Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Computational Approaches for Investigating Disease-causing Mutations in Membrane Proteins: Database Development, Analysis and Prediction

Author(s): Arulsang Kulandaisamy, Fathima Ridha, Dmitrij Frishman and M. Michael Gromiha*

Volume 22, Issue 21, 2022

Published on: 26 August, 2022

Page: [1766 - 1775] Pages: 10

DOI: 10.2174/1568026622666220726124705

Price: $65

Abstract

Membrane proteins (MPs) play an essential role in a broad range of cellular functions, serving as transporters, enzymes, receptors, and communicators, and about ~60% of membrane proteins are primarily used as drug targets. These proteins adopt either α-helical or β-barrel structures in the lipid bilayer of a cell/organelle membrane. Mutations in membrane proteins alter their structure and function, and may lead to diseases. Data on disease-causing and neutral mutations in membrane proteins are available in MutHTP and TMSNP databases, which provide additional features based on sequence, structure, topology, and diseases. These databases have been effectively utilized for analysing sequence and structure-based features in disease-causing and neutral mutations in membrane proteins, exploring disease-causing mechanisms, elucidating the relationship between sequence/structural parameters and diseases, and developing computational tools. Further, machine learning-based tools have been developed for identifying disease-causing mutations using diverse features, such as evolutionary information, physicochemical properties, atomic contacts, contact potentials, and the contribution of different energetic terms. These membrane protein-specific tools are helpful in characterizing the effect of new variants in the whole human membrane proteome. In this review, we provide a discussion of the available databases for disease-causing mutations in membrane proteins, followed by a statistical analysis of membrane protein mutations using sequence and structural features. In addition, available prediction tools for identifying disease-causing and neutral mutations in membrane proteins will be described with their performances. This comprehensive review provides deep insights into designing mutation-specific strategies for different diseases.

Keywords: Membrane proteins, structure, function, topology, disease-causing mutations, neutral mutations, databases, tools, machine-learning.

Graphical Abstract

[1]
Almeida, J.G.; Preto, A.J.; Koukos, P.I.; Bonvin, A.M.J.J.; Moreira, I.S. Membrane proteins structures: A review on computational modeling tools. Biochim. Biophys. Acta Biomembr., 2017, 1859(10), 2021-2039.
[http://dx.doi.org/10.1016/j.bbamem.2017.07.008] [PMID: 28716627]
[2]
Bowie, J.U. Membrane proteins: A new method enters the fold. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 3995-3996.
[http://dx.doi.org/10.1073/pnas.0400671101] [PMID: 15024105]
[3]
Gromiha, M.M.; Ou, Y.Y. Bioinformatics approaches for functional annotation of membrane proteins. Brief. Bioinform., 2014, 15(2), 155-168.
[http://dx.doi.org/10.1093/bib/bbt015] [PMID: 23524979]
[4]
Ponnuswamy, P.K.; Gromiha, M.M. Prediction of transmembrane helices from hydrophobic characteristics of proteins. Int. J. Pept. Protein Res., 1993, 42(4), 326-341.
[http://dx.doi.org/10.1111/j.1399-3011.1993.tb00502.x] [PMID: 8244628]
[5]
Almén, M.S.; Nordström, K.J.; Fredriksson, R.; Schiöth, H.B. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol., 2009, 7(1), 50.
[http://dx.doi.org/10.1186/1741-7007-7-50] [PMID: 19678920]
[6]
Ng, D.P.; Poulsen, B.E.; Deber, C.M. Membrane protein misassembly in disease. Biochim. Biophys. Acta, 2012, 1818(4), 1115-1122.
[http://dx.doi.org/10.1016/j.bbamem.2011.07.046] [PMID: 21840297]
[7]
Dobson, L.; Mészáros, B.; Tusnády, G.E. Structural principles governing disease-causing germline mutations. J. Mol. Biol., 2018, 430(24), 4955-4970.
[http://dx.doi.org/10.1016/j.jmb.2018.10.005] [PMID: 30359580]
[8]
Zaucha, J.; Heinzinger, M.; Kulandaisamy, A.; Kataka, E.; Salvádor, Ó.L.; Popov, P.; Rost, B.; Gromiha, M.M.; Zhorov, B.S.; Frishman, D. Mutations in transmembrane proteins: Diseases, evolutionary insights, prediction and comparison with globular proteins. Brief. Bioinform., 2021, 22(3), bbaa132.
[http://dx.doi.org/10.1093/bib/bbaa132]
[9]
Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res., 2005, 33, D514-D517.
[http://dx.doi.org/10.1093/nar/gki033] [PMID: 15608251]
[10]
Gao, M.; Zhou, H.; Skolnick, J. Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure, 2015, 23(7), 1362-1369.
[http://dx.doi.org/10.1016/j.str.2015.03.028] [PMID: 26027735]
[11]
Gorlov, I.P.; Pikielny, C.W.; Frost, H.R.; Her, S.C.; Cole, M.D.; Strohbehn, S.D.; Wallace-Bradley, D.; Kimmel, M.; Gorlova, O.Y.; Amos, C.I. Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples. BMC Bioinformatics, 2018, 19(1), 430.
[http://dx.doi.org/10.1186/s12859-018-2455-0] [PMID: 30453881]
[12]
He, L.; Shobnam, N.; Wimley, W.C.; Hristova, K. FGFR3 heterodimerization in achondroplasia, the most common form of human dwarfism. J. Biol. Chem., 2011, 286(15), 13272-13281.
[http://dx.doi.org/10.1074/jbc.M110.205583] [PMID: 21324899]
[13]
Buermans, H.P.J.; den Dunnen, J.T. Next generation sequencing technology: Advances and applications. Biochim. Biophys. Acta, 2014, 1842(10), 1932-1941.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.015] [PMID: 24995601]
[14]
Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet., 2016, 17(6), 333-351.
[http://dx.doi.org/10.1038/nrg.2016.49] [PMID: 27184599]
[15]
Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; Fish, P.; Harsha, B.; Hathaway, C.; Jupe, S.C.; Kok, C.Y.; Noble, K.; Ponting, L.; Ramshaw, C.C.; Rye, C.E.; Speedy, H.E.; Stefancsik, R.; Thompson, S.L.; Wang, S.; Ward, S.; Campbell, P.J.; Forbes, S.A. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res., 2019, 47(D1), D941-D947.
[http://dx.doi.org/10.1093/nar/gky1015] [PMID: 30371878]
[16]
Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; Jang, W.; Katz, K.; Ovetsky, M.; Riley, G.; Sethi, A.; Tully, R.; Villamarin-Salomon, R.; Rubinstein, W.; Maglott, D.R. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res., 2016, 44(D1), D862-D868.
[http://dx.doi.org/10.1093/nar/gkv1222] [PMID: 26582918]
[17]
Mottaz, A.; David, F.P.; Veuthey, A.L.; Yip, Y.L. Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics, 2010, 26(6), 851-852.
[http://dx.doi.org/10.1093/bioinformatics/btq028] [PMID: 20106818]
[18]
UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[19]
Kozma, D.; Simon, I.; Tusnády, G.E. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res., 2013, 41, D524-D529.
[PMID: 23203988]
[20]
Bittrich, S.; Rose, Y.; Segura, J.; Lowe, R.; Westbrook, J.D.; Duarte, J.M.; Burley, S.K. RCSB Protein Data Bank: Improved annotation, search and visualization of membrane protein structures archived in the PDB. Bioinformatics, 2021, 38(5), 1452-1454.
[http://dx.doi.org/10.1093/bioinformatics/btab813] [PMID: 34864908]
[21]
Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res., 2012, 40, D370-D376.
[http://dx.doi.org/10.1093/nar/gkr703] [PMID: 21890895]
[22]
Gromiha, M.M.; Yabuki, Y.; Suresh, M.X.; Thangakani, A.M.; Suwa, M.; Fukui, K. TMFunction: Database for functional residues in membrane proteins. Nucleic Acids Res., 2009, 37, D201-D204.
[http://dx.doi.org/10.1093/nar/gkn672] [PMID: 18842639]
[23]
Saier, M.H., Jr; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. The transporter classification database (TCDB): Recent advances. Nucleic Acids Res., 2016, 44(D1), D372-D379.
[http://dx.doi.org/10.1093/nar/gkv1103] [PMID: 26546518]
[24]
Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.; Hauser, A.S.; Vroling, B.; Bojarski, A.J.; Vriend, G.; Gloriam, D.E. GPCRdb: An information system for G protein-coupled receptors. Nucleic Acids Res., 2016, 44(D1), D356-D364.
[http://dx.doi.org/10.1093/nar/gkv1178] [PMID: 26582914]
[25]
Marsico, A.; Scheubert, K.; Tuukkanen, A.; Henschel, A.; Winter, C.; Winnenburg, R.; Schroeder, M. MeMotif: A database of linear motifs in α-helical transmembrane proteins. Nucleic Acids Res., 2010, 38(Suppl. 1), D181-D189.
[http://dx.doi.org/10.1093/nar/gkp1042] [PMID: 19910368]
[26]
Kulandaisamy, A.; Sakthivel, R.; Gromiha, M.M. MPTherm: Database for membrane protein thermodynamics for understanding folding and stability. Brief. Bioinform., 2021, 22(2), 2119-2125.
[http://dx.doi.org/10.1093/bib/bbaa064] [PMID: 32337573]
[27]
Tusnády, G.E.; Kalmár, L.; Simon, I. TOPDB: Topology data bank of transmembrane proteins. Nucleic Acids Res., 2008, 36, D234-D239.
[PMID: 17921502]
[28]
Dobson, L.; Reményi, I.; Tusnády, G.E. The human transmembrane proteome. Biol. Direct, 2015, 10(1), 31.
[http://dx.doi.org/10.1186/s13062-015-0061-x] [PMID: 26018427]
[29]
Kulandaisamy, A.; Binny Priya, S.; Sakthivel, R.; Tarnovskaya, S.; Bizin, I.; Hönigschmid, P.; Frishman, D.; Gromiha, M.M. MutHTP: Mutations in human transmembrane proteins. Bioinformatics, 2018, 34(13), 2325-2326.
[http://dx.doi.org/10.1093/bioinformatics/bty054] [PMID: 29401218]
[30]
Garcia-Recio, A.; Gómez-Tamayo, J.C.; Reina, I.; Campillo, M.; Cordomí, A.; Olivella, M. TMSNP: A web server to predict pathogenesis of missense mutations in the transmembrane region of membrane proteins. NAR Genom. Bioinform., 2021, 3(1), lqab008.
[31]
Partridge, A.W.; Therien, A.G.; Deber, C.M. Missense mutations in transmembrane domains of proteins: Phenotypic propensity of polar residues for human disease. Proteins, 2004, 54(4), 648-656.
[http://dx.doi.org/10.1002/prot.10611] [PMID: 14997561]
[32]
Molnár, J.; Szakács, G.; Tusnády, G.E. Characterization of disease-associated mutations in human transmembrane proteins. PLoS One, 2016, 11(3), e0151760.
[http://dx.doi.org/10.1371/journal.pone.0151760] [PMID: 26986070]
[33]
Nastou, K.C.; Batskinis, M.A.; Litou, Z.I.; Hamodrakas, S.J.; Iconomidou, V.A. Analysis of single-nucleotide polymorphisms in human voltage-gated ion channels. J. Proteome Res., 2019, 18(5), 2310-2320.
[http://dx.doi.org/10.1021/acs.jproteome.9b00121] [PMID: 30908064]
[34]
Kulandaisamy, A.; Priya, S.B.; Sakthivel, R.; Frishman, D.; Gromiha, M.M. Statistical analysis of disease-causing and neutral mutations in human membrane proteins. Proteins, 2019, 87(6), 452-466.
[http://dx.doi.org/10.1002/prot.25667] [PMID: 30714211]
[35]
Hassan, M.S.; Shaalan, A.A.; Dessouky, M.I.; Abdelnaiem, A.E.; ElHefnawi, M. A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases. Gene, 2019, 680, 20-33.
[http://dx.doi.org/10.1016/j.gene.2018.09.028] [PMID: 30240882]
[36]
Brown, D.K.; Tastan Bishop, Ö. Role of structural bioinformatics in drug discovery by computational SNP analysis: Analyzing variation at the protein level. Glob. Heart, 2017, 12(2), 151-161.
[http://dx.doi.org/10.1016/j.gheart.2017.01.009] [PMID: 28302551]
[37]
Bromberg, Y.; Yachdav, G.; Rost, B. SNAP predicts effect of mutations on protein function. Bioinformatics, 2008, 24(20), 2397-2398.
[http://dx.doi.org/10.1093/bioinformatics/btn435] [PMID: 18757876]
[38]
Capriotti, E.; Calabrese, R.; Casadio, R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 2006, 22(22), 2729-2734.
[http://dx.doi.org/10.1093/bioinformatics/btl423] [PMID: 16895930]
[39]
Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res., 2003, 31(13), 3812-3814.
[http://dx.doi.org/10.1093/nar/gkg509] [PMID: 12824425]
[40]
Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. In: Curr. Protoc. Hum. Genet; , 2013; Chapter 7, p. (1)20.
[http://dx.doi.org/10.1002/0471142905.hg0720s76] [PMID: 23315928]
[41]
Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.; Edwards, K.J.; Day, I.N.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat., 2013, 34(1), 57-65.
[http://dx.doi.org/10.1002/humu.22225] [PMID: 23033316]
[42]
Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 2015, 31(16), 2745-2747.
[http://dx.doi.org/10.1093/bioinformatics/btv195] [PMID: 25851949]
[43]
de Beer, T.A.; Laskowski, R.A.; Parks, S.L.; Sipos, B.; Goldman, N.; Thornton, J.M. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset. PLOS Comput. Biol., 2013, 9(12), e1003382.
[http://dx.doi.org/10.1371/journal.pcbi.1003382] [PMID: 24348229]
[44]
Popov, P.; Bizin, I.; Gromiha, M.A.K.; Frishman, D. Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure. PLoS One, 2019, 14(7), e0219452.
[http://dx.doi.org/10.1371/journal.pone.0219452] [PMID: 31291347]
[45]
Kulandaisamy, A.; Zaucha, J.; Sakthivel, R.; Frishman, D.; Michael Gromiha, M. Pred-MutHTP: Prediction of disease-causing and neutral mutations in human transmembrane proteins. Hum. Mutat., 2020, 41(3), 581-590.
[http://dx.doi.org/10.1002/humu.23961] [PMID: 31821684]
[46]
Pires, D.E.V.; Rodrigues, C.H.M.; Ascher, D.B. mCSM-membrane: Predicting the effects of mutations on transmembrane proteins. Nucleic Acids Res., 2020, 48(W1), W147-W153.
[http://dx.doi.org/10.1093/nar/gkaa416] [PMID: 32469063]
[47]
Ge, F.; Zhu, Y.H.; Xu, J.; Muhammad, A.; Song, J.; Yu, D.J. MutTMPredictor: Robust and accurate cascade XGBoost classifier for prediction of mutations in transmembrane proteins. Comput. Struct. Biotechnol. J., 2021, 19, 6400-6416.
[http://dx.doi.org/10.1016/j.csbj.2021.11.024] [PMID: 34938415]
[48]
Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 2012, 40, D109-D114.
[http://dx.doi.org/10.1093/nar/gkr988] [PMID: 22080510]
[49]
Hanson, R.M.; Prilusky, J.; Renjian, Z.; Nakane, T.; Sussman, J.L. JSmol and the next‐generation web‐based representation of 3D molecular structure as applied to proteopedia. IJ Chem., 2013, 53(3-4), 207-216.
[50]
Scheps, K.G.; Hasenahuer, M.A.; Parisi, G.; Targovnik, H.M.; Fornasari, M.S. Curating the gnomAD database: Report of novel variants in the globin-coding genes and bioinformatics analysis. Hum. Mutat., 2020, 41(1), 81-102.
[http://dx.doi.org/10.1002/humu.23925] [PMID: 31553106]
[51]
Stenson, P.D.; Mort, M.; Ball, E.V.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, D.S.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet., 2020, 139(10), 1197-1207.
[http://dx.doi.org/10.1007/s00439-020-02199-3] [PMID: 32596782]
[52]
Deber, C.M.; Wang, C.; Liu, L.P.; Prior, A.S.; Agrawal, S.; Muskat, B.L.; Cuticchia, A.J.T.M.T.M. Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci., 2001, 10(1), 212-219.
[http://dx.doi.org/10.1110/ps.30301] [PMID: 11266608]
[53]
Antonarakis, S.E.; Krawczak, M.; Cooper, D.N. Disease-causing mutations in the human genome. Eur. J. Pediatr., 2000, 159(Suppl. 3), S173-S178.
[http://dx.doi.org/10.1007/PL00014395] [PMID: 11216894]
[54]
Petukh, M.; Kucukkal, T.G.; Alexov, E. On human disease-causing amino acid variants: Statistical study of sequence and structural patterns. Hum. Mutat., 2015, 36(5), 524-534.
[http://dx.doi.org/10.1002/humu.22770] [PMID: 25689729]
[55]
Mrabet, N.T.; Van den Broeck, A. Van den brande, I.; Stanssens, P.; Laroche, Y.; Lambeir, A.M.; Matthijssens, G.; Jenkins, J.; Chiadmi, M.; van Tilbeurgh, H. Arginine residues as stabilizing elements in proteins. Biochemistry, 1992, 31(8), 2239-2253.
[http://dx.doi.org/10.1021/bi00123a005] [PMID: 1540579]
[56]
Borders, C.L., Jr; Broadwater, J.A.; Bekeny, P.A.; Salmon, J.E.; Lee, A.S.; Eldridge, A.M.; Pett, V.B. A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci., 1994, 3(4), 541-548.
[http://dx.doi.org/10.1002/pro.5560030402] [PMID: 8003972]
[57]
Kulandaisamy, A.; Lathi, V.; ViswaPoorani, K.; Yugandhar, K.; Gromiha, M.M Important amino acid residues involved in folding and binding of protein-protein complexes. Int. J. Biol. Macromol., 2017, 94(Pt A), 438-444.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.045] [PMID: 27765571]
[58]
Tokuriki, N.; Tawfik, D.S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol., 2009, 19(5), 596-604.
[http://dx.doi.org/10.1016/j.sbi.2009.08.003] [PMID: 19765975]
[59]
Tang, S.; Mikala, G.; Bahinski, A.; Yatani, A.; Varadi, G.; Schwartz, A. Molecular localization of ion selectivity sites within the pore of a human L-type cardiac Calcium channel. J. Biol. Chem., 1993, 268(18), 13026-13029.
[http://dx.doi.org/10.1016/S0021-9258(19)38613-2] [PMID: 8099908]
[60]
Colegio, O.R.; Van Itallie, C.M.; McCrea, H.J.; Rahner, C.; Anderson, J.M. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. Cell Physiol., 2002, 283(1), C142-C147.
[http://dx.doi.org/10.1152/ajpcell.00038.2002] [PMID: 12055082]
[61]
Wang, L. From protein sequence to structural instability and disease. In: Diss. Kemiska institutionen; Umeå University, Faculty of Science and Technology: Umeå, Sweden; , 2010.
[62]
Perocchi, F.; Gohil, V.M.; Girgis, H.S.; Bao, X.R.; McCombs, J.E.; Palmer, A.E.; Mootha, V.K. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature, 2010, 467(7313), 291-296.
[http://dx.doi.org/10.1038/nature09358] [PMID: 20693986]
[63]
Chen, Y.; Salem, R.M.; Rao, F.; Fung, M.M.; Bhatnagar, V.; Pandey, B.; Mahata, M.; Waalen, J.; Nievergelt, C.M.; Lipkowitz, M.S.; Hamilton, B.A.; Mahata, S.K.; O’Connor, D.T. Common charge-shift mutation Glu65Lys in K+ channel β₁-Subunit KCNMB1: Pleiotropic consequences for glomerular filtration rate and progressive renal disease. Am. J. Nephrol., 2010, 32(5), 414-424.
[http://dx.doi.org/10.1159/000320131] [PMID: 20861615]
[64]
Nishi, H.; Tyagi, M.; Teng, S.; Shoemaker, B.A.; Hashimoto, K.; Alexov, E.; Wuchty, S.; Panchenko, A.R. Cancer missense mutations alter binding properties of proteins and their interaction networks. PLoS One, 2013, 8(6), e66273.
[http://dx.doi.org/10.1371/journal.pone.0066273] [PMID: 23799087]
[65]
Murtazina, R.; Booth, B.J.; Bullis, B.L.; Singh, D.N.; Fliegel, L. Functional analysis of polar amino-acid residues in membrane associated regions of the NHE1 isoform of the mammalian Na+/H+ exchanger. Eur. J. Biochem., 2001, 268(17), 4674-4685.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02391.x] [PMID: 11532004]
[66]
Nicoll, D.A.; Hryshko, L.V.; Matsuoka, S.; Frank, J.S.; Philipson, K.D. Mutation of amino acid residues in the putative transmembrane segments of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem., 1996, 271(23), 13385-13391.
[http://dx.doi.org/10.1074/jbc.271.23.13385] [PMID: 8662775]
[67]
Senes, A.; Gerstein, M.; Engelman, D.M. Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. J. Mol. Biol., 2000, 296(3), 921-936.
[http://dx.doi.org/10.1006/jmbi.1999.3488] [PMID: 10677292]
[68]
North, B.; Cristian, L.; Fu Stowell, X.; Lear, J.D.; Saven, J.G.; Degrado, W.F. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides. J. Mol. Biol., 2006, 359(4), 930-939.
[http://dx.doi.org/10.1016/j.jmb.2006.04.001] [PMID: 16697010]
[69]
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor., 2009, 11(1), 10-18.
[http://dx.doi.org/10.1145/1656274.1656278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy