Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Editorial

Artificial Intelligence: The New “Fuel” to Accelerate Pharmaceutical Development

Author(s): Panteleimon Pantelidis, Michael Spartalis*, George Zakynthinos, Artemis Anastasiou, Athina Goliopoulou, Evangelos Oikonomou, Dimitrios C. Iliopoulos and Gerasimos Siasos

Volume 28, Issue 26, 2022

Published on: 05 August, 2022

Page: [2127 - 2128] Pages: 2

DOI: 10.2174/1381612828666220729101103

Next »
[1]
The Business Research Company. AI in pharma global market. 2021. Available from: www.researchandmarkets.com/reports/5459422/ai-in-pharma-global-market-opportunities-and
[2]
Kok JN, Boers EJ, Kosters WA, Van der Putten P, Poel M. Artificial intelligence: Definition, trends, techniques, and cases. Artif Intell 2009; 1: 270-99.
[3]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[4]
Duch W, Swaminathan K, Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 2007; 13(14): 1497-508.
[http://dx.doi.org/10.2174/138161207780765954] [PMID: 17504169]
[5]
Zang Q, Mansouri K, Williams AJ, et al. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J Chem Inf Model 2017; 57(1): 36-49.
[http://dx.doi.org/10.1021/acs.jcim.6b00625] [PMID: 28006899]
[6]
Powles J, Hodson H. Google DeepMind and healthcare in an age of algorithms. Health Technol 2017; 7(4): 351-67.
[http://dx.doi.org/10.1007/s12553-017-0179-1] [PMID: 29308344]
[7]
Cichonska A, Pahikkala T, Szedmak S, et al. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics 2018; 34(13): i509-18.
[http://dx.doi.org/10.1093/bioinformatics/bty277] [PMID: 29949975]
[8]
Genheden S, Thakkar A, Chadimová V, Reymond JL, Engkvist O, Bjerrum E. AiZynthFinder: A fast, robust and flexible open-source software for retrosynthetic planning. J Cheminform 2020; 12(1): 70.
[http://dx.doi.org/10.1186/s13321-020-00472-1] [PMID: 33292482]
[9]
Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics 2019; 20(2): 273-86.
[http://dx.doi.org/10.1093/biostatistics/kxx069] [PMID: 29394327]
[10]
Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun 2018; 11: 156-64.
[http://dx.doi.org/10.1016/j.conctc.2018.08.001] [PMID: 30112460]
[11]
Qi Y, Tang Q. Predicting phase 3 clinical trial results by modeling phase 2 clinical trial subject level data using deep learning. Mach Learn Healthc Conf PMLR 2019; 106: 1-14.
[12]
Hirschberg C, Edinger M, Holmfred E, Rantanen J, Boetker J. Image-based artificial intelligence methods for product control of tablet coating quality. Pharmaceutics 2020; 12(9): 877.
[http://dx.doi.org/10.3390/pharmaceutics12090877] [PMID: 32942536]
[13]
Lamberti MJ, Wilkinson M, Donzanti BA, et al. A study on the application and use of artificial intelligence to support drug development. Clin Ther 2019; 41(8): 1414-26.
[http://dx.doi.org/10.1016/j.clinthera.2019.05.018] [PMID: 31248680]
[14]
Harrow I, Balakrishnan R, Küçük McGinty H, Plasterer T, Romacker M. Maximizing data value for biopharma through FAIR and quality implementation: FAIR plus Q. Drug Discov Today 2022; 27(5): 1441-7.
[http://dx.doi.org/10.1016/j.drudis.2022.01.006] [PMID: 35066138]
[15]
Batra K, Zorn KM, Foil DH, et al. Quantum machine learning algorithms for drug discovery applications. J Chem Inf Model 2021; 61(6): 2641-7.
[http://dx.doi.org/10.1021/acs.jcim.1c00166] [PMID: 34032436]

© 2024 Bentham Science Publishers | Privacy Policy