Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Application of Therapeutic Nanoplatforms as a Potential Candidate for the Treatment of CNS Disorders: Challenges and Possibilities

Author(s): Pratikshya Sa, Priya Singh, Fahima Dilnawaz and Sanjeeb Kumar Sahoo*

Volume 28, Issue 33, 2022

Published on: 21 September, 2022

Page: [2742 - 2757] Pages: 16

DOI: 10.2174/1381612828666220729104433

Price: $65

Abstract

Drug delivery to central nervous system (CNS) diseases is one of the most challenging tasks. The innate blood-brain barrier (BBB) and the blood-cerebrospinal fluid (BCSF) barrier create an obstacle to effective systemic drug delivery to the CNS, by limiting the access of drugs to the brain. Nanotechnology-based drug delivery platform offers a potential therapeutic approach for the treatment of neurological disorders. Several studies have shown that nanomaterials have great potential to be used for the treatment of CNS diseases. The nanocarriers have simplified the targeted delivery of therapeutics into the brain by surpassing the BBB and actively inhibiting the disease progression of CNS disorders. The review is an overview of the recent developments in nanotechnology-based drug delivery approaches for major CNS diseases like Alzheimer's disease, Parkinson's disease, ischemic stroke, and Glioblastoma. This review discusses the disease biology of major CNS disorders describing various nanotechnology-based approaches to overcome the challenges associated with CNS drug delivery, focussing on nanocarriers in preclinical and clinical studies for the same. The review also sheds light on the challenges during clinical translation of nanomedicine from bench to bedside. Conventional therapeutic agents used for the treatment of CNS disorders are inadequate due to their inability to cross BBB or BCSF, higher efflux from BBB, related toxicity, and poor pharmacokinetics. The amalgamation of nanotechnology with conventional therapeutic agents can greatly ameliorate the pharmacokinetic problems and at the same time assist in efficient delivery to the CNS.

Keywords: Nanotechnology, blood-brain barrier, central nervous system, drug delivery, nanomedicine, CNS diseases.

[1]
Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol 2020; 19(3): 255-65.
[http://dx.doi.org/10.1016/S1474-4422(19)30411-9] [PMID: 31813850]
[2]
Rudolfson N, Dewan MC, Park KB, Shrime MG, Meara JG, Alkire BC. The economic consequences of neurosurgical disease in low- and middle-income countries. J Neurosurg 2018; 1-8.
[PMID: 29775144]
[3]
Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today 2018; 23(5): 1007-15.
[http://dx.doi.org/10.1016/j.drudis.2017.11.010] [PMID: 29155026]
[4]
Jena L, McErlean E, McCarthy H. Delivery across the blood-brain barrier: Nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res 2020; 10(2): 304-18.
[http://dx.doi.org/10.1007/s13346-019-00679-2] [PMID: 31728942]
[5]
Garg SK, Dwivedi A, Saini P, Pareek A, Trivedi S. Challenges of brain drug delivery and g-technology as one of solution 2013; 2(3): 13-8.
[6]
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9(2): 79-89.
[http://dx.doi.org/10.1007/s12551-016-0246-2] [PMID: 28510082]
[7]
Reynolds JL, Mahato RI. Nanomedicines for the treatment of CNS Diseases. J Neuroimmune Pharmacol 2017; 12(1): 1-5.
[http://dx.doi.org/10.1007/s11481-017-9725-x] [PMID: 28150132]
[8]
Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 2018; 14(2): 609-18.
[http://dx.doi.org/10.1016/j.nano.2017.12.006] [PMID: 29248676]
[9]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[10]
Srikanth M, Kessler JA. Nanotechnology—novel therapeutics for CNS disorders. Nat Rev Neurol 2012; 8(6): 307-18.
[http://dx.doi.org/10.1038/nrneurol.2012.76] [PMID: 22526003]
[11]
Palmer AM. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis 2010; 37(1): 3-12.
[http://dx.doi.org/10.1016/j.nbd.2009.07.029] [PMID: 19664711]
[12]
Pandit R, Chen L, Gotz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2020; (165-166): 1-14.
[PMID: 31790711]
[13]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[http://dx.doi.org/10.3109/09687688.2014.937468] [PMID: 25046533]
[14]
Miller DS. Regulation of ABC transporters blood-brain barrier: The good, the bad, and the ugly. Adv Cancer Res 2015; 125: 43-70.
[http://dx.doi.org/10.1016/bs.acr.2014.10.002] [PMID: 25640266]
[15]
Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: Structure and functional significance. Methods Mol Biol 2011; 686: 101-31.
[http://dx.doi.org/10.1007/978-1-60761-938-3_4] [PMID: 21082368]
[16]
Yarlagadda A, Kaushik S, Clayton AH. Blood brain barrier: The role of calcium homeostasis. Psychiatry (Edgmont) 2007; 4(12): 55-9.
[PMID: 20436765]
[17]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[18]
Smith QR, Fisher C, Allen DD. The Role of Plasma Protein Binding in Drug Delivery to Brain Blood-Brain Barrier. Boston, MA: Springer 2001; pp. 311-21.
[19]
Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep 2020; 47(4): 3221-31.
[http://dx.doi.org/10.1007/s11033-020-05361-2] [PMID: 32140957]
[20]
Bellettato CM, Scarpa M. Possible strategies to cross the blood-brain barrier. Ital J Pediatr 2018; 44 (Suppl. 2): 131.
[http://dx.doi.org/10.1186/s13052-018-0563-0] [PMID: 30442184]
[21]
Salameh TS, Banks WA. Delivery of therapeutic peptides and proteins to the CNS. Adv Pharmacol 2014; 71: 277-99.
[http://dx.doi.org/10.1016/bs.apha.2014.06.004] [PMID: 25307220]
[22]
Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem 1998; 70(5): 1781-92.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70051781.x] [PMID: 9572261]
[23]
U.S. National Library of Medicine. (Available from: https://clinicaltrials.gov/).
[24]
Parveen S, Misra R, Sahoo SK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 2012; 8(2): 147-66.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[25]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[26]
Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg 2018; 5(1): 35.
[http://dx.doi.org/10.1186/s40580-018-0168-8] [PMID: 30499047]
[27]
Ahlawat J, Guillama Barroso G, Masoudi Asil S, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities. ACS Omega 2020; 5(22): 12583-95.
[http://dx.doi.org/10.1021/acsomega.0c01592] [PMID: 32548442]
[28]
Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13: 5561-76.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[29]
Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019; 224: 119491.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119491] [PMID: 31546096]
[30]
Seong H, An TK, Khang G, Choi SU, Lee CO, Lee HB. BCNU-loaded poly(d, l-lactide-co-glycolide) wafer and antitumor activity against XF-498 human CNS tumor cells in vitro. Int J Pharm 2003; 251(1-2): 1-12.
[http://dx.doi.org/10.1016/S0378-5173(02)00543-4] [PMID: 12527170]
[31]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int 2014; 2014: 1-37.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[32]
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379(1): 146-57.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019] [PMID: 19555750]
[33]
Zou LL, Ma JL, Wang T, Yang TB, Liu CB. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Curr Neuropharmacol 2013; 11(2): 197-208.
[http://dx.doi.org/10.2174/1570159X11311020006] [PMID: 23997754]
[34]
Yan L, Wang H, Jiang Y, et al. Cell-penetrating peptide-modified PLGA nanoparticles for enhanced nose-to-brain macromolecular delivery. Macromol Res 2013; 21(4): 435-41.
[http://dx.doi.org/10.1007/s13233-013-1029-2]
[35]
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2018; 270: 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[36]
McCully M, Sanchez-Navarro M, Teixido M, Giralt E. Peptide mediated brain delivery of nano- and submicroparticles: A synergistic approach. Curr Pharm Des 2018; 24(13): 1366-76.
[http://dx.doi.org/10.2174/1381612824666171201115126] [PMID: 29205110]
[37]
Mittapelly N, Thalla M, Pandey G, et al. Long acting ionically paired embonate based nanocrystals of donepezil for the treatment of alzheimer’s disease: A proof of concept study. Pharm Res 2017; 34(11): 2322-35.
[http://dx.doi.org/10.1007/s11095-017-2240-1] [PMID: 28808833]
[38]
AnjiReddy K, Karpagam S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation. Int J Biol Macromol 2017; 105(Pt 1): 131-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.021] [PMID: 28698078]
[39]
Md S, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm 2014; 40(2): 278-87.
[http://dx.doi.org/10.3109/03639045.2012.758130] [PMID: 23369094]
[40]
Krishna KV, Wadhwa G, Alexander A, et al. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci 2019; 10(9): 4124-35.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[41]
Pagar KP, Sardar SM, Vavia PR. Novel L-lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer’s disease. J Biomed Nanotechnol 2014; 10(3): 415-26.
[http://dx.doi.org/10.1166/jbn.2014.1719] [PMID: 24730237]
[42]
Mohamadpour H, Azadi A, Rostamizadeh K, Andalib S, Saghatchi Zanjani MR, Hamidi M. Preparation, optimization, and evaluation of methoxy poly(ethylene glycol)- co -poly(ε-caprolactone) nanoparticles loaded by rivastigmine for brain delivery. ACS Chem Neurosci 2020; 11(5): 783-95.
[http://dx.doi.org/10.1021/acschemneuro.9b00691] [PMID: 32043866]
[43]
Misra S, Chopra K, Saikia UN, et al. Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen Med 2016; 11(7): 629-46.
[http://dx.doi.org/10.2217/rme-2016-0032] [PMID: 27582416]
[44]
Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv 2016; 23(8): 3111-22.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[45]
Cao X, Hou D, Wang L, et al. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res 2016; 49(1): 32.
[http://dx.doi.org/10.1186/s40659-016-0093-4] [PMID: 27378167]
[46]
Arisoy S, Sayiner O, Comoglu T, Onal D, Atalay O, Pehlivanoglu B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm Dev Technol 2020; 25(6): 735-47.
[http://dx.doi.org/10.1080/10837450.2020.1740257] [PMID: 32141798]
[47]
Vong LB, Sato Y, Chonpathompikunlert P, Tanasawet S, Hutamekalin P, Nagasaki Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater 2020; 109: 220-8.
[http://dx.doi.org/10.1016/j.actbio.2020.03.021] [PMID: 32268242]
[48]
Yan X, Xu L, Bi C, et al. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int J Nanomedicine 2018; 13: 273-81.
[http://dx.doi.org/10.2147/IJN.S151475] [PMID: 29391788]
[49]
Bhattamisra SK, Shak AT, Xi LW, et al. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int J Pharm 2020; 579: 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[50]
Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine 2018; 14(8): 2609-18.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[51]
Negro S, Boeva L, Slowing K, Fernandez-Carballido A, Garcia-García L, Barcia E. Efficacy of ropinirole-loaded PLGA microspheres for the reversion of rotenone- induced parkinsonism. Curr Pharm Des 2017; 23(23): 3423-31.
[http://dx.doi.org/10.2174/1381612822666160928145346] [PMID: 27779080]
[52]
Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 2018; 109: 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[53]
Laing ST, Moody MR, Kim H, et al. Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res 2012; 130(4): 629-35.
[http://dx.doi.org/10.1016/j.thromres.2011.11.010] [PMID: 22133272]
[54]
Petro M, Jaffer H, Yang J, Kabu S, Morris VB, Labhasetwar V. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials 2016; 81: 169-80.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.009] [PMID: 26735970]
[55]
Mei T, Kim A, Vong LB, et al. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant -. Biomaterials 2019; 215: 119209.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.020] [PMID: 31181394]
[56]
Chu L, Wang A, Ni L, et al. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv 2018; 25(1): 1634-41.
[http://dx.doi.org/10.1080/10717544.2018.1494226] [PMID: 30176744]
[57]
Birngruber T, Raml R, Gladdines W, et al. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx®/Doxil®--a cerebral open flow microperfusion pilot study. J Pharm Sci 2014; 103(7): 1945-8.
[http://dx.doi.org/10.1002/jps.23994] [PMID: 24801480]
[58]
Sharma AK, Gupta L, Sahu H, et al. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm Res 2018; 35(1): 9.
[http://dx.doi.org/10.1007/s11095-017-2324-y] [PMID: 29294212]
[59]
Prabhu S, Goda JS, Mutalik S, et al. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: Tumor-specific homing directed by nestin. Nanoscale 2017; 9(30): 10919-32.
[http://dx.doi.org/10.1039/C7NR00305F] [PMID: 28731079]
[60]
Nordling-David MM, Yaffe R, Guez D, et al. Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release 2017; 261: 138-46.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.028] [PMID: 28666727]
[61]
Lam FC, Morton SW, Wyckoff J, et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 2018; 9(1): 1991.
[http://dx.doi.org/10.1038/s41467-018-04315-4] [PMID: 29777137]
[62]
Fu W, You C, Ma L, et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl Mater Interfaces 2019; 11(43): 39525-33.
[http://dx.doi.org/10.1021/acsami.9b13829] [PMID: 31601097]
[63]
Renziehausen A, Tsiailanis AD, Perryman R, et al. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma. Mol Cancer Ther 2019; 18(9): 1497-505.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1250] [PMID: 31213505]
[64]
Zhao M, Bozzato E, Joudiou N, et al. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. J Control Release 2019; 309: 72-81.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.015] [PMID: 31306678]
[65]
Meng X, Zhao Y, Han B, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun 2020; 11(1): 594.
[http://dx.doi.org/10.1038/s41467-019-14036-x] [PMID: 32001707]
[66]
Finder VH, Glockshuber R. Amyloid-β Aggregation. Neurodegener Dis 2007; 4(1): 13-27.
[http://dx.doi.org/10.1159/000100355] [PMID: 17429215]
[67]
Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J Neurosci 2004; 24(29): 6457-65.
[http://dx.doi.org/10.1523/JNEUROSCI.0901-04.2004] [PMID: 15269255]
[68]
Chen XQ, Mobley WC. Exploring the pathogenesis of alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses. Front Neurosci 2019; 13: 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[69]
Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J Control Release 2017; 245: 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[70]
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 2018; 4(1): 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[71]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[72]
Ling TS, Chandrasegaran S, Xuan LZ, et al. The potential benefits of nanotechnology in treating Alzheimer’s disease. BioMed Res Int 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/5550938] [PMID: 34285915]
[73]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34(1): 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[74]
Eftekharzadeh B, Daigle JG, Kapinos LE, et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 2019; 101(2): 349.
[http://dx.doi.org/10.1016/j.neuron.2018.12.031] [PMID: 30653936]
[75]
Petrovska B. Historical review of medicinal plants′ usage. Pharmacogn Rev 2012; 6(11): 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[76]
Zhang YJ, Gan RY, Li S, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015; 20(12): 21138-56.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[77]
Hoppe JB, Coradini K, Frozza RL, et al. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem 2013; 106: 134-44.
[http://dx.doi.org/10.1016/j.nlm.2013.08.001] [PMID: 23954730]
[78]
Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[79]
Jakki SL, Ramesh YV, Gowthamarajan K, et al. Novel anionic polymer as a carrier for CNS delivery of anti-Alzheimer drug. Drug Deliv 2016; 23(9): 3471-9.
[http://dx.doi.org/10.1080/10717544.2016.1196767] [PMID: 27246872]
[80]
Jeon SG, Cha MY, Kim J, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine 2019; 17: 297-307.
[http://dx.doi.org/10.1016/j.nano.2019.02.004] [PMID: 30794963]
[81]
Zhang L, Zhao P, Yue C, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials 2019; 197: 393-404.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.037] [PMID: 30703744]
[82]
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 2015; 21(2): 829-35.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[83]
Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer’s disease. Neuroimage 2019; 199: 143-52.
[http://dx.doi.org/10.1016/j.neuroimage.2019.05.044] [PMID: 31112788]
[84]
Mutlu NB, Değim Z, Yılmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: Liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37(7): 775-89.
[http://dx.doi.org/10.3109/03639045.2010.541262] [PMID: 21231901]
[85]
Zhang H, Zhao Y, Yu M, et al. Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy. J Control Release 2019; 296: 14-28.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.008] [PMID: 30639387]
[86]
Cano A, Ettcheto M, Chang JH, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 2019; 301: 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.010] [PMID: 30876953]
[87]
Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci 2021; 24(3): 297-311.
[http://dx.doi.org/10.1038/s41593-020-00778-1] [PMID: 33526943]
[88]
Zilony-Hanin N, Rosenberg M, Richman M, et al. Neuroprotective effect of nerve growth factor loaded in porous silicon nanostructures in an alzheimer’s disease model and potential delivery to the brain. Small 2019; 15(45): 1904203.
[http://dx.doi.org/10.1002/smll.201904203] [PMID: 31482695]
[89]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[90]
Lafuente JV, Requejo C, Ugedo L. Nanodelivery of therapeutic agents in Parkinson’s disease. Prog Brain Res. 2019; 245: pp. 263-79.
[http://dx.doi.org/10.1016/bs.pbr.2019.03.004] [PMID: 30961870]
[91]
Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J Control Release 2019; 295: 201-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.036] [PMID: 30579984]
[92]
Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 2008; 4(4): 743-57.
[http://dx.doi.org/10.2147/NDT.S2006] [PMID: 19043519]
[93]
Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 2013; 22(1): 11-7.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[94]
Lafuente JV, Requejo C, Carrasco A, Bengoetxea H. Nanoformulation: A useful therapeutic strategy for improving neuroprotection and the neurorestorative potential in experimental models of Parkinson’s disease. Int Rev Neurobiol 2017; 137: 99-122.
[http://dx.doi.org/10.1016/bs.irn.2017.09.003] [PMID: 29132545]
[95]
Li A, Tyson J, Patel S, et al. Emerging nanotechnology for treatment of alzheimer’s and Parkinson’s disease. Front Bioeng Biotechnol 2021; 9: 672594.
[http://dx.doi.org/10.3389/fbioe.2021.672594] [PMID: 34113606]
[96]
Naz F, Rahul , Fatima M, et al. Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson’s disease. Neuropharmacology 2020; 177: 108216.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108216] [PMID: 32707222]
[97]
Yoosefian M, Rahmanifar E, Etminan N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 434-44.
[http://dx.doi.org/10.1080/21691401.2018.1430583]
[98]
Fernandes C, Martins C, Fonseca A, et al. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl Mater Interfaces 2018; 10(46): 39557-69.
[http://dx.doi.org/10.1021/acsami.8b17224] [PMID: 30352150]
[99]
Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of dual drug loaded lipid based nanoparticles across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci 2016; 7(12): 1658-70.
[http://dx.doi.org/10.1021/acschemneuro.6b00207] [PMID: 27642670]
[100]
Stefanis L. α-Synuclein in Parkinson’s disease Cold Spring Harb Perspect Med 2012; 2(2): a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399] [PMID: 22355802]
[101]
Li Y, Chen Z, Lu Z, et al. “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics 2018; 8(19): 5469-81.
[http://dx.doi.org/10.7150/thno.28295] [PMID: 30555558]
[102]
Ruotolo R, De Giorgio G, Minato I, Bianchi M, Bussolati O, Marmiroli N. Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson’s disease. Nanomaterials (Basel) 2020; 10(2): 235.
[http://dx.doi.org/10.3390/nano10020235] [PMID: 32013138]
[103]
Zhao N, Yang X, Calvelli HR, et al. Antioxidant nanoparticles for concerted inhibition of α-synuclein fibrillization, and attenuation of microglial intracellular aggregation and activation. Front Bioeng Biotechnol 2020; 8: 112.
[http://dx.doi.org/10.3389/fbioe.2020.00112] [PMID: 32154238]
[104]
Manfredsson FP, Lewin AS, Mandel RJ. RNA knockdown as a potential therapeutic strategy in Parkinson’s disease. Gene Ther 2006; 13(6): 517-24.
[http://dx.doi.org/10.1038/sj.gt.3302669] [PMID: 16267570]
[105]
Kimura S, Harashima H. Current status and challenges associated with CNS-targeted gene delivery across the BBB. Pharmaceutics 2020; 12(12): 1216.
[http://dx.doi.org/10.3390/pharmaceutics12121216] [PMID: 33334049]
[106]
Hu K, Chen X, Chen W, et al. Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine 2018; 14(4): 1123-36.
[http://dx.doi.org/10.1016/j.nano.2018.01.020] [PMID: 29474924]
[107]
Khanam S, Naz F, Ali F, et al. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol Mech Methods 2018; 28(9): 699-708.
[http://dx.doi.org/10.1080/15376516.2018.1502386] [PMID: 30019977]
[108]
Umarao P, Bose S, Bhattacharyya S, Kumar A, Jain S. Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of parkinson’s disease. J Nanosci Nanotechnol 2016; 16(1): 261-9.
[http://dx.doi.org/10.1166/jnn.2016.11103] [PMID: 27398453]
[109]
Kwon HJ, Kim D, Seo K, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew Chem Int Ed 2018; 57(30): 9408-12.
[http://dx.doi.org/10.1002/anie.201805052] [PMID: 29862623]
[110]
Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives. Int J Mol Sci 2016; 17(6): 904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[111]
Garbayo E, Ansorena E, Lana H, et al. Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys. Biomaterials 2016; 110: 11-23.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.015] [PMID: 27697668]
[112]
Hernando S, Herran E, Figueiro-Silva J, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol 2018; 55(1): 145-55.
[http://dx.doi.org/10.1007/s12035-017-0728-7] [PMID: 28866799]
[113]
Herrán E, Ruiz-Ortega JÁ, Aristieta A, et al. In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 2013; 85(3) (3 Pt B): 1183-90.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.034] [PMID: 23639739]
[114]
Randolph SA. Ischemic Stroke. Workplace Health Saf 2016; 64(9): 444.
[http://dx.doi.org/10.1177/2165079916665400] [PMID: 27621261]
[115]
French BR, Boddepalli RS, Govindarajan R. Acute ischemic stroke: Current status and future directions. Mo Med 2016; 113(6): 480-6.
[PMID: 30228538]
[116]
Alcock S, Sawatzky JV. “Time is Brain:” A concept anaiysis. Can J Neurosci Nurs 2016; 38(2): 5-11.
[PMID: 29465169]
[117]
Sharma VK, et al. Recanalization therapies in acute ischemic stroke: Pharmacological agents, devices, and combinations. Stroke Res Treat 2010; 2010: 672064.
[http://dx.doi.org/10.4061/2010/672064]
[118]
Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: Perspectives. Stroke 2013; 44(8): 2351-5.
[http://dx.doi.org/10.1161/STROKEAHA.113.001298] [PMID: 23715957]
[119]
Dong X, Gao J, Su Y, Wang Z. Nanomedicine for Ischemic Stroke. Int J Mol Sci 2020; 21(20): 7600.
[http://dx.doi.org/10.3390/ijms21207600] [PMID: 33066616]
[120]
Zaheer Z, Robinson T, Mistri AK. Thrombolysis in acute ischaemic stroke: An update. Ther Adv Chronic Dis 2011; 2(2): 119-31.
[http://dx.doi.org/10.1177/2040622310394032] [PMID: 23251746]
[121]
Bonnard T, Gauberti M, Martinez de Lizarrondo S, Campos F, Vivien D. Recent advances in nanomedicine for ischemic and hemorrhagic stroke. Stroke 2019; 50(5): 1318-24.
[http://dx.doi.org/10.1161/STROKEAHA.118.022744] [PMID: 30932782]
[122]
Liu S, Feng X, Jin R, Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv 2018; 15(2): 173-84.
[http://dx.doi.org/10.1080/17425247.2018.1384464] [PMID: 28944694]
[123]
Huang T, Li N, Gao J. Recent strategies on targeted delivery of thrombolytics. Asian J Pharm Sci 2019; 14(3): 233-47.
[http://dx.doi.org/10.1016/j.ajps.2018.12.004] [PMID: 32104455]
[124]
Colasuonno M, Palange AL, Aid R, et al. Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano 2018; 12(12): 12224-37.
[http://dx.doi.org/10.1021/acsnano.8b06021] [PMID: 30427660]
[125]
Chen HA, Ma YH, Hsu TY, Chen JP. Preparation of peptide and recombinant tissue plasminogen activator conjugated poly(Lactic-Co-Glycolic Acid) (PLGA) magnetic nanoparticles for dual targeted thrombolytic therapy. Int J Mol Sci 2020; 21(8): 2690.
[http://dx.doi.org/10.3390/ijms21082690] [PMID: 32294917]
[126]
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation 2019; 16(1): 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[127]
Anrather J, Iadecola C. Inflammation and stroke: An overview. Neurotherapeutics 2016; 13(4): 661-70.
[http://dx.doi.org/10.1007/s13311-016-0483-x] [PMID: 27730544]
[128]
Jianliu K, Rosenberg G. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 2005; 39(1): 71-80.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.03.033] [PMID: 15925279]
[129]
Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription. J Stroke Cerebrovasc Dis 2018; 27(11): 3053-65.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.042] [PMID: 30093209]
[130]
Radak D, Katsiki N, Resanovic I, et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 2017; 15(2): 115-22.
[http://dx.doi.org/10.2174/1570161115666161104095522] [PMID: 27823556]
[131]
Al-Jamal KT, Gherardini L, Bardi G, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA 2011; 108(27): 10952-7.
[http://dx.doi.org/10.1073/pnas.1100930108] [PMID: 21690348]
[132]
Zheng Y, Wu Y, Liu Y, et al. Intrinsic effects of gold nanoparticles on oxygen-glucose deprivation/reperfusion injury in rat cortical neurons. Neurochem Res 2019; 44(7): 1549-66.
[http://dx.doi.org/10.1007/s11064-019-02776-7] [PMID: 31093902]
[133]
Sattiraju A, Sai KKS, Mintz A. Glioblastoma stem cells and their microenvironment. Adv Exp Med Biol 2017; 1041: 119-40.
[http://dx.doi.org/10.1007/978-3-319-69194-7_7] [PMID: 29204831]
[134]
Glaser T, Han I, Wu L, Zeng X. Targeted nanotechnology in glioblastoma multiforme. Front Pharmacol 2017; 8: 166.
[http://dx.doi.org/10.3389/fphar.2017.00166] [PMID: 28408882]
[135]
Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev 2015; 29(12): 1203-17.
[http://dx.doi.org/10.1101/gad.261982.115] [PMID: 26109046]
[136]
Michael JS, Lee BS, Zhang M, Yu JS. Nanotechnology for treatment of glioblastoma multiforme. J Transl Int Med 2018; 6(3): 128-33.
[http://dx.doi.org/10.2478/jtim-2018-0025] [PMID: 30425948]
[137]
Pellosi DS, Paula LB, de Melo MT, Tedesco AC. Targeted and synergic glioblastoma treatment: Multifunctional nanoparticles delivering verteporfin as adjuvant therapy for temozolomide chemotherapy. Mol Pharm 2019; 16(3): 1009-24.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01001] [PMID: 30698450]
[138]
Ganipineni LP, Ucakar B, Joudiou N, et al. Paclitaxel-loaded multifunctional nanoparticles for the targeted treatment of glioblastoma. J Drug Target 2019; 27(5-6): 614-23.
[http://dx.doi.org/10.1080/1061186X.2019.1567738] [PMID: 30633585]
[139]
Seo YE, Suh HW, Bahal R, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 2019; 201: 87-98.
[http://dx.doi.org/10.1016/j.biomaterials.2019.02.016] [PMID: 30802686]
[140]
Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 2015; 6(11): 8788-806.
[http://dx.doi.org/10.18632/oncotarget.3554] [PMID: 25871395]
[141]
Kunoh T, Shimura T, Kasai T, et al. Use of DNA-generated gold nanoparticles to radiosensitize and eradicate radioresistant glioma stem cells. Nanotechnology 2019; 30(5): 055101.
[http://dx.doi.org/10.1088/1361-6528/aaedd5] [PMID: 30499457]
[142]
Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol Neurobiol 2020; 57(5): 2461-78.
[http://dx.doi.org/10.1007/s12035-020-01892-8] [PMID: 32152825]
[143]
Zong Z, Hua L, Wang Z, et al. Self-assembled angiopep-2 modified lipid-poly (hypoxic radiosensitized polyprodrug) nanoparticles delivery TMZ for glioma synergistic TMZ and RT therapy. Drug Deliv 2019; 26(1): 34-44.
[http://dx.doi.org/10.1080/10717544.2018.1534897] [PMID: 30744436]
[144]
Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 2009; 14(11): 1131-8.
[http://dx.doi.org/10.1634/theoncologist.2009-0121] [PMID: 19897538]
[145]
Kutlu C, Çakmak AS, Gümüşderelioğlu M. Double-effective chitosan scaffold-PLGA nanoparticle system for brain tumour therapy: in vitro study. J Microencapsul 2014; 31(7): 700-7.
[http://dx.doi.org/10.3109/02652048.2014.913727] [PMID: 24963961]
[146]
Kadiyala P, Li D, Nuñez FM, et al. High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 2019; 13(2): 1365-84.
[http://dx.doi.org/10.1021/acsnano.8b06842] [PMID: 30721028]
[147]
Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater 2019; 86: 381-94.
[http://dx.doi.org/10.1016/j.actbio.2019.01.020] [PMID: 30654213]
[148]
Transparency Market Research, Inc.. Qualitative Insights, US. Available from: https://www.transparencymarketresearch.com (Accessed on: May 1
[149]
Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm 2018; 538(1-2): 263-78.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.016] [PMID: 29339248]
[150]
Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C 2020; 106: 110302.
[http://dx.doi.org/10.1016/j.msec.2019.110302] [PMID: 31753337]
[151]
Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech 2014; 15(6): 1527-34.
[http://dx.doi.org/10.1208/s12249-014-0177-9] [PMID: 25047256]
[152]
Shepherd SJ, Warzecha CC, Yadavali S, et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett 2021; 21(13): 5671-80.
[http://dx.doi.org/10.1021/acs.nanolett.1c01353] [PMID: 34189917]
[153]
Saw PE, Song EW. siRNA therapeutics: A clinical reality. Sci China Life Sci 2020; 63(4): 485-500.
[http://dx.doi.org/10.1007/s11427-018-9438-y] [PMID: 31054052]
[154]
Shubhika KJIJoDD. Nanotechnology and medicine - the upside and the downside Int J. Drug Dev Res 2013; 5(1): 1-10.
[155]
Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials (Basel) 2020; 10(10): 1970.
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[156]
Bosetti R, Vereeck L. Future of nanomedicine: Obstacles and remedies. Nanomedicine (Lond) 2011; 6(4): 747-55.
[http://dx.doi.org/10.2217/nnm.11.55] [PMID: 21718182]
[157]
Bosetti R. Cost-effectiveness of nanomedicine: The path to a future successful and dominant market? Nanomedicine (Lond) 2015; 10(12): 1851-3.
[http://dx.doi.org/10.2217/nnm.15.74] [PMID: 26139120]
[158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy