyal, M.; Weng, Z.; Zamore, P.D. Target RNA-directed trimming and tailing of small silencing RNAs. Science, 2010, 328(5985), 1534-1539.
[http://dx.doi.org/10.1126/science.1187058] [PMID: 20558712]
[45]
Lagos-Quintana, M.; Rauhut, R.; Meyer, J.; Borkhardt, A.; Tuschl, T. New microRNAs from mouse and human. RNA, 2003, 9(2), 175-179.
[http://dx.doi.org/10.1261/rna.2146903] [PMID: 12554859]
[46]
(a) Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res., 2004, 14(10A), 1902-1910.
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901];
(b) Erdmann, V.A.; Szymanski, M.; Hochberg, A.; Groot, N.; Barciszewski, J. Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res., 2000, 28(1), 197-200.
[http://dx.doi.org/10.1093/nar/28.1.197] [PMID: 10592224]
[47]
Ying, S.Y.; Chang, C.P.; Lin, S.L. Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol. Biol., 2010, 629, 205-237.
[http://dx.doi.org/10.1007/978-1-60761-657-3_14] [PMID: 20387152]
[48]
Saini, H.K.; Griffiths-Jones, S.; Enright, A.J. Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA, 2007, 104(45), 17719-17724.
[http://dx.doi.org/10.1073/pnas.0703890104] [PMID: 17965236]
[49]
(a) Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072];
(b) Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 2006, 13(12), 1097-1101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[50]
Han, J.; Lee, Y.; Yeom, K.H.; Nam, J.W.; Heo, I.; Rhee, J.K.; Sohn, S.Y.; Cho, Y.; Zhang, B.T.; Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125(5), 887-901.
[http://dx.doi.org/10.1016/j.cell.2006.03.043] [PMID: 16751099]
[51]
Macfarlane, L-A.; Murphy, P.R.; Micro, R.N.A. MicroRNA: Biogenesis, function and role in cancer. Curr. Genom., 2010, 11(7), 537-561.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[52]
(a) Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654), 83-86.
[http://dx.doi.org/10.1126/science.1091903] [PMID: 14657504];
(b) Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732), 310-311.
[http://dx.doi.org/10.1126/science.1114519] [PMID: 15919954]
[53]
Du, T.; Zamore, P.D. microPrimer: The biogenesis and function of microRNA. Development, 2005, 132(21), 4645-4652.
[http://dx.doi.org/10.1242/dev.02070] [PMID: 16224044]
[54]
(a) Gagnon, K.T.; Li, L.; Chu, Y.; Janowski, B.A.; Corey, D.R. RNAi factors are present and active in human cell nuclei. Cell Rep., 2014, 6(1), 211-221.
[http://dx.doi.org/10.1016/j.celrep.2013.12.013] [PMID: 24388755];
(b) Miao, L.; Yao, H.; Li, C.; Pu, M.; Yao, X.; Yang, H.; Qi, X.; Ren, J.; Wang, Y. A dual inhibition: MicroRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim. Biophys. Acta, 2016, 1859(4), 650-662.
[http://dx.doi.org/10.1016/j.bbagrm.2016.02.016] [PMID: 26926595]
[55]
(a) Barman, B.; Bhattacharyya, S.N. mRNA targeting to endoplasmic reticulum precedes ago protein interaction and MicroRNA (miRNA)-mediated translation repression in mammalian cells. J. Biol. Chem., 2015, 290(41), 24650-24656.
[http://dx.doi.org/10.1074/jbc.C115.661868] [PMID: 26304123];
(b) Nishi, K.; Takahashi, T.; Suzawa, M.; Miyakawa, T.; Nagasawa, T.; Ming, Y.; Tanokura, M.; Ui-Tei, K. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Res., 2015, 43(20), 9856-9873.
[http://dx.doi.org/10.1093/nar/gkv1026] [PMID: 26446993];
(c) Bose, M.; Barman, B.; Goswami, A.; Bhattacharyya, S.N. Spatiotemporal uncoupling of microrna-mediated translational repression and target RNA degradation controls MicroRNP recycling in mammalian cells. Mol. Cell. Biol., 2017, 37(4), e00464-16.
[http://dx.doi.org/10.1128/MCB.00464-16] [PMID: 27895152];
(d) Barrey, E.; Saint-Auret, G.; Bonnamy, B.; Damas, D.; Boyer, O.; Gidrol, X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One, 2011, 6(5), e20220.
[http://dx.doi.org/10.1371/journal.pone.0020220] [PMID: 21637849]
[56]
Meher, P.K.; Satpathy, S.; Rao, A.R. miRNALoc: Predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides. Sci. Rep., 2020, 10(1), 14557.
[http://dx.doi.org/10.1038/s41598-020-71381-4] [PMID: 32884018]
[57]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[58]
(a) Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770];
(b) Das, S.; Ansel, K.M.; Bitzer, M.; Breakefield, X.O.; Charest, A.; Galas, D.J.; Gerstein, M.B.; Gupta, M.; Milosavljevic, A.; McManus, M.T.; Patel, T.; Raffai, R.L.; Rozowsky, J.; Roth, M.E.; Saugstad, J.A.; Van Keuren-Jensen, K.; Weaver, A.M.; Laurent, L.C. The Extracellular RNA Communication Consortium: Establishing foundational knowledge and technologies for extracellular RNA research. Cell, 2019, 177(2), 231-242.
[http://dx.doi.org/10.1016/j.cell.2019.03.023] [PMID: 30951667];
(c) Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; Fissell, W.H.; Patton, J.G.; Rome, L.H.; Burnette, D.T.; Coffey, R.J. Reassessment of exosome composition. Cell, 2019, 177(2), 428-445.e18.
[http://dx.doi.org/10.1016/j.cell.2019.02.029] [PMID: 30951670];
(d) Murillo, O.D.; Thistlethwaite, W.; Rozowsky, J.; Subramanian, S.L.; Lucero, R.; Shah, N.; Jackson, A.R.; Srinivasan, S.; Chung, A.; Laurent, C.D.; Kitchen, R.R.; Galeev, T.; Warrell, J.; Diao, J.A.; Welsh, J.A.; Hanspers, K.; Riutta, A.; Burgstaller-Muehlbacher, S.; Shah, R.V.; Yeri, A.; Jenkins, L.M.; Ahsen, M.E.; Cordon-Cardo, C.; Dogra, N.; Gifford, S.M.; Smith, J.T.; Stolovitzky, G.; Tewari, A.K.; Wunsch, B.H.; Yadav, K.K.; Danielson, K.M.; Filant, J.; Moeller, C.; Nejad, P.; Paul, A.; Simonson, B.; Wong, D.K.; Zhang, X.; Balaj, L.; Gandhi, R.; Sood, A.K.; Alexander, R.P.; Wang, L.; Wu, C.; Wong, D.T.W.; Galas, D.J.; Van Keuren-Jensen, K.; Patel, T.; Jones, J.C.; Das, S.; Cheung, K.H.; Pico, A.R.; Su, A.I.; Raffai, R.L.; Laurent, L.C.; Roth, M.E.; Gerstein, M.B.; Milosavljevic, A. exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell, 2019, 177(2), 463-477.e15.
[http://dx.doi.org/10.1016/j.cell.2019.02.018] [PMID: 30951672];
(e) Srinivasan, S.; Yeri, A.; Cheah, P.S.; Chung, A.; Danielson, K.; De Hoff, P.; Filant, J.; Laurent, C.D.; Laurent, L.D.; Magee, R.; Moeller, C.; Murthy, V.L.; Nejad, P.; Paul, A.; Rigoutsos, I.; Rodosthenous, R.; Shah, R.V.; Simonson, B.; To, C.; Wong, D.; Yan, I.K.; Zhang, X.; Balaj, L.; Breakefield, X.O.; Daaboul, G.; Gandhi, R.; Lapidus, J.; Londin, E.; Patel, T.; Raffai, R.L.; Sood, A.K.; Alexander, R.P.; Das, S.; Laurent, L.C. Small rna sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell, 2019, 177(2), 446-462.e16.
[http://dx.doi.org/10.1016/j.cell.2019.03.024] [PMID: 30951671]
[59]
Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem., 2010, 285(23), 17442-17452.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[60]
Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab., 2019, 30(4), 656-673.
[http://dx.doi.org/10.1016/j.cmet.2019.07.011] [PMID: 31447320]
[61]
(a) Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T.; Halberg, N.; Rutkowski, J.M.; Wade, M.R.; Tenorio, V.M.; Kuo, M.S.; Brozinick, J.T.; Zhang, B.B.; Birnbaum, M.J.; Summers, S.A.; Scherer, P.E. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med., 2011, 17(1), 55-63.
[http://dx.doi.org/10.1038/nm.2277] [PMID: 21186369];
(b) Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Brönneke, H.S.; Trifunovic, A.; LoSasso, G.; Wunderlich, F.T.; Kornfeld, J.W.; Blüher, M.; Krönke, M.; Brüning, J.C. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab., 2014, 20(4), 678-686.
[http://dx.doi.org/10.1016/j.cmet.2014.08.002] [PMID: 25295788]
[62]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[63]
Herrera, B.M.; Lockstone, H.E.; Taylor, J.M.; Ria, M.; Barrett, A.; Collins, S.; Kaisaki, P.; Argoud, K.; Fernandez, C.; Travers, M.E.; Grew, J.P.; Randall, J.C.; Gloyn, A.L.; Gauguier, D.; McCarthy, M.I.; Lindgren, C.M. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010, 53(6), 1099-1109.
[http://dx.doi.org/10.1007/s00125-010-1667-2] [PMID: 20198361]
[64]
(a) Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122--a key factor and therapeutic target in liver disease. J. Hepatol., 2015, 62(2), 448-457.
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172];
(b) Jopling, C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol., 2012, 9(2), 137-142.
[http://dx.doi.org/10.4161/rna.18827] [PMID: 22258222];
(c) Sekine, S.; Ogawa, R.; Ito, R.; Hiraoka, N.; McManus, M. T.; Kanai, Y.; Hebrok, M. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology, 2009, 136(7), 2304-2315.e1-4.
[http://dx.doi.org/10.1053/j.gastro.2009.02.067]
[65]
(a) Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol., 2016, 410(1), 1-13.
[http://dx.doi.org/10.1016/j.ydbio.2015.12.013] [PMID: 26708096];
(b) Koutsoulidou, A.; Mastroyiannopoulos, N.P.; Furling, D.; Uney, J.B.; Phylactou, L.A. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol., 2011, 11, 34.
[http://dx.doi.org/10.1186/1471-213X-11-34] [PMID: 21645416];
(c) Ge, Y.; Chen, J. MicroRNAs in skeletal myogenesis. Cell Cycle, 2011, 10(3), 441-448.
[http://dx.doi.org/10.4161/cc.10.3.14710] [PMID: 21270519]
[66]
Poy, M.N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; Macdonald, P.E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432(7014), 226-230.
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[67]
(a) Houbaviy, H.B.; Murray, M.F.; Sharp, P.A. Embryonic stem cell-specific MicroRNAs. Dev. Cell, 2003, 5(2), 351-358.
[http://dx.doi.org/10.1016/S1534-5807(03)00227-2] [PMID: 12919684];
(b) Kim, H.J.; Cho, H.; Alexander, R.; Patterson, H.C.; Gu, M.; Lo, K.A.; Xu, D.; Goh, V.J.; Nguyen, L.N.; Chai, X.; Huang, C.X.; Kovalik, J.P.; Ghosh, S.; Trajkovski, M.; Silver, D.L.; Lodish, H.; Sun, L. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes, 2014, 63(12), 4045-4056.
[http://dx.doi.org/10.2337/db14-0466] [PMID: 25008181];
(c) Klöting, N.; Berthold, S.; Kovacs, P.; Schön, M.R.; Fasshauer, M.; Ruschke, K.; Stumvoll, M.; Blüher, M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 2009, 4(3), e4699.
[http://dx.doi.org/10.1371/journal.pone.0004699] [PMID: 19259271];
(d) Marson, A.; Levine, S.S.; Cole, M.F.; Frampton, G.M.; Brambrink, T.; Johnstone, S.; Guenther, M.G.; Johnston, W.K.; Wernig, M.; Newman, J.; Calabrese, J.M.; Dennis, L.M.; Volkert, T.L.; Gupta, S.; Love, J.; Hannett, N.; Sharp, P.A.; Bartel, D.P.; Jaenisch, R.; Young, R.A. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008, 134(3), 521-533.
[http://dx.doi.org/10.1016/j.cell.2008.07.020] [PMID: 18692474];
(e) Mori, M.A.; Raghavan, P.; Thomou, T.; Boucher, J.; Robida-Stubbs, S.; Macotela, Y.; Russell, S.J.; Kirkland, J.L.; Blackwell, T.K.; Kahn, C.R. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab., 2012, 16(3), 336-347.
[http://dx.doi.org/10.1016/j.cmet.2012.07.017] [PMID: 22958919];
(f) Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[68]
Jiménez-Lucena, R.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; López-Moreno, J.; Roncero-Ramos, I.; Molina-Abril, H.; Yubero-Serrano, E.M.; Caballero-Villarraso, J.; Delgado-Lista, J.; Castaño, J.P.; Ordovás, J.M.; Pérez-Martinez, P.; Camargo, A.; López-Miranda, J. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study. Mol. Ther. Nucleic Acids, 2018, 12, 146-157.
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[69]
(a) Flowers, E.; Won, G.Y.; Fukuoka, Y. MicroRNAs associated with exercise and diet: A systematic review. Physiol. Genomics, 2015, 47(1), 1-11.
[http://dx.doi.org/10.1152/physiolgenomics.00095.2014] [PMID: 25465031];
(b) Rome, S. Use of miRNAs in biofluids as biomarkers in dietary and lifestyle intervention studies. Genes Nutr., 2015, 10(5), 483.
[http://dx.doi.org/10.1007/s12263-015-0483-1] [PMID: 26233309];
(c) Safdar, A.; Tarnopolsky, M.A. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb. Perspect. Med., 2018, 8(3), a029827.
[http://dx.doi.org/10.1101/cshperspect.a029827] [PMID: 28490541];
(d) Whitham, M.; Parker, B.L.; Friedrichsen, M.; Hingst, J.R.; Hjorth, M.; Hughes, W.E.; Egan, C.L.; Cron, L.; Watt, K.I.; Kuchel, R.P.; Jayasooriah, N.; Estevez, E.; Petzold, T.; Suter, C.M.; Gregorevic, P.; Kiens, B.; Richter, E.A.; James, D.E.; Wojtaszewski, J.F.P.; Febbraio, M.A. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab., 2018, 27(1), 237-251.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.12.001] [PMID: 29320704]
[70]
Beatty, M.; Guduric-Fuchs, J.; Brown, E.; Bridgett, S.; Chakravarthy, U.; Hogg, R.E.; Simpson, D.A. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genom., 2014, 15(1), 933.
[http://dx.doi.org/10.1186/1471-2164-15-933] [PMID: 25344700]
[71]
Ying, W.; Riopel, M.; Bandyopadhyay, G.; Dong, Y.; Birmingham, A.; Seo, J.B.; Ofrecio, J.M.; Wollam, J.; Hernandez-Carretero, A.; Fu, W.; Li, P.; Olefsky, J.M. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell, 2017, 171(2), 372-384.e12.
[http://dx.doi.org/10.1016/j.cell.2017.08.035] [PMID: 28942920]
[72]
Tryggestad, J.B.; Teague, A.M.; Sparling, D.P. Macrophage-derived microRNA-155 increases in obesity and influences adipocyte metabolism by targeting peroxisome proliferator-activated receptor gamma. Obesity (Silver Spring), 2019, 27(11), 1856-1864.
[http://dx.doi.org/10.1002/oby.22616]
[73]
Thomou, T.; Mori, M.A.; Dreyfuss, J.M.; Konishi, M.; Sakaguchi, M.; Wolfrum, C.; Rao, T.N.; Winnay, J.N.; Garcia-Martin, R.; Grinspoon, S.K.; Gorden, P.; Kahn, C.R. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017, 542(7642), 450-455.
[http://dx.doi.org/10.1038/nature21365] [PMID: 28199304]
[74]
(a) Ahn, J.; Lee, H.; Jung, C.H.; Jeon, T.I.; Ha, T.Y. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol. Med., 2013, 5(10), 1602-1612.
[http://dx.doi.org/10.1002/emmm.201302647] [PMID: 24009212];
(b) Bork-Jensen, J.; Scheele, C.; Christophersen, D.V.; Nilsson, E.; Friedrichsen, M.; Fernandez-Twinn, D.S.; Grunnet, L.G.; Litman, T.; Holmstrøm, K.; Vind, B.; Højlund, K.; Beck-Nielsen, H.; Wojtaszewski, J.; Ozanne, S.E.; Pedersen, B.K.; Poulsen, P.; Vaag, A. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: Results from studies of twins with and without type 2 diabetes. Diabetologia, 2015, 58(2), 363-373.
[http://dx.doi.org/10.1007/s00125-014-3434-2] [PMID: 25403480];
(c) Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; Dean, N.M.; Freier, S.M.; Bennett, C.F.; Lollo, B.; Griffey, R. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem., 2004, 279(50), 52361-52365.
[http://dx.doi.org/10.1074/jbc.C400438200] [PMID: 15504739];
(d) Frost, R.J.; Olson, E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21075-21080.
[http://dx.doi.org/10.1073/pnas.1118922109] [PMID: 22160727];
(e) Hou, R.; Wang, D.; Lu, J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol. Lett., 2017, 13(6), 5009-5015.
[http://dx.doi.org/10.3892/ol.2017.6033] [PMID: 28599502];
(f) Karolina, D.S.; Armugam, A.; Tavintharan, S.; Wong, M.T.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011, 6(8), e22839.
[http://dx.doi.org/10.1371/journal.pone.0022839] [PMID: 21829658];
(g) Kim, Y.; Kim, O.K. Potential Roles of Adipocyte Extracellular Vesicle-Derived miRNAs in obesity-mediated insulin resistance. Adv. Nutr., 2021, 12(2), 566-574.
[http://dx.doi.org/10.1093/advances/nmaa105] [PMID: 32879940];
(h) Kornfeld, J.W.; Baitzel, C.; Könner, A.C.; Nicholls, H.T.; Vogt, M.C.; Herrmanns, K.; Scheja, L.; Haumaitre, C.; Wolf, A.M.; Knippschild, U.; Seibler, J.; Cereghini, S.; Heeren, J.; Stoffel, M.; Brüning, J.C. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 2013, 494(7435), 111-115.
[http://dx.doi.org/10.1038/nature11793] [PMID: 23389544];
(i) Pescador, N.; Pérez-Barba, M.; Ibarra, J.M.; Corbatón, A.; Martínez-Larrad, M.T.; Serrano-Ríos, M. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One, 2013, 8(10), e77251.
[http://dx.doi.org/10.1371/journal.pone.0077251] [PMID: 24204780];
(j) Wang, Y.; Liu, J.; Liu, C.; Naji, A.; Stoffers, D.A. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes, 2013, 62(3), 887-895.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022];
(k) Wu, L.; Dai, X.; Zhan, J.; Zhang, Y.; Zhang, H.; Zhang, H.; Zeng, S.; Xi, W. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS, 2015, 123(7), 580-5.;
(l) Ye, S.; Song, W.; Xu, X.; Zhao, X.; Yang, L. IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett., 2016, 590(11), 1641-1650.
[http://dx.doi.org/10.1002/1873-3468.12205] [PMID: 27153315];
(m) Zheng, Y.; Yin, L.; Chen, H.; Yang, S.; Pan, C.; Lu, S.; Miao, M.; Jiao, B. miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett., 2012, 586(16), 2396-2403.
[http://dx.doi.org/10.1016/j.febslet.2012.05.054] [PMID: 22684007]
[75]
Teleman, A.A.; Maitra, S.; Cohen, S.M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev., 2006, 20(4), 417-422.
[http://dx.doi.org/10.1101/gad.374406] [PMID: 16481470]
[76]
Min, K.H.; Yang, W.M.; Lee, W. Saturated fatty acids-induced miR-424-5p aggravates insulin resistance via targeting insulin receptor in hepatocytes. Biochem. Biophys. Res. Commun., 2018, 503(3), 1587-1593.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.084] [PMID: 30033101]
[77]
Yang, W.M.; Jeong, H.J.; Park, S.W.; Lee, W. Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Mol. Nutr. Food Res., 2015, 59(11), 2303-2314.
[http://dx.doi.org/10.1002/mnfr.201500107] [PMID: 26179126]
[78]
Yang, W.M.; Jeong, H.J.; Park, S.Y.; Lee, W. Saturated fatty acid-induced miR-195 impairs insulin signaling and glycogen metabolism in HepG2 cells. FEBS Lett., 2014, 588(21), 3939-3946.
[http://dx.doi.org/10.1016/j.febslet.2014.09.006] [PMID: 25240198]
[79]
Yang, W. M.; Min, K. H.; Lee, W. Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1. 2016, (11)(12), e0169039.
[http://dx.doi.org/10.1371/journal.pone.0169039]
[80]
Trajkovski, M.; Hausser, J.; Soutschek, J.; Bhat, B.; Akin, A.; Zavolan, M.; Heim, M.H.; Stoffel, M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011, 474(7353), 649-653.
[http://dx.doi.org/10.1038/nature10112] [PMID: 21654750]
[81]
(a) Delibegovic, M.; Zimmer, D.; Kauffman, C.; Rak, K.; Hong, E.G.; Cho, Y.R.; Kim, J.K.; Kahn, B.B.; Neel, B.G.; Bence, K.K. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes, 2009, 58(3), 590-599.
[http://dx.doi.org/10.2337/db08-0913] [PMID: 19074988];
(b) Yang, Y.M.; Seo, S.Y.; Kim, T.H.; Kim, S.G. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology, 2012, 56(6), 2209-2220.
[http://dx.doi.org/10.1002/hep.25912] [PMID: 22807119]
[82]
(a) Ryu, H.S.; Park, S.Y.; Ma, D.; Zhang, J.; Lee, W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One, 2011, 6(3), e17343.
[http://dx.doi.org/10.1371/journal.pone.0017343] [PMID: 21464990];
(b) Jeong, H.J.; Park, S.Y.; Yang, W.M.; Lee, W. The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SK-Hep1 cells. Biochem. Biophys. Res. Commun., 2013, 434(3), 503-508.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.104] [PMID: 23583389];
(c) Wang, Y.; Hu, C.; Cheng, J.; Chen, B.; Ke, Q.; Lv, Z.; Wu, J.; Zhou, Y. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem. Biophys. Res. Commun., 2014, 446(4), 1255-1260.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.107] [PMID: 24690171]
[83]
(a) Dávalos, A.; Goedeke, L.; Smibert, P.; Ramírez, C.M.; Warrier, N.P.; Andreo, U.; Cirera-Salinas, D.; Rayner, K.; Suresh, U.; Pastor-Pareja, J.C.; Esplugues, E.; Fisher, E.A.; Penalva, L.O.; Moore, K.J.; Suárez, Y.; Lai, E.C.; Fernández-Hernando, C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA, 2011, 108(22), 9232-9237.
[http://dx.doi.org/10.1073/pnas.1102281108] [PMID: 21576456];
(b) Tang, C.Y.; Man, X.F.; Guo, Y.; Tang, H.N.; Tang, J.; Zhou, C.L.; Tan, S.W.; Wang, M.; Zhou, H.D. IRS-2 partially compensates for the insulin signal defects in IRS-1-/- mice mediated by miR-33. Mol. Cells, 2017, 40(2), 123-132.
[http://dx.doi.org/10.14348/molcells.2017.2228] [PMID: 28190325]
[84]
(a) Motohashi, N.; Alexander, M.S.; Shimizu-Motohashi, Y.; Myers, J.A.; Kawahara, G.; Kunkel, L.M. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J. Cell Sci., 2013, 126(Pt 12), 2678-2691.
[http://dx.doi.org/10.1242/jcs.119966] [PMID: 23606743];
(b) Massart, J.; Sjögren, R.J.O.; Lundell, L.S.; Mudry, J.M.; Franck, N.; O'Gorman, D.J.; Egan, B.; Zierath, J.R. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle. Front. Endocrinol. (Lausanne), 2017, 66(7), 1807-1818.
[85]
Agarwal, P.; Srivastava, R.; Srivastava, A.K.; Ali, S.; Datta, M. miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim. Biophys. Acta, 2013, 1832(8), 1294-1303.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.021] [PMID: 23579070]
[86]
Pandey, A.K.; Verma, G.; Vig, S.; Srivastava, S.; Srivastava, A.K.; Datta, M. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol. Cell. Endocrinol., 2011, 332(1-2), 125-133.
[http://dx.doi.org/10.1016/j.mce.2010.10.004] [PMID: 20943204]
[87]
Zhou, Y.; Gu, P.; Shi, W.; Li, J.; Hao, Q.; Cao, X.; Lu, Q.; Zeng, Y. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells. Int. J. Mol. Med., 2016, 37(4), 931-938.
[http://dx.doi.org/10.3892/ijmm.2016.2499] [PMID: 26936652]
[88]
Yang, W.M.; Jeong, H.J.; Park, S.Y.; Lee, W. Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes. FEBS Lett., 2014, 588(13), 2170-2176.
[http://dx.doi.org/10.1016/j.febslet.2014.05.011] [PMID: 24844433]
[89]
Kurtz, C.L.; Peck, B.C.; Fannin, E.E.; Beysen, C.; Miao, J.; Landstreet, S.R.; Ding, S.; Turaga, V.; Lund, P.K.; Turner, S.; Biddinger, S.B.; Vickers, K.C.; Sethupathy, P. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes, 2014, 63(9), 3141-3148.
[http://dx.doi.org/10.2337/db13-1015] [PMID: 24722248]
[90]
Fu, X.; Dong, B.; Tian, Y.; Lefebvre, P.; Meng, Z.; Wang, X.; Pattou, F.; Han, W.; Wang, X.; Lou, F.; Jove, R.; Staels, B.; Moore, D.D.; Huang, W. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest., 2015, 125(6), 2497-2509.
[http://dx.doi.org/10.1172/JCI75438] [PMID: 25961460]
[91]
Crépin, D.; Benomar, Y.; Riffault, L.; Amine, H.; Gertler, A.; Taouis, M. The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment. Mol. Cell. Endocrinol., 2014, 384(1-2), 1-11.
[http://dx.doi.org/10.1016/j.mce.2013.12.016] [PMID: 24394757]
[92]
Ling, H.Y.; Ou, H.S.; Feng, S.D.; Zhang, X.Y.; Tuo, Q.H.; Chen, L.X.; Zhu, B.Y.; Gao, Z.P.; Tang, C.K.; Yin, W.D.; Zhang, L.; Liao, D.F. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin. Exp. Pharmacol. Physiol., 2009, 36(9), e32-e39.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05207.x] [PMID: 19473196]
[93]
Bai, Y.; Bai, X.; Wang, Z.; Zhang, X.; Ruan, C.; Miao, J. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp. Mol. Pathol., 2011, 91(1), 471-477.
[http://dx.doi.org/10.1016/j.yexmp.2011.04.016] [PMID: 21586283]
[94]
Zhu, H.; Shyh-Chang, N.; Segrè, A.V.; Shinoda, G.; Shah, S.P.; Einhorn, W.S.; Takeuchi, A.; Engreitz, J.M.; Hagan, J.P.; Kharas, M.G.; Urbach, A.; Thornton, J.E.; Triboulet, R.; Gregory, R.I.; Altshuler, D.; Daley, G.Q. The Lin28/let-7 axis regulates glucose metabolism. Cell, 2011, 147(1), 81-94.
[http://dx.doi.org/10.1016/j.cell.2011.08.033] [PMID: 21962509]
[95]
Elia, L.; Contu, R.; Quintavalle, M.; Varrone, F.; Chimenti, C.; Russo, M.A.; Cimino, V.; De Marinis, L.; Frustaci, A.; Catalucci, D.; Condorelli, G. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 2009, 120(23), 2377-2385.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.879429] [PMID: 19933931]
[96]
Xihua, L.; Shengjie, T.; Weiwei, G.; Matro, E.; Tingting, T.; Lin, L.; Fang, W.; Jiaqiang, Z.; Fenping, Z.; Hong, L. Circulating miR-143-3p inhibition protects against insulin resistance in Metabolic Syndrome via targeting of the insulin-like growth factor 2 receptor. Transl. Res., 2019, 205, 33-43.
[http://dx.doi.org/10.1016/j.trsl.2018.09.006] [PMID: 30392876]
[97]
(a) Elzenaar, I.; Pinto, Y.M.; van Oort, R.J. MicroRNAs in heart failure: New targets in disease management. Clin. Pharmacol. Ther., 2013, 94(4), 480-489.
[http://dx.doi.org/10.1038/clpt.2013.138] [PMID: 23852395];
(b) Sala, V.; Bergerone, S.; Gatti, S.; Gallo, S.; Ponzetto, A.; Ponzetto, C.; Crepaldi, T. MicroRNAs in myocardial ischemia: Identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cell. Mol. Life Sci., 2014, 71(8), 1439-1452.
[http://dx.doi.org/10.1007/s00018-013-1504-0] [PMID: 24218009];
(c) Synetos, A.; Toutouzas, K.; Stathogiannis, K.; Latsios, G.; Tsiamis, E.; Tousoulis, D.; Stefanadis, C. MicroRNAs in arterial hypertension. Curr. Top. Med. Chem., 2013, 13(13), 1527-1532.
[http://dx.doi.org/10.2174/15680266113139990101] [PMID: 23745804];
(d) Van Aelst, L.N.; Heymans, S. MicroRNAs as biomarkers for ischemic heart disease. J. Cardiovasc. Transl. Res., 2013, 6(4), 458-470.
[http://dx.doi.org/10.1007/s12265-013-9466-z] [PMID: 23716129]
[98]
Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res., 2015, 46(5), 328-338.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[99]
Watson, A.D.; Leitinger, N.; Navab, M.; Faull, K.F.; Hörkkö, S.; Witztum, J.L.; Palinski, W.; Schwenke, D.; Salomon, R.G.; Sha, W.; Subbanagounder, G.; Fogelman, A.M.; Berliner, J.A. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem., 1997, 272(21), 13597-13607.
[http://dx.doi.org/10.1074/jbc.272.21.13597] [PMID: 9153208]
[100]
(a) Goldstein, J.L.; Ho, Y.K.; Basu, S.K.; Brown, M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA, 1979, 76(1), 333-337.
[http://dx.doi.org/10.1073/pnas.76.1.333] [PMID: 218198];
(b) Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 1993, 362(6423), 801-809.
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518];
(c) Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation, 2005, 111(25), 3481-3488.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537878] [PMID: 15983262];
(d) Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99.
[http://dx.doi.org/10.1038/emm.2014.38] [PMID: 24903227]
[101]
Rayner, K.J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A.; Moore, K.J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573.
[http://dx.doi.org/10.1126/science.1189862] [PMID: 20466885]
[102]
Elmén, J.; Lindow, M.; Schütz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjärn, M.; Hansen, H.F.; Berger, U.; Gullans, S.; Kearney, P.; Sarnow, P.; Straarup, E.M.; Kauppinen, S. LNA-mediated microRNA silencing in non-human primates. Nature, 2008, 452(7189), 896-899.
[http://dx.doi.org/10.1038/nature06783] [PMID: 18368051]
[103]
Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0707493105] [PMID: 18227515]
[104]
Silva, D.C.P.D.; Carneiro, F.D.; Almeida, K.C.; Fernandes-Santos, C. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq. Bras. Cardiol., 2018, 111(5), 738-746.
[http://dx.doi.org/10.5935/abc.20180215] [PMID: 30484515]
[105]
Dentelli, P.; Rosso, A.; Orso, F.; Olgasi, C.; Taverna, D.; Brizzi, M.F. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1562-1568.
[http://dx.doi.org/10.1161/ATVBAHA.110.206201] [PMID: 20489169]
[106]
Sun, H.X.; Zeng, D.Y.; Li, R.T.; Pang, R.P.; Yang, H.; Hu, Y.L.; Zhang, Q.; Jiang, Y.; Huang, L.Y.; Tang, Y.B.; Yan, G.J.; Zhou, J.G. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension (Dallas, Tex. 1979), 2012, 60(6), 1407-14.
[107]
Arunachalam, G.; Upadhyay, R.; Ding, H.; Triggle, C.R. MicroRNA signature and cardiovascular dysfunction. J. Cardiovasc. Pharmacol., 2015, 65(5), 419-429.
[http://dx.doi.org/10.1097/FJC.0000000000000178] [PMID: 25384197]
[108]
Holmberg, J.; Bhattachariya, A.; Alajbegovic, A.; Rippe, C.; Ekman, M.; Dahan, D.; Hien, T.T.; Boettger, T.; Braun, T.; Swärd, K.; Hellstrand, P.; Albinsson, S. Loss of vascular myogenic tone in miR-143/145 knockout mice is associated with hypertension-induced vascular lesions in small mesenteric arteries. Arterioscler. Thromb. Vasc. Biol., 2018, 38(2), 414-424.
[http://dx.doi.org/10.1161/ATVBAHA.117.310499] [PMID: 29217510]
[109]
(a) Maegdefessel, L. The emerging role of microRNAs in cardiovascular disease. J. Intern. Med., 2014, 276(6), 633-644.
[http://dx.doi.org/10.1111/joim.12298] [PMID: 25160930];
(b) Pacurari, M.; Tchounwou, P.B. Role of micrornas in renin-angiotensin-aldosterone system-mediated cardiovascular inflammation and remodeling. Int. J. Inflamm., 2015, 2015, 101527.
[http://dx.doi.org/10.1155/2015/101527] [PMID: 26064773];
(c) Deiuliis, J.; Mihai, G.; Zhang, J.; Taslim, C.; Varghese, J.J.; Maiseyeu, A.; Huang, K.; Rajagopalan, S. Renin-sensitive microRNAs correlate with atherosclerosis plaque progression. J. Hum. Hypertens., 2014, 28(4), 251-258.
[http://dx.doi.org/10.1038/jhh.2013.97] [PMID: 24152824]
[110]
Long, G.; Wang, F.; Li, H.; Yin, Z.; Sandip, C.; Lou, Y.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol., 2013, 13, 178.
[http://dx.doi.org/10.1186/1471-2377-13-178] [PMID: 24237608]
[111]
Weiland, M.; Gao, X.H.; Zhou, L.; Mi, Q.S. Small RNAs have a large impact: Circulating microRNAs as biomarkers for human diseases. RNA Biol., 2012, 9(6), 850-859.
[http://dx.doi.org/10.4161/rna.20378] [PMID: 22699556]
[112]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[113]
Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; Li, Q.; Li, X.; Wang, W.; Zhang, Y.; Wang, J.; Jiang, X.; Xiang, Y.; Xu, C.; Zheng, P.; Zhang, J.; Li, R.; Zhang, H.; Shang, X.; Gong, T.; Ning, G.; Wang, J.; Zen, K.; Zhang, J.; Zhang, C.Y. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008, 18(10), 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[114]
Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One, 2012, 7(3), e30679.
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[115]
Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C.; Prinjha, R.K.; Richardson, J.C.; Saunders, A.M.; Roses, A.D.; Richards, C.A. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis., 2008, 14(1), 27-41.
[http://dx.doi.org/10.3233/JAD-2008-14103] [PMID: 18525125]
[116]
Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem., 2010, 56(11), 1733-1741.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[117]
Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res., 2011, 39(16), 7223-7233.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[118]
Williams, Z.; Ben-Dov, I.Z.; Elias, R.; Mihailovic, A.; Brown, M.; Rosenwaks, Z.; Tuschl, T. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc. Natl. Acad. Sci. USA, 2013, 110(11), 4255-4260.
[http://dx.doi.org/10.1073/pnas.1214046110] [PMID: 23440203]
[119]
(a) Hansen, K.D.; Brenner, S.E.; Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 2010, 38(12), e131.
[http://dx.doi.org/10.1093/nar/gkq224] [PMID: 20395217];
(b) Dohm, J.C.; Lottaz, C.; Borodina, T.; Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res., 2008, 36(16), e105.
[http://dx.doi.org/10.1093/nar/gkn425] [PMID: 18660515];
(c) Zheng, W.; Chung, L.M.; Zhao, H. Bias detection and correction in RNA-Sequencing data. BMC Bioinform., 2011, 12, 290.
[http://dx.doi.org/10.1186/1471-2105-12-290] [PMID: 21771300]
[120]
(a) Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; Lin, D.W.; Urban, N.; Drescher, C.W.; Knudsen, B.S.; Stirewalt, D.L.; Gentleman, R.; Vessella, R.L.; Nelson, P.S.; Martin, D.B.; Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10513-10518.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219];
(b) Zhuang, F.; Fuchs, R.T.; Robb, G.B. Small RNA expression profiling by high-throughput sequencing: Implications of enzymatic manipulation. J. Nucleic Acids, 2012, 2012, 360358.
[http://dx.doi.org/10.1155/2012/360358] [PMID: 22778911];
(c) Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, M.; Mueller, R.D.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; Vandesompele, J.; Wittwer, C.T.; Bustin, S.A. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clin. Chem., 2013, 59(6), 892-902.
[http://dx.doi.org/10.1373/clinchem.2013.206375] [PMID: 23570709]
[121]
Ramzan, F.; D’Souza, R.F.; Durainayagam, B.R.; Milan, A.M.; Markworth, J.F.; Miranda-Soberanis, V.; Sequeira, I.R.; Roy, N.C.; Poppitt, S.D.; Mitchell, C.J.; Cameron-Smith, D. Circulatory miRNA biomarkers of metabolic syndrome. Acta Diabetol., 2020, 57(2), 203-214.
[http://dx.doi.org/10.1007/s00592-019-01406-6] [PMID: 31435783]
[122]
(a) Rawal, S.; Munasinghe, Pujika E.; Nagesh, Prashanth T.; Lew, J. Kar S.; Jones, Gregory T.; Williams, Michael J. A.; Davis, P.; Bunton, D.; Galvin, Ivor F.; Manning, P.; Lamberts, Regis R.; Katare, R. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart. Clin. Sci., 2017, 131(9), 847-863.
[http://dx.doi.org/10.1042/CS20160916];
(b) Chen, Y.; Tian, L.; Wan, S.; Xie, Y.; Chen, X.; Ji, X.; Zhao, Q.; Wang, C.; Zhang, K.; Hock, J.M.; Tian, H.; Yu, X. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell. Endocrinol., 2016, 437, 213-223.
[http://dx.doi.org/10.1016/j.mce.2016.08.037] [PMID: 27568466]
[123]
Wang, Y.T.; Tsai, P.C.; Liao, Y.C.; Hsu, C.Y.; Juo, S.H. Circulating microRNAs have a sex-specific association with metabolic syndrome. J. Biomed. Sci., 2013, 20(1), 72.
[http://dx.doi.org/10.1186/1423-0127-20-72] [PMID: 24093444]
[124]
Jaeger, A.; Zollinger, L.; Saely, C.H.; Muendlein, A.; Evangelakos, I.; Nasias, D.; Charizopoulou, N.; Schofield, J.D.; Othman, A.; Soran, H.; Kardassis, D.; Drexel, H.; Eckardstein, A.V. Circulating microRNAs -192 and -194 are associated with the presence and incidence of diabetes mellitus. Sci. Rep., 2018, 8(1), 14274.
[http://dx.doi.org/10.1038/s41598-018-32274-9] [PMID: 30250222]
[125]
(a) Regazzi, R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin. Ther. Targets, 2018, 22(2), 153-160.
[http://dx.doi.org/10.1080/14728222.2018.1420168] [PMID: 29257914];
(b) Mirra, P.; Raciti, G.A.; Nigro, C.; Fiory, F.; D’Esposito, V.; Formisano, P.; Beguinot, F.; Miele, C. Circulating miRNAs as intercellular messengers, potential biomarkers and therapeutic targets for Type 2 diabetes. Epigenomics, 2015, 7(4), 653-667.
[http://dx.doi.org/10.2217/epi.15.18] [PMID: 26111035]
[126]
Lima, J.F.; Cerqueira, L.; Figueiredo, C.; Oliveira, C.; Azevedo, N.F. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol., 2018, 15(3), 338-352.
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[127]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2020, 28, 127-138.
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[128]
Distel, E.; Barrett, T.J.; Chung, K.; Girgis, N.M.; Parathath, S.; Essau, C.C.; Murphy, A.J.; Moore, K.J.; Fisher, E.A. miR33 inhibition overcomes deleterious effects of diabetes mellitus on atherosclerosis plaque regression in mice. Circ. Res., 2014, 115(9), 759-769.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304164] [PMID: 25201910]
[129]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[130]
Zhou, B.; Li, C.; Qi, W.; Zhang, Y.; Zhang, F.; Wu, J.X.; Hu, Y.N.; Wu, D.M.; Liu, Y.; Yan, T.T.; Jing, Q.; Liu, M.F.; Zhai, Q.W. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012, 55(7), 2032-2043.
[http://dx.doi.org/10.1007/s00125-012-2539-8] [PMID: 22476949]
[131]
Seeger, T.; Fischer, A.; Muhly-Reinholz, M.; Zeiher, A.M.; Dimmeler, S. Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring), 2014, 22(11), 2352-2360.
[http://dx.doi.org/10.1002/oby.20852] [PMID: 25141837]
[132]
Nigi, L.; Grieco, G.E.; Ventriglia, G.; Brusco, N.; Mancarella, F.; Formichi, C.; Dotta, F.; Sebastiani, G. MicroRNAs as regulators of insulin signaling: Research updates and potential therapeutic perspectives in type 2 diabetes. Int. J. Mol. Sci., 2018, 19(12), E3705.
[http://dx.doi.org/10.3390/ijms19123705] [PMID: 30469501]
[133]
Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; De Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC, 2019, 30(2), 114-127.
[PMID: 31263388]
[134]
(a) Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249];
(b) Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146];
(c) Barrangou, R.; Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol., 2016, 34(9), 933-941.
[http://dx.doi.org/10.1038/nbt.3659] [PMID: 27606440]
[135]
(a) Chang, H.; Yi, B.; Ma, R.; Zhang, X.; Zhao, H.; Xi, Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci. Rep., 2016, 6, 22312.
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382];
(b) Yoshino, H.; Yonemori, M.; Miyamoto, K.; Tatarano, S.; Kofuji, S.; Nohata, N.; Nakagawa, M.; Enokida, H. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget, 2017, 8(13), 20881-20894.
[http://dx.doi.org/10.18632/oncotarget.14930] [PMID: 28152509]
[136]
Matboli, M.; Kamel, M.M.; Essawy, N.; Bekhit, M.M.; Abdulrahman, B.; Mohamed, G.F.; Eissa, S. Identification of novel insulin resistance related ceRNA network in T2DM and its potential editing by CRISPR/Cas9. Int. J. Mol. Sci., 2021, 22(15), 8129.
[http://dx.doi.org/10.3390/ijms22158129] [PMID: 34360895]
[137]
(a) Parra, P.; Serra, F.; Palou, A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One, 2010, 5(9), e13005.
[http://dx.doi.org/10.1371/journal.pone.0013005] [PMID: 20886002];
(b) Joven, J.; Espinel, E.; Rull, A.; Aragonès, G.; Rodríguez-Gallego, E.; Camps, J.; Micol, V.; Herranz-López, M.; Menéndez, J.A.; Borrás, I.; Segura-Carretero, A.; Alonso-Villaverde, C.; Beltrán-Debón, R. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim. Biophys. Acta, 2012, 1820(7), 894-899.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.020] [PMID: 22503922];
(c) Corrêa, T.A.; Rogero, M.M. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition, 2019, 59, 150-157.
[http://dx.doi.org/10.1016/j.nut.2018.08.010] [PMID: 30471527];
(d) Ortega, F.J.; Cardona-Alvarado, M.I.; Mercader, J.M.; Moreno-Navarrete, J.M.; Moreno, M.; Sabater, M.; Fuentes-Batllevell, N.; Ramírez-Chávez, E.; Ricart, W.; Molina-Torres, J.; Pérez-Luque, E.L.; Fernández-Real, J.M. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J. Nutr. Biochem., 2015, 26(10), 1095-1101.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.001] [PMID: 26092372]
[138]
Marques-Rocha, J.L.; Milagro, F.I.; Mansego, M.L.; Zulet, M.A.; Bressan, J.; Martínez, J.A. Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet-based weight loss program. Nutrition, 2016, 32(1), 48-55.
[http://dx.doi.org/10.1016/j.nut.2015.06.008] [PMID: 26421388]
[139]
Yang, Z.; Bian, C.; Zhou, H.; Huang, S.; Wang, S.; Liao, L.; Zhao, R.C. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev., 2011, 20(2), 259-267.
[http://dx.doi.org/10.1089/scd.2010.0072] [PMID: 20486779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy