Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Recent Advances in Biological Active Sulfonamide based Hybrid Compounds Part B: Two-Component Sulfonamide Hybrids

Author(s): Shakila Ghomashi, Reihane Ghomashi, Hamidreza Aghaei and Ahmad Reza Massah*

Volume 30, Issue 5, 2023

Published on: 13 September, 2022

Page: [604 - 665] Pages: 62

DOI: 10.2174/0929867329666220722143547

Price: $65

Abstract

Sulfonamide compounds, also known as sulfa drugs, are a significant class of synthetic bacteriostatic antimicrobials and were the primary source of therapy against bacterial infections before the introduction of penicillin in 1941. Hybridization of sulfonamides with various pharmaceutically active heterocyclic moieties leads to sulfonamide hybrids with a wide variety of biological activities. Part B of this review presents the most recent advances in designing and developing more two-component sulfonamide hybrids containing triazole, thiadiazole, triazine, oxazole/ benzoxazole, isoxazole, oxadiazole, imidazole, benzimidazole, furan, benzofuran, thiophene, pyrrole, indazole, tetrazole, chromene/ chromone, pyridazine, quinoxaline, acridine, phthalazine, and xanthone between 2015 and 2020. We hope this review helps the scientific community in designing more useful sulfonamide hybrid drugs.

Keywords: Sulfonamides, two-component, hybrids, biological activity, bacteriostatic antimicrobials, hybridization.

« Previous
[1]
Tsukihara, H.; Nakagawa, F.; Sakamoto, K.; Ishida, K.; Tanaka, N.; Okabe, H.; Uchida, J.; Matsuo, K.; Takechi, T. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol. Rep., 2015, 33(5), 2135-2142.
[http://dx.doi.org/10.3892/or.2015.3876] [PMID: 25812794]
[2]
Otto, R.; Penzis, R.; Gaube, F.; Adolph, O.; Föhr, K.J.; Warncke, P.; Robaa, D.; Appenroth, D.; Fleck, C.; Enzensperger, C.; Lehmann, J.; Winckler, T. Evaluation of homobivalent carbolines as designed multiple ligands for the treatment of neurodegenerative disorders. J. Med. Chem., 2015, 58(16), 6710-6715.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00958] [PMID: 26278660]
[3]
Dasari, B.; Jimmidi, R.; Arya, P. Selected hybrid natural products as tubulin modulators. Eur. J. Med. Chem., 2015, 94, 497-508.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.062] [PMID: 25455639]
[4]
Kamath, P.R.; Sunil, D.; Ajees, A.A.; Pai, K.S.; Das, S. Some new indole-coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg. Chem., 2015, 63, 101-109.
[http://dx.doi.org/10.1016/j.bioorg.2015.10.001] [PMID: 26469742]
[5]
Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Pat. Anti-Cancer Drug Discov., 2016, 11(1), 67-97.
[http://dx.doi.org/10.2174/1574892810666151020101706] [PMID: 26537958]
[6]
Aldawsari, F.S.; Aguiar, R.P.; Wiirzler, L.A.M.; Aguayo-Ortiz, R.; Aljuhani, N.; Cuman, R.K.N.; Medina-Franco, J.L.; Siraki, A.G.; Velázquez-Martínez, C.A. Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog. Bioorg. Med. Chem. Lett., 2016, 26(5), 1411-1415.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.069] [PMID: 26850006]
[7]
Punganuru, S.R.; Madala, H.R.; Venugopal, S.N.; Samala, R.; Mikelis, C.; Srivenugopal, K.S. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur. J. Med. Chem., 2016, 107, 233-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.052] [PMID: 26599530]
[8]
Zha, X.; Lamba, D.; Zhang, L.; Lou, Y.; Xu, C.; Kang, D.; Chen, L.; Xu, Y.; Zhang, L.; De Simone, A.; Samez, S.; Pesaresi, A.; Stojan, J.; Lopez, M.G.; Egea, J.; Andrisano, V.; Bartolini, M. Novel tacrine–benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, and X-ray crystallography. J. Med. Chem., 2016, 59(1), 114-131.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01119] [PMID: 26632651]
[9]
Sugimoto, K.; Yajima, H.; Hayashi, Y.; Minato, D.; Terasaki, S.; Tohda, C.; Matsuya, Y. Synthesis of denosomin–vitamin D3 hybrids and evaluation of their anti-Alzheimer’s disease activities. Org. Lett., 2015, 17(23), 5910-5913.
[http://dx.doi.org/10.1021/acs.orglett.5b03138] [PMID: 26588585]
[10]
Shaabani, A.; Nazeri, M.T.; Afshari, R. 5-Amino-pyrazoles: Potent reagents in organic and medicinal synthesis. Mol. Divers., 2019, 23(3), 751-807.
[http://dx.doi.org/10.1007/s11030-018-9902-8] [PMID: 30552550]
[11]
Pingaew, R.; Prachayasittikul, V.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3472-3480.
[http://dx.doi.org/10.1016/j.bmc.2015.04.036] [PMID: 25934226]
[12]
Ghomashi, R.; Rabiei, M.; Ghomashi, S.; Massah, A.R.; Kolahdoozan, M.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Palevicius, A.; Nasiri, S.; Janusas, G. Synthesis and investigation of the theoretical and experimental optical properties of some novel azo pyrazole sulfonamide hybrids. Mater. Lett., 2022, 317, 132132.
[http://dx.doi.org/10.1016/j.matlet.2022.132132]
[13]
Maheswari, C.S.; Ramesh, R.; Lalitha, A. One-pot synthesis of symmetrical and unsymmetrical acridine sulfonamide derivatives catalyzed by p-TSA. Res. Chem. Intermed., 2017, 43(7), 4165-4173.
[http://dx.doi.org/10.1007/s11164-017-2870-2]
[14]
Massah, A.R.; Kazemi, F.; Azadi, D.; Farzaneh, S.; Aliyan, H.; Naghash, H.J.; Momeni, A. A mild and chemoselective solvent-free method for the synthesis of N-aryl and N-alkylsulfonamides. Lett. Org. Chem., 2006, 3(3), 235-241.
[http://dx.doi.org/10.2174/157017806775789886]
[15]
Ebrahimi, S.; Saiadi, S.; Dakhilpour, S.; Mirsattari, S.N.; Massah, A.R. N-Acyl-N-(4-chlorophenyl)-4-nitrobenzene-] sulfonamides: Highly selective and efficient reagents for acylation of amines in water. Z. Naturforsch. B. J. Chem. Sci., 2016, 71(2), 95-104.
[http://dx.doi.org/10.1515/znb-2015-0076]
[16]
Lin, J.; Zhou, S.; Xu, J-X.; Yao, W-Q.; Hao, G-F.; Li, Y-T. Design, synthesis, and structure–activity relationship of economical triazole sulfonamide aryl derivatives with high fungicidal activity. J. Agric. Food Chem., 2020, 68(25), 6792-6801.
[http://dx.doi.org/10.1021/acs.jafc.9b07887] [PMID: 32442369]
[17]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W-Y.; Qin, H-L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[18]
Rakesh, K.P.; Wang, S-M.; Leng, J.; Ravindar, L.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2018, 18(4), 488-505.
[http://dx.doi.org/10.2174/1871520617666171103140749] [PMID: 29110622]
[19]
Massah, A.R.; Dakhilpour, S.S.; Ebrahimi, S.; Naseri, S.; Nateghi, M. Mild and solvent-free synthesis and antibacterial evaluation of novel sulfonamides containing hydroxyl groups. Org. Chem. Res., 2019, 5(1), 25-31.
[20]
Kamal, A.; Swapna, P.; Shetti, R.V.; Shaik, A.B.; Narasimha Rao, M.P.; Gupta, S. Synthesis, biological evaluation of new oxazolidino-sulfonamides as potential antimicrobial agents. Eur. J. Med. Chem., 2013, 62, 661-669.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.034] [PMID: 23434639]
[21]
Esfahani, S.N.; Damavandi, M.S.; Sadeghi, P.; Nazifi, Z.; Salari-Jazi, A.; Massah, A.R. Synthesis of some novel coumarin isoxazol sulfonamide hybrid compounds, 3D-QSAR studies, and antibacterial evaluation. Sci. Rep., 2021, 11(1), 20088.
[http://dx.doi.org/10.1038/s41598-021-99618-w] [PMID: 34635732]
[22]
Bag, S.; Tulsan, R.; Sood, A.; Cho, H.; Redjeb, H.; Zhou, W.; LeVine, H., III; Török, B.; Török, M. Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(3), 626-630.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.006] [PMID: 25537270]
[23]
Abbas, A.; Murtaza, S.; Tahir, M.N.; Shamim, S.; Sirajuddin, M.; Rana, U.A.; Naseem, K.; Rafique, H. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide. J. Mol. Struct., 2016, 1117, 269-275.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.066]
[24]
Ning, X.; Guo, Y.; Ma, X.; Zhu, R.; Tian, C.; Zhang, Z.; Wang, X.; Ma, Z.; Liu, J. Design, synthesis and pharmacological evaluation of (E)-3,4-dihydroxy styryl sulfonamides derivatives as multifunctional neuroprotective agents against oxidative and inflammatory injury. Bioorg. Med. Chem., 2013, 21(17), 5589-5597.
[http://dx.doi.org/10.1016/j.bmc.2013.05.043] [PMID: 23870700]
[25]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Alam, M.S. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur. J. Med. Chem., 2011, 46(12), 5763-5768.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.015] [PMID: 22019186]
[26]
Ranjith, P.K.; Rajeesh, P.; Haridas, K.R.; Susanta, N.K.; Row, T.N.G.; Rishikesan, R.; Kumari, N.S. Design and synthesis of positional isomers of 5 and 6-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles as possible antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(18), 5228-5234.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.072] [PMID: 23942420]
[27]
Ganguly, A.K.; Alluri, S.S.; Wang, C-H.; Antropow, A.; White, A.; Caroccia, D.; Biswas, D.; Kang, E.; Zhang, L-K.; Carroll, S.S.; Burlein, C.; Fay, J.; Orth, P.; Strickland, C. Structural optimization of cyclic sulfonamide based novel HIV-1 protease inhibitors to picomolar affinities guided by X-ray crystallographic analysis. Tetrahedron, 2014, 70(18), 2894-2904.
[http://dx.doi.org/10.1016/j.tet.2014.03.038]
[28]
Follows, B.; Fessler, S.; Baumeister, T.; Campbell, A-M.; Zablocki, M.M.; Li, H.; Gotur, D.; Wang, Z.; Zheng, X.; Molz, L.; Nguyen, C.; Herbertz, T.; Wang, L.; Bair, K. Discovery of novel biaryl sulfonamide based Mcl-1 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(16), 2375-2382.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.008] [PMID: 31235261]
[29]
Li, Y.; Fan, W.; Gong, Q.; Tian, J.; Zhou, M.; Li, Q.; Uwituze, L.B.; Zhang, Z.; Hong, R.; Wang, R. Structure-based optimization of 3-phenyl-N-(2-(3-phenylureido) ethyl)thiophene-2-sulfonamide derivatives as selective Mcl-1 Inhibitors. J. Med. Chem., 2021, 64(14), 10260-10285.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00690] [PMID: 34228434]
[30]
Pesaran Seiied Bonakdar, A.; Vafaei, F.; Farokhpour, M.; Nasr Esfahani, M.H.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565-568.
[PMID: 28979310]
[31]
Supuran, C.T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev., 2003, 23(5), 535-558.
[http://dx.doi.org/10.1002/med.10047] [PMID: 12789686]
[32]
Yang, J.; Yang, S.; Zhou, S.; Lu, D.; Ji, L.; Li, Z.; Yu, S.; Meng, X. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents. Eur. J. Med. Chem., 2016, 122, 488-496.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.002] [PMID: 27423028]
[33]
Halawa, A.H.; Elgammal, W.E.; Hassan, S.M.; Hassan, A.H.; Nassar, H.S.; Ebrahim, H.Y.; Mehany, A.B.M.; El-Agrody, A.M. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg. Chem., 2020, 98, 103725.
[http://dx.doi.org/10.1016/j.bioorg.2020.103725] [PMID: 32199303]
[34]
Chavez Alvarez, A.C.; Zarifi Khosroshahi, M.; Côté, M-F.; Gagné-Boulet, M.; Fortin, S. 4-(3-Alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides as new antimitotic prodrugs activated by cytochrome P450 1A1 in breast cancer cells. Bioorg. Med. Chem., 2018, 26(18), 5045-5052.
[http://dx.doi.org/10.1016/j.bmc.2018.09.001] [PMID: 30201525]
[35]
Vullo, D.; De Luca, V.; Scozzafava, A.; Carginale, V.; Rossi, M.; Supuran, C.T.; Capasso, C. The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides. Bioorg. Med. Chem., 2013, 21(15), 4521-4525.
[http://dx.doi.org/10.1016/j.bmc.2013.05.042] [PMID: 23777827]
[36]
Mishra, C.B.; Tiwari, M.; Supuran, C.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med. Res. Rev., 2020, 40(6), 2485-2565.
[http://dx.doi.org/10.1002/med.21713] [PMID: 32691504]
[37]
Mujumdar, P.; Kopecka, J.; Bua, S.; Supuran, C.T.; Riganti, C.; Poulsen, S-A. Carbonic anhydrase XII inhibitors overcome temozolomide resistance in glioblastoma. J. Med. Chem., 2019, 62(8), 4174-4192.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00282] [PMID: 30925064]
[38]
Akocak, S.; Lolak, N.; Nocentini, A.; Karakoc, G.; Tufan, A.; Supuran, C.T. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors. Bioorg. Med. Chem., 2017, 25(12), 3093-3097.
[http://dx.doi.org/10.1016/j.bmc.2017.03.063] [PMID: 28400084]
[39]
Ahmed, M.; Qadir, M.A.; Hameed, A.; Arshad, M.N.; Asiri, A.M.; Muddassar, M. Sulfonamides containing curcumin scaffold: Synthesis, characterization, carbonic anhydrase inhibition and molecular docking studies. Bioorg. Chem., 2018, 76, 218-227.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.015] [PMID: 29190478]
[40]
Levin, J.I.; Chen, J.M.; Du, M.T.; Nelson, F.C.; Killar, L.M.; Skala, S.; Sung, A.; Jin, G.; Cowling, R.; Barone, D.; March, C.J.; Mohler, K.M.; Black, R.A.; Skotnicki, J.S. Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1′ group. Bioorg. Med. Chem. Lett., 2002, 12(8), 1199-1202.
[http://dx.doi.org/10.1016/S0960-894X(02)00136-1] [PMID: 11934588]
[41]
Kim, D-K.; Lee, J.Y.; Lee, N.; Ryu, D.H.; Kim, J.S.; Lee, S.; Choi, J.Y.; Ryu, J.H.; Kim, N.H. Im, G.J.; Choi, W.S.; Kim, T.K. Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5′-sulfonamide moiety of a phenyl ring. Bioorg. Med. Chem., 2001, 9(11), 3013-3021.
[http://dx.doi.org/10.1016/S0968-0896(01)00200-0] [PMID: 11597484]
[42]
Ghasemnejad-Berenji, M. Can sulfasalazine as an old drug with immunomodulatory and anti-inflammatory effects be effective in COVID-19? J. Basic Clin. Physiol. Pharmacol., 2021, 33(1), 113-115.
[http://dx.doi.org/10.1515/jbcpp-2021-0349] [PMID: 34855313]
[43]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[44]
Assali, M.; Abualhasan, M.; Sawaftah, H.; Hawash, M.; Mousa, A. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J. Chem., 2020, 2020, 6393428.
[http://dx.doi.org/10.1155/2020/6393428]
[45]
Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4(1), 571.
[http://dx.doi.org/10.1186/s40064-015-1352-5] [PMID: 26543706]
[46]
Swaroop, D.K.; Kumar, N.R.; Ratnakarreddy, K.; Raja, G.; Srigiridhar, K.; Poornachandra, Y.; Kumar, C.G.; Babu, N.J.; Kumar, G.S.; Narsaiah, B. Novel 1, 2, 3‐triazole‐functionalized 1, 2‐benzothiazine 1, 1‐dioxide derivatives: Regioselective synthesis, biological evaluation and docking studies. ChemistrySelect, 2018, 3(8), 2398-2403.
[http://dx.doi.org/10.1002/slct.201800072]
[47]
da Silva, V.D.; de Faria, B.M.; Colombo, E.; Ascari, L.; Freitas, G.P.A.; Flores, L.S.; Cordeiro, Y.; Romão, L.; Buarque, C.D. Design, synthesis, structural characterization and in vitro evaluation of new 1,4-disubstituted-1,2,3-triazole derivatives against glioblastoma cells. Bioorg. Chem., 2019, 83, 87-97.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.003] [PMID: 30343205]
[48]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K.; Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[49]
Khan, B.; Naiyer, A.; Athar, F.; Ali, S.; Thakur, S.C. Synthesis, characterization and anti-inflammatory activity evaluation of 1,2,4-triazole and its derivatives as a potential scaffold for the synthesis of drugs against prostaglandin-endoperoxide synthase. J. Biomol. Struct. Dyn., 2021, 39(2), 457-475.
[http://dx.doi.org/10.1080/07391102.2019.1711193] [PMID: 31900051]
[50]
Batra, N.; Rajendran, V.; Wadi, I.; Lathwal, A.; Dutta, R.K.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide‐appended [1, 2, 3]‐triazoles. J. Heterocycl. Chem., 2020, 57(4), 1625-1636.
[http://dx.doi.org/10.1002/jhet.3888]
[51]
Kaushik, C.; Chahal, M.; Luxmi, R.; Kumar, D.; Kumar, A.; Kumar, M.; Singh, D. Synthesis, characterization and biological activities of sulfonamide tagged 1, 2, 3-triazoles. Synth. Commun., 2020, 50(22), 3443-3461.
[http://dx.doi.org/10.1080/00397911.2020.1802758]
[52]
Kaushik, C.; Pahwa, A.; Kumar, A.; Singh, D.; Kumar, K. Facile synthesis, characterization, and antimicrobial studies of some disubstituted 1, 2, 3-triazoles with sulfonamide functionality. Synth. Commun., 2017, 47(16), 1485-1494.
[http://dx.doi.org/10.1080/00397911.2017.1333124]
[53]
Fu, D-J.; Liu, J-F.; Zhao, R-H.; Li, J-H.; Zhang, S-Y.; Zhang, Y-B. Design and antiproliferative evaluation of novel sulfanilamide derivatives as potential tubulin polymerization inhibitors. Molecules, 2017, 22(9), 1470.
[http://dx.doi.org/10.3390/molecules22091470] [PMID: 28872607]
[54]
Nocentini, A.; Ferraroni, M.; Carta, F.; Ceruso, M.; Gratteri, P.; Lanzi, C.; Masini, E.; Supuran, C.T. Benzenesulfonamides incorporating flexible triazole moieties are highly effective carbonic anhydrase inhibitors: Synthesis and kinetic, crystallographic, computational, and intraocular pressure lowering investigations. J. Med. Chem., 2016, 59(23), 10692-10704.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01389] [PMID: 27933963]
[55]
Aneja, B.; Queen, A.; Khan, P.; Shamsi, F.; Hussain, A.; Hasan, P.; Rizvi, M.M.A.; Daniliuc, C.G.; Alajmi, M.F.; Mohsin, M.; Hassan, M.I.; Abid, M. Design, synthesis & biological evaluation of ferulic acid-based small molecule inhibitors against tumor-associated carbonic anhydrase IX. Bioorg. Med. Chem., 2020, 28(9), 115424.
[http://dx.doi.org/10.1016/j.bmc.2020.115424] [PMID: 32209296]
[56]
Mareddy, J.; Suresh, N.; Kumar, C.G.; Kapavarapu, R.; Jayasree, A.; Pal, S. 1,2,3-Triazole-nimesulide hybrid: Their design, synthesis and evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.030] [PMID: 28011214]
[57]
Muhammad, Z.; Skagseth, S.; Boomgaren, M.; Akhter, S.; Fröhlich, C.; Ismael, A.; Christopeit, T.; Bayer, A.; Leiros, H.S. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Bioorg. Med. Chem., 2020, 28(15), 115598.
[http://dx.doi.org/10.1016/j.bmc.2020.115598] [PMID: 32631568]
[58]
Swain, B.; Angeli, A.; Angapelly, S.; Thacker, P.S.; Singh, P.; Supuran, C.T.; Arifuddin, M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1199-1209.
[http://dx.doi.org/10.1080/14756366.2019.1629432] [PMID: 31237458]
[59]
Jia, Y.; Li, M.; Cao, Y.; Feng, W.; Li, X.; Xue, W.; Shi, H. Discovery of a novel benzenesulfonamide analogue that inhibits proliferation and metastasis against ovarian cancer OVCAR-8 cells. Drug Des. Devel. Ther., 2020, 14, 207-216.
[http://dx.doi.org/10.2147/DDDT.S225201] [PMID: 32021105]
[60]
Reddy, N.V.; Narsimha, S.; Sudhakar, L.; Battula, K.S.; Althaf Hussain, S.N. N′-(hexane-1, 6-diyl) bis (N-((1-aryl/alkyl-1H-1, 2, 3-triazol-4-yl) methyl)-4-methyl benzenesulfonamide): Synthesis, antibacterial, antioxidant, and DNA-cleavage activities. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1118-1122.
[http://dx.doi.org/10.1080/10426507.2016.1146273]
[61]
Puratchikody, A.; Umamaheswari, A.; Irfan, N.; Sinha, S.; Manju, S.; Ramanan, M.; Ramamoorthy, G.; Doble, M. A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE 2 mediated anticancer properties. New J. Chem., 2019, 43(2), 834-846.
[http://dx.doi.org/10.1039/C8NJ04385J]
[62]
Bua, S.; Osman, S.M.; Del Prete, S.; Capasso, C.; AlOthman, Z.; Nocentini, A.; Supuran, C.T. Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholerae. Bioorg. Chem., 2019, 86, 183-186.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.065] [PMID: 30716618]
[63]
Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.; Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.; Maccari, L.; Maga, G.; Giannecchini, S.; Botta, M. DDX3X helicase inhibitors as a new strategy to fight the West Nile virus infection. J. Med. Chem., 2019, 62(5), 2333-2347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01403] [PMID: 30721061]
[64]
Fu, D-J.; Hou, Y-H.; Zhang, S-Y.; Zhang, Y-B. Efficient click reaction towards novel sulfonamide hybrids by molecular hybridization strategy as antiproliferative agents. J. Chem. Sci., 2018, 130(1), 1-7.
[http://dx.doi.org/10.1007/s12039-017-1415-y]
[65]
Kumar, R.; Vats, L.; Bua, S.; Supuran, C.T.; Sharma, P.K. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur. J. Med. Chem., 2018, 155, 545-551.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.021] [PMID: 29909339]
[66]
Kumar, R.; Sharma, V.; Bua, S.; Supuran, C.T.; Sharma, P.K. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1187-1194.
[http://dx.doi.org/10.1080/14756366.2017.1367775] [PMID: 28891338]
[67]
Vats, L.; Sharma, V.; Angeli, A.; Kumar, R.; Supuran, C.T.; Sharma, P.K. Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. Eur. J. Med. Chem., 2018, 150, 678-686.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.030] [PMID: 29571155]
[68]
Pala, N.; Esposito, F.; Rogolino, D.; Carcelli, M.; Sanna, V.; Palomba, M.; Naesens, L.; Corona, A.; Grandi, N.; Tramontano, E.; Sechi, M. Inhibitory effect of 2, 3, 5, 6-tetrafluoro-4-[4-(aryl)-1H-1, 2, 3-triazol-1-yl] benzenesulfonamide derivatives on HIV reverse transcriptase associated RNase H activities. Int. J. Mol. Sci., 2016, 17(8), 1371.
[http://dx.doi.org/10.3390/ijms17081371] [PMID: 27556447]
[69]
Said, M.A.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Fahim, S.H.; Bua, S.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2020, 185, 111843.
[http://dx.doi.org/10.1016/j.ejmech.2019.111843] [PMID: 31718943]
[70]
Liao, L.; Jiang, C.; Chen, J.; Shi, J.; Li, X.; Wang, Y.; Wen, J.; Zhou, S.; Liang, J.; Lao, Y.; Zhang, J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur. J. Med. Chem., 2020, 190, 112114.
[http://dx.doi.org/10.1016/j.ejmech.2020.112114] [PMID: 32061962]
[71]
Ibrahim, T.S.; Salem, I.M.; Mostafa, S.M.; El-Sabbagh, O.I.; ElKhamisi, M.K.M.; Hegazy, L.; Elgendy, B. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on bumetanide scaffold. Bioorg. Chem., 2020, 100, 103878.
[http://dx.doi.org/10.1016/j.bioorg.2020.103878] [PMID: 32361486]
[72]
Malebari, A.M.; Ibrahim, T.S.; Salem, I.M.; Salama, I.; Khayyat, A.N.; Mostafa, S.M.; El-Sabbagh, O.I.; Darwish, K.M. The anticancer activity for the bumetanide-based analogs via targeting the tumor-associated membrane-bound human carbonic anhydrase-IX enzyme. Pharmaceuticals (Basel), 2020, 13(9), 252.
[http://dx.doi.org/10.3390/ph13090252] [PMID: 32961906]
[73]
Başaran, E.; Karaküçük-Iyidoğan, A.; Schols, D.; Oruç-Emre, E.E. Synthesis of novel chiral sulfonamide-bearing 1,2,4-triazole-3-thione analogs derived from D- and L-phenylalanine esters as potential anti-influenza agents. Chirality, 2016, 28(6), 495-513.
[http://dx.doi.org/10.1002/chir.22607] [PMID: 27225330]
[74]
He, S-C.; Zhang, H-Z.; Zhang, H-J.; Sun, Q.; Zhou, C-H. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Med. Chem., 2020, 16(1), 104-118.
[http://dx.doi.org/10.2174/1573406414666181106124852] [PMID: 30398118]
[75]
Vats, L.; Kumar, R.; Bua, S.; Nocentini, A.; Gratteri, P.; Supuran, C.T.; Sharma, P.K. Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors. Eur. J. Med. Chem., 2019, 183, 111698.
[http://dx.doi.org/10.1016/j.ejmech.2019.111698] [PMID: 31539777]
[76]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575] [PMID: 27976971]
[77]
Li, Y.; Geng, J.; Liu, Y.; Yu, S.; Zhao, G. Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 2013, 8(1), 27-41.
[http://dx.doi.org/10.1002/cmdc.201200355] [PMID: 23208773]
[78]
Bhuva, H.; Sahu, D.; Shah, B.; Modi, D.C.; Patel, M.B. Biological profile of thiadiazole. Pharmacologyonline, 2011, 1, 528-543.
[79]
Wilkinson, B.L.; Bornaghi, L.F.; Houston, T.A.; Innocenti, A.; Vullo, D.; Supuran, C.T.; Poulsen, S-A. Carbonic anhydrase inhibitors: Inhibition of isozymes I, II, and IX with triazole-linked O-glycosides of benzene sulfonamides. J. Med. Chem., 2007, 50(7), 1651-1657.
[http://dx.doi.org/10.1021/jm061320h] [PMID: 17343373]
[80]
Chen, Z.; Xu, W.; Liu, K.; Yang, S.; Fan, H.; Bhadury, P.S.; Hu, D.Y.; Zhang, Y. Synthesis and antiviral activity of 5 (4 chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules, 2010, 15(12), 9046-9056.
[http://dx.doi.org/10.3390/molecules15129046] [PMID: 21150824]
[81]
Camoutsis, C.; Geronikaki, A.; Ciric, A.; Soković, M.; Zoumpoulakis, P.; Zervou, M. Sulfonamide-1,2,4-thiadiazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Chem. Pharm. Bull. (Tokyo), 2010, 58(2), 160-167.
[http://dx.doi.org/10.1248/cpb.58.160] [PMID: 20118573]
[82]
Jiang, C.; Shi, J.; Liao, L.; Zhang, L.; Liu, J.; Wang, Y.; Lao, Y.; Zhang, J. 5-[2-(N-(Substituted phenyl)acetamide)]amino-1,3,4-thiadiazole-2-sulfonamides as selective Carbonic Anhydrase II Inhibitors with neuroprotective effects. ChemMedChem, 2020, 15(8), 705-715.
[http://dx.doi.org/10.1002/cmdc.201900703] [PMID: 32141184]
[83]
Shafique, M.; Hameed, S.; Naseer, M.M.; Al-Masoudi, N.A. Synthesis of new chiral 1,3,4-thiadiazole-based di- and tri-arylsulfonamide residues and evaluation of in vitro anti-HIV activity and cytotoxicity. Mol. Divers., 2018, 22(4), 957-968.
[http://dx.doi.org/10.1007/s11030-018-9851-2] [PMID: 29968121]
[84]
Mishra, C.B.; Kumari, S.; Angeli, A.; Monti, S.M.; Buonanno, M.; Prakash, A.; Tiwari, M.; Supuran, C.T. Design, synthesis and biological evaluation of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphen-] ylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 2), 174-179.
[http://dx.doi.org/10.1080/14756366.2016.1197221] [PMID: 27314170]
[85]
Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Ibrahim, H.S.; Bua, S.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Supuran, C.T. Novel synthesized SLC-0111 thiazole and thiadiazole analogues: Determination of their carbonic anhydrase inhibitory activity and molecular modeling studies. Bioorg. Chem., 2019, 87, 794-802.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.002] [PMID: 30978604]
[86]
Karakuş, S.; Tok, F.; Türk, S.; Salva, E.; Tatar, G.; Taskın-Tok, T.; Kocyigit-Kaymakcıoglu, B. Synthesis, anticancer activity and ADMET studies of N-(5-methyl-1, 3, 4-thiadiazol-2-yl)-4-[(3-substituted) ureido/thioureido] benzenesulfonamide derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(8), 528-534.
[http://dx.doi.org/10.1080/10426507.2018.1452924]
[87]
Nocentini, A.; Vullo, D.; Bartolucci, G.; Supuran, C.T. N-Nitrosulfonamides: A new chemotype for carbonic anhydrase inhibition. Bioorg. Med. Chem., 2016, 24(16), 3612-3617.
[http://dx.doi.org/10.1016/j.bmc.2016.05.072] [PMID: 27290692]
[88]
Liu, H.; Long, S.; Rakesh, K.P.; Zha, G-F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem., 2020, 185, 111804.
[http://dx.doi.org/10.1016/j.ejmech.2019.111804] [PMID: 31675510]
[89]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur. J. Med. Chem., 2017, 142, 523-549.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.035] [PMID: 29046238]
[90]
Mibu, N.; Yokomizo, K.; Aki, H.; Ota, N.; Fujii, H.; Yuzuriha, A.; Saneyoshi, S.; Tanaka, A.; Koga, A.; Zhou, J.; Miyata, T.; Sumoto, K. Synthesis and antiviral evaluation of some C3-symmetrical trialkoxy-substituted 1, 3, 5-triazines and their molecular geometry. Chem. Pharm. Bull. (Tokyo), 2015, 63(11), 935-944.
[http://dx.doi.org/10.1248/cpb.c15-00309] [PMID: 26521858]
[91]
Mull, E.S.; Sun, L-Q.; Zhao, Q.; Eggers, B.; Pokornowski, K.; Zhai, G.; Rajamani, R.; Jenkins, S.; Kramer, M.; Wang, Y-K.; Fang, H.; Tenney, D.; Baldick, C.J.; Cockett, M.I.; Meanwell, N.A.; Scola, P.M. Functionalized triazines as potent HCV entry inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 1089-1093.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.038] [PMID: 28089701]
[92]
Patil, V.; Noonikara-Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Lewis, A.M.; Bugarin, A. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents. J. Mol. Struct., 2020, 1220, 128687.
[http://dx.doi.org/10.1016/j.molstruc.2020.128687]
[93]
Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2017, 125, 423-429.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.067] [PMID: 27689725]
[94]
Zhan, P.; Li, X.; Li, Z.; Chen, X.; Tian, Y.; Chen, W.; Liu, X.; Pannecouque, C.; De Clercq, E. Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs. Bioorg. Med. Chem. Lett., 2012, 22(23), 7155-7162.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.062] [PMID: 23084898]
[95]
Arshad, M.; Bhat, A.R.; Hoi, K.K.; Choi, I.; Athar, F. Synthesis, characterization and antibacterial screening of some novel 1,2,4-triazine derivatives. Chin. Chem. Lett., 2017, 28(7), 1559-1565.
[http://dx.doi.org/10.1016/j.cclet.2016.12.037]
[96]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem., 2017, 142, 328-375.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.009] [PMID: 28851503]
[97]
Garaj, V.; Puccetti, L.; Fasolis, G.; Winum, J-Y.; Montero, J-L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C.T. Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorg. Med. Chem. Lett., 2005, 15(12), 3102-3108.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.056] [PMID: 15905091]
[98]
Lolak, N.; Tuneğ, M.; Doğan, A.; Boğa, M.; Akocak, S. Synthesis and biological evaluation of 1, 3, 5-triazine-substituted ureido benzenesulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Rep., 2020, 3(2), 22-31.
[http://dx.doi.org/10.25135/acg.bmcr.22.20.07.1706]
[99]
Branowska, D.; Karczmarzyk, Z.; Wolińska, E.; Wysocki, W.; Morawiak, M.; Urbańczyk-Lipkowska, Z.; Bielawska, A.; Bielawski, K. 1, 2, 4-Triazine sulfonamides: Synthesis by sulfenamide intermediates, in vitro anticancer screening, structural characterization, and molecular docking study. Molecules, 2020, 25(10), 2324.
[http://dx.doi.org/10.3390/molecules25102324] [PMID: 32429377]
[100]
Havránková, E.; Csöllei, J.; Vullo, D.; Garaj, V.; Pazdera, P.; Supuran, C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem., 2018, 77, 25-37.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.034] [PMID: 29324250]
[101]
Mikuš, P.; Krajčiová, D.; Mikulová, M.; Horváth, B.; Pecher, D.; Garaj, V.; Bua, S.; Angeli, A.; Supuran, C.T. Novel sulfonamides incorporating 1,3,5-triazine and amino acid structural motifs as inhibitors of the physiological carbonic anhydrase isozymes I, II and IV and tumor-associated isozyme IX. Bioorg. Chem., 2018, 81, 241-252.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.005] [PMID: 30153589]
[102]
Żołnowska, B.; Sławiński, J.; Szafrański, K.; Angeli, A.; Supuran, C.T.; Kawiak, A.; Wieczór, M.; Zielińska, J.; Bączek, T.; Bartoszewska, S. Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies. Eur. J. Med. Chem., 2018, 143, 1931-1941.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.005] [PMID: 29146134]
[103]
Lolak, N.; Akocak, S.; Bua, S.; Supuran, C.T. Design, synthesis and biological evaluation of novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as potent carbonic anhydrase IX inhibitors. Bioorg. Chem., 2019, 82, 117-122.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.005] [PMID: 30312866]
[104]
Lolak, N.; Akocak, S.; Bua, S.; Sanku, R.K.K.; Supuran, C.T. Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1588-1594.
[http://dx.doi.org/10.1016/j.bmc.2019.03.001] [PMID: 30846402]
[105]
Lolak, N.; Akocak, S.; Türkeş, C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem., 2020, 100, 103897.
[http://dx.doi.org/10.1016/j.bioorg.2020.103897] [PMID: 32413628]
[106]
Lolak, N.; Boga, M.; Tuneg, M.; Karakoc, G.; Akocak, S.; Supuran, C.T. Sulphonamides incorporating 1,3,5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 424-431.
[http://dx.doi.org/10.1080/14756366.2019.1707196] [PMID: 31899985]
[107]
Mikulová, M.B.; Kružlicová, D.; Pecher, D.; Supuran, C.T.; Mikuš, P. Synthetic strategies and computational inhibition activity study for triazinyl-substituted benzenesulfonamide conjugates with polar and hydrophobic amino acids as inhibitors of carbonic anhydrases. Int. J. Mol. Sci., 2020, 21(10), 3661.
[http://dx.doi.org/10.3390/ijms21103661] [PMID: 32456080]
[108]
Żołnowska, B.; Sławiński, J.; Pogorzelska, A.; Szafrański, K.; Kawiak, A.; Stasiłojć, G.; Belka, M.; Ulenberg, S.; Bączek, T.; Chojnacki, J. Novel 5-Substituted 2-(Aylmethylthio)-4-chloro-N-(5-aryl-1, 2, 4-triazin-3-yl) benzenesulfonamides: Synthesis, molecular structure, anticancer activity, apoptosis-inducing activity and metabolic stability. Molecules, 2016, 21(6), 808.
[http://dx.doi.org/10.3390/molecules21060808] [PMID: 27338337]
[109]
Żołnowska, B.; Sławiński, J.; Pogorzelska, A.; Szafrański, K.; Kawiak, A.; Stasiłojć, G.; Belka, M.; Zielińska, J.; Bączek, T. Synthesis, QSAR studies, and metabolic stability of novel 2-alkylthio-4-chloro-N-(5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)benzenesulfonamide derivatives as potential anticancer and apoptosis-inducing agents. Chem. Biol. Drug Des., 2017, 90(3), 380-396.
[http://dx.doi.org/10.1111/cbdd.12955] [PMID: 28122174]
[110]
Zheng, X.; Liu, W.; Zhang, D. Recent advances in the synthesis of oxazole-based molecules via van leusen oxazole synthesis. Molecules, 2020, 25(7), 1594.
[http://dx.doi.org/10.3390/molecules25071594] [PMID: 32244317]
[111]
Zhang, H-Z.; Zhao, Z-L.; Zhou, C-H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[112]
Kachaeva, M.V.; Pilyo, S.G.; Hartline, C.B.; Harden, E.A.; Prichard, M.N.; Zhirnov, V.V.; Brovarets, V.S. In vitro activity of novel derivatives of 1, 3-oxazole-4-carboxylate and 1, 3-oxazole-4-carbonitrile against human cytomegalovirus. Med. Chem. Res., 2019, 28(8), 1205-1211.
[http://dx.doi.org/10.1007/s00044-019-02365-x]
[113]
Riadi, Y.; Ouerghi, O.; Kaiba, A.; Guionneau, P. Efficient novel eutectic-mixture-mediated synthesis of benzoxazole-linked pyrrolidin-2-one heterocycles. J. Mol. Liq., 2021, 323, 115011.
[http://dx.doi.org/10.1016/j.molliq.2020.115011]
[114]
Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem., 2020, 94, 103382.
[http://dx.doi.org/10.1016/j.bioorg.2019.103382] [PMID: 31662214]
[115]
Kachaeva, M.; Pilyo, S.; Demydchuk, B.; Prokopenko, V.; Zhirnov, V.; Brovarets, V. 4-Cyano-1, 3-oxazole-5-sulfonamides as novel promising anticancer lead compounds. Int. J. Curr. Res., 2018, 10(5), 69410-69425.
[116]
Kalinin, S.; Valtari, A.; Ruponen, M.; Toropainen, E.; Kovalenko, A.; Nocentini, A.; Gureev, M.; Dar’in, D.; Urtti, A.; Supuran, C.T.; Krasavin, M. Highly hydrophilic 1,3-oxazol-5-yl benzenesulfonamide inhibitors of carbonic anhydrase II for reduction of glaucoma-related intraocular pressure. Bioorg. Med. Chem., 2019, 27(21), 115086.
[http://dx.doi.org/10.1016/j.bmc.2019.115086] [PMID: 31515057]
[117]
Oksuzoglu, E.; Ertan-Bolelli, T.; Can, H.; Tarhan, M.; Ozturk, K.; Yildiz, I. Antitumor activities on HL-60 human leukemia cell line, molecular docking, and quantum-chemical calculations of some sulfonamide-benzoxazoles. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1388-1396.
[http://dx.doi.org/10.1080/21691401.2016.1241796] [PMID: 27829297]
[118]
Chundawat, N.S.; Shanbhag, G.S.; Chauhan, N.P.S. Chemical synthesis and molecular modeling of novel substituted N-1, 3-benzoxazol-2yl benzene sulfonamides as inhibitors of inh A enzyme and Mycobacterium tuberculosis growth. J. Iran. Chem. Soc., 2021, 18(4), 903-920.
[http://dx.doi.org/10.1007/s13738-020-02080-0]
[119]
Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem., 2018, 74, 294-303.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.006] [PMID: 29698921]
[120]
Kachaeva, M.V.; Hodyna, D.M.; Obernikhina, N.V.; Pilyo, S.G.; Kovalenko, Y.S.; Prokopenko, V.M.; Kachkovsky, O.D.; Brovarets, V.S. Dependence of the anticancer activity of 1, 3‐oxazole derivatives on the donor/acceptor nature of his substitues. J. Heterocycl. Chem., 2019, 56(11), 3122-3134.
[http://dx.doi.org/10.1002/jhet.3711]
[121]
Rawle, D.J.; Li, D.; Wu, Z.; Wang, L.; Choong, M.; Lor, M.; Reid, R.C.; Fairlie, D.P.; Harris, J.; Tachedjian, G.; Poulsen, S.A.; Harrich, D. Oxazole-benzenesulfonamide derivatives inhibit HIV-1 reverse transcriptase interaction with cellular eEF1A and reduce viral replication. J. Virol., 2019, 93(12), e00239-e00219.
[http://dx.doi.org/10.1128/JVI.00239-19] [PMID: 30918071]
[122]
Ertan-Bolelli, T.; Yildiz, I.; Ozgen-Ozgacar, S. Synthesis, molecular docking and antimicrobial evaluation of novel benzoxazole derivatives. Med. Chem. Res., 2016, 25(4), 553-567.
[http://dx.doi.org/10.1007/s00044-015-1499-1]
[123]
Youseflouei, N.; Alizadeh, S.; Masoudi-Khoram, M.; Nematollahi, D.; Alizadeh, H. A comprehensive electrochemical study of 2-mercaptobenzoheterocyclic derivatives. Air-assisted electrochemical synthesis of new sulfonamide derivatives. Electrochim. Acta, 2020, 353, 136451.
[http://dx.doi.org/10.1016/j.electacta.2020.136451]
[124]
Zhu, J.; Mo, J.; Lin, H.Z.; Chen, Y.; Sun, H.P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem., 2018, 26(12), 3065-3075.
[http://dx.doi.org/10.1016/j.bmc.2018.05.013] [PMID: 29853341]
[125]
Sowmya, D.V.; Lakshmi Teja, G.; Padmaja, A.; Kamala Prasad, V.; Padmavathi, V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem., 2018, 143, 891-898.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.093] [PMID: 29227929]
[126]
Sysak, A.; Obmińska-Mrukowicz, B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem., 2017, 137, 292-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.002] [PMID: 28605676]
[127]
Altug, C.; Güneş, H.; Nocentini, A.; Monti, S.M.; Buonanno, M.; Supuran, C.T. Synthesis of isoxazole-containing sulfonamides with potent carbonic anhydrase II and VII inhibitory properties. Bioorg. Med. Chem., 2017, 25(4), 1456-1464.
[http://dx.doi.org/10.1016/j.bmc.2017.01.008] [PMID: 28111158]
[128]
Arshad, M. Synthesis, characterization, and antimicrobial assessment of some computationally bioactive 1, 2-oxazole derivatives. Russ. J. Gen. Chem., 2018, 88(9), 1886-1891.
[http://dx.doi.org/10.1134/S1070363218090207]
[129]
Loh, B.; Vozzolo, L.; Mok, B.J.; Lee, C.C.; Fitzmaurice, R.J.; Caddick, S.; Fassati, A. Inhibition of HIV-1 replication by isoxazolidine and isoxazole sulfonamides. Chem. Biol. Drug Des., 2010, 75(5), 461-474.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00956.x] [PMID: 20486932]
[130]
Fahim, A.M.; Shalaby, M.A. Synthesis, biological evaluation, molecular docking and DFT calculations of novel benzenesulfonamide derivatives. J. Mol. Struct., 2019, 1176, 408-421.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.087]
[131]
da Rosa, R.; Zimmermann, L.A.; de Moraes, M.H.; Schneider, N.F.Z.; Schappo, A.D.; Simões, C.M.O.; Steindel, M.; Schenkel, E.P.; Bernardes, L.S.C. Synthesis and biological evaluation of isoxazolyl-sulfonamides: A non-cytotoxic scaffold active against Trypanosoma cruzi, Leishmania amazonensis and Herpes Simplex Virus. Bioorg. Med. Chem. Lett., 2018, 28(20), 3381-3384.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.040] [PMID: 30194008]
[132]
Krátký, M.; Mandíková, J.; Trejtnar, F.; Buchta, V.; Stolaříková, J.; Vinšová, J. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones. Chem. Pap., 2015, 69(8), 1108-1117.
[http://dx.doi.org/10.1515/chempap-2015-0109]
[133]
Vaidya, A.; Pathak, D.; Shah, K. 1,3,4-oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chem. Biol. Drug Des., 2021, 97(3), 572-591.
[http://dx.doi.org/10.1111/cbdd.13795] [PMID: 32946168]
[134]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1, 3, 4-oxadiazole. Molecules, 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[135]
Kashid, B.B.; Salunkhe, P.H.; Dongare, B.B.; More, K.R.; Khedkar, V.M.; Ghanwat, A.A. Synthesis of novel of 2, 5-disubstituted 1, 3, 4- oxadiazole derivatives and their in vitro anti-inflammatory, anti-oxidant evaluation, and molecular docking study. Bioorg. Med. Chem. Lett., 2020, 30(12), 127136.
[http://dx.doi.org/10.1016/j.bmcl.2020.127136] [PMID: 32280025]
[136]
Gobec, M.; Tomašič, T.; Markovič, T.; Mlinarič-Raščan, I.; Dolenc, M.S.; Jakopin, Ž. Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol. Chem. Biol. Interact., 2015, 240, 200-207.
[http://dx.doi.org/10.1016/j.cbi.2015.08.018] [PMID: 26335192]
[137]
Ambhore, A.N.; Kamble, S.S.; Kadam, S.N.; Kamble, R.D.; Hebade, M.J.; Hese, S.V.; Gaikwad, M.V.; Meshram, R.J.; Gacche, R.N.; Dawane, B.S. Design, synthesis and in silico study of pyridine based 1,3,4-oxadiazole embedded hydrazinecarbothioamide derivatives as potent anti-tubercular agent. Comput. Biol. Chem., 2019, 80, 54-65.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.03.002] [PMID: 30901601]
[138]
Rehman, A.; Nafeesa, K.; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Shah, S.A.A.; Ashraf, M. Synthesis of new heterocyclic 3-piperidinyl-1, 3, 4-oxadiazole derivatives as potential drug candidate for the treatment of Alzheimer’s disease. Cogent Chem., 2018, 4(1), 1472197.
[http://dx.doi.org/10.1080/23312009.2018.1472197]
[139]
Song, X.; Sun, P.; Wang, J.; Guo, W.; Wang, Y.; Meng, L.H.; Liu, H. Design, synthesis, and biological evaluation of 1,2,5-oxadiazole-3-carboximidamide derivatives as novel indoleamine-2,3-dioxygenase 1 inhibitors. Eur. J. Med. Chem., 2020, 189, 112059.
[http://dx.doi.org/10.1016/j.ejmech.2020.112059] [PMID: 31981851]
[140]
Zareef, M.; Iqbal, R.; Al-Masoudi, N.A.; Zaidi, J.H.; Arfan, M.; Shahzad, S.A. Synthesis, anti–HIV, and antifungal activity of new benzensulfonamides bearing the 2, 5-disubstituted-1, 3, 4-oxadiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(2), 281-298.
[http://dx.doi.org/10.1080/10426500600919074]
[141]
Sattar, A.; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Ahmad, I. Synthesis of some novel enzyme inhibitors and antibacterial agents derived from 5-(1-(4-tosyl) piperidin-4-yl)-1, 3, 4-oxadiazol-2-thiol. Braz. J. Pharm. Sci., 2016, 52(1), 77-85.
[http://dx.doi.org/10.1590/S1984-82502016000100009]
[142]
Sattar, A.; Abbasi, M.; Siddiqi, S.; Nafeesa, K.; Ahmad, I. Synthesis and antibacterial study of some s-substituted aliphatic analogues of 2-mercapto-5-(1-(4-toluenesulfonyl) piperidin-4-yl)-1, 3, 4-oxadiazole. Trop. J. Pharm. Res., 2016, 15(6), 1267-1274.
[http://dx.doi.org/10.4314/tjpr.v15i6.20]
[143]
Ahtzaz, S.; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Ahmad, I. Synthesis, spectral analysis and antibacterial evaluation of 5-substituted-1, 3, 4-oxadiazol-2-yl 4-(4-methylpiperidin-1-ylsulfonyl) benzyl sulfides. J. Chil. Chem. Soc., 2017, 62(1), 3370-3375.
[http://dx.doi.org/10.4067/S0717-97072017000100013]
[144]
Kavitha, S.; Nasarullah, Z.; Kannan, K. Synthesis and biological evaluation of sulfonamide-based 1, 3, 4-oxadiazole derivatives. Bull. Chem. Soc. Ethiop., 2019, 33(2), 307-319.
[http://dx.doi.org/10.4314/bcse.v33i2.11]
[145]
Sławiński, J.; Szafrański, K.; Pogorzelska, A.; Żołnowska, B.; Kawiak, A.; Macur, K.; Belka, M.; Bączek, T. Novel 2-benzylthio-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamides with anticancer activity: Synthesis, QSAR study, and metabolic stability. Eur. J. Med. Chem., 2017, 132, 236-248.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.039] [PMID: 28364658]
[146]
Krasavin, M.; Shetnev, A.; Sharonova, T.; Baykov, S.; Tuccinardi, T.; Kalinin, S.; Angeli, A.; Supuran, C.T. Heterocyclic periphery in the design of carbonic anhydrase inhibitors: 1,2,4-Oxadiazol-5-yl benzenesulfonamides as potent and selective inhibitors of cytosolic hCA II and membrane-bound hCA IX isoforms. Bioorg. Chem., 2018, 76, 88-97.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.005] [PMID: 29153590]
[147]
Kavitha, S.; Kannan, K.; Gnanavel, S. Synthesis, characterization and biological evaluation of novel 2,5 substituted-1,3,4 oxadiazole derivatives. Saudi Pharm. J., 2017, 25(3), 337-345.
[http://dx.doi.org/10.1016/j.jsps.2016.07.004] [PMID: 28344487]
[148]
Bianco, G.; Meleddu, R.; Distinto, S.; Cottiglia, F.; Gaspari, M.; Melis, C.; Corona, A.; Angius, R.; Angeli, A.; Taverna, D.; Alcaro, S.; Leitans, J.; Kazaks, A.; Tars, K.; Supuran, C.T.; Maccioni, E. N-Acylbenzenesulfonamide dihydro-1, 3, 4-oxadiazole hybrids: Seeking selectivity toward carbonic anhydrase isoforms. ACS Med. Chem. Lett., 2017, 8(8), 792-796.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00205] [PMID: 28835790]
[149]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C-H. Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety. Eur. J. Med. Chem., 2015, 90, 45-52.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.011] [PMID: 25461310]
[150]
Javid, N.; Munir, R.; Chaudhry, F.; Imran, A.; Zaib, S.; Muzaffar, A.; Iqbal, J. Exploiting oxadiazole-sulfonamide hybrids as new structural leads to combat diabetic complications via aldose reductase inhibition. Bioorg. Chem., 2020, 99, 103852.
[http://dx.doi.org/10.1016/j.bioorg.2020.103852] [PMID: 32325339]
[151]
Liu, C.; Nan, Y.; Xia, Z.; Gu, K.; Chen, C.; Dong, X.; Ju, D.; Zhao, W. Discovery of novel hydroxyamidine derivatives as indoleamine 2,3-dioxygenase 1 inhibitors with in vivo anti-tumor efficacy. Bioorg. Med. Chem. Lett., 2020, 30(8), 127038.
[http://dx.doi.org/10.1016/j.bmcl.2020.127038] [PMID: 32088128]
[152]
Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.058] [PMID: 27156770]
[153]
Salem, I.M.; Mostafa, S.M.; El-Sabbag, O.I.; Ibrahim, T.S.; Abdulrahmanf, A.; Bendary, M.M. Synthesis and antimicrobial evaluation of novel hydrazones and 1, 3, 4-oxadiazoles incorporating bumetanide derivatives. Rec. Pharm. Biomed. Sci., 2018, 2(2), 52-66.
[http://dx.doi.org/10.21608/rpbs.2018.23373]
[154]
Sharma, V.; Kumar, R.; Angeli, A.; Supuran, C.T.; Sharma, P.K. Tail approach synthesis of novel benzenesulfonamides incorporating 1,3,4-oxadiazole hybrids as potent inhibitor of carbonic anhydrase I, II, IX, and XII isoenzymes. Eur. J. Med. Chem., 2020, 193, 112219.
[http://dx.doi.org/10.1016/j.ejmech.2020.112219] [PMID: 32203788]
[155]
Shetnev, A.; Shlenev, R.; Efimova, J.; Ivanovskii, S.; Tarasov, A.; Petzer, A.; Petzer, J.P. 1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B. Bioorg. Med. Chem. Lett., 2019, 29(21), 126677.
[http://dx.doi.org/10.1016/j.bmcl.2019.126677] [PMID: 31537422]
[156]
Taha, M.; Baharudin, M.S.; Ismail, N.H.; Selvaraj, M.; Salar, U.; Alkadi, K.A.; Khan, K.M. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors. Bioorg. Chem., 2017, 71, 86-96.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.015] [PMID: 28160943]
[157]
Bhargavi, M.V.; Shashikala, P.; Sumakanth, M.; Krishna, C. Synthesis, molecular docking, analgesic, and anti-inflammatory activities of new 1, 2, 4-oxadiazolo-sulfonamides. Russ. J. Gen. Chem., 2018, 88(4), 804-811.
[http://dx.doi.org/10.1134/S1070363218040278]
[158]
Yang, C.; Feng, Y.; Yang, X.; Sun, M.; Li, Z.; Liu, X.; Lu, L.; Sun, X.; Zhang, J.; He, X. Synthesis and evaluation of 4-(1,3,4-oxadiazol-2-yl)-benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(2), 126874.
[http://dx.doi.org/10.1016/j.bmcl.2019.126874] [PMID: 31859159]
[159]
Angapelly, S.; Ramya, P.V.S.; Sodhi, R.; Angeli, A.; Rangan, K.; Nagesh, N.; Supuran, C.T.; Arifuddin, M. Iodine-mediated one-pot intramolecular decarboxylation domino reaction for accessing functionalised 2-(1,3,4-oxadiazol-2-yl)anilines with carbonic anhydrase inhibitory action. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 615-628.
[http://dx.doi.org/10.1080/14756366.2018.1443447] [PMID: 29536768]
[160]
Padmaja, A.; Pedamalakondaiah, D.; Sravya, G.; Reddy, G.M.; Kumar, M.V.J. Synthesis and antioxidant activity of a new class of sulfone/sulfonamide-linked bis(oxadiazoles), bis(thiadiazoles), and bis(triazoles). Med. Chem. Res., 2015, 24(5), 2011-2020.
[http://dx.doi.org/10.1007/s00044-014-1277-5]
[161]
Hossain, M.; Nanda, A.K. A review on heterocyclic: Synthesis and their application in medicinal chemistry of imidazole moiety. Sci. J. Chem., 2018, 6(5), 83.
[http://dx.doi.org/10.11648/j.sjc.20180605.12]
[162]
Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and its biological activities: A review. Chem. Sin., 2010, 1(3), 36-47.
[163]
Fan, Y-L.; Jin, X-H.; Huang, Z-P.; Yu, H-F.; Zeng, Z-G.; Gao, T.; Feng, L-S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[164]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G] [PMID: 30108886]
[165]
Al-Mohammed, N.N.; Alias, Y.; Abdullah, Z.; Shakir, R.M.; Taha, E.M.; Hamid, A.A. Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules, 2013, 18(10), 11978-11995.
[http://dx.doi.org/10.3390/molecules181011978] [PMID: 24077176]
[166]
Dende, S.K.; Korupolu, R.B.; Leleti, K.R. Design and synthesis of sulfonamide‐attached 2‐(isoxazol‐3‐yl)‐1H‐imidazoles as anticancer agents. ChemistrySelect, 2020, 5(26), 7919-7922.
[http://dx.doi.org/10.1002/slct.202001449]
[167]
Tugrak, M.; Gul, H.I.; Demir, Y.; Levent, S.; Gulcin, I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Arch. Pharm. (Weinheim), 2021, 354(4), e2000375.
[http://dx.doi.org/10.1002/ardp.202000375] [PMID: 33283898]
[168]
Shablykin, O.; Kornii, Y.; Dyakonenko, V.; Shablykina, O.; Brovarets, V. Synthesis and anticancer activity of new substituted imidazolidinone sulfonamides. Curr. Chem. Lett., 2019, 8(4), 199-210.
[http://dx.doi.org/10.5267/j.ccl.2019.5.003]
[169]
Metwally, N.H.; Mohamed, M.S. New imidazolone derivatives comprising a benzoate or sulfonamide moiety as anti-inflammatory and antibacterial inhibitors: Design, synthesis, selective COX-2, DHFR and molecular-modeling study. Bioorg. Chem., 2020, 99, 103438.
[http://dx.doi.org/10.1016/j.bioorg.2019.103438] [PMID: 31796216]
[170]
Aspatwar, A.; Parvathaneni, N.K.; Barker, H.; Anduran, E.; Supuran, C.T.; Dubois, L.; Lambin, P.; Parkkila, S.; Winum, J-Y. Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 109-117.
[http://dx.doi.org/10.1080/14756366.2019.1685510] [PMID: 31687859]
[171]
Abdul Qadir, M.; Ahmed, M.; Iqbal, M. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs. BioMed Res. Int., 2015, 2015, 938486.
[http://dx.doi.org/10.1155/2015/938486] [PMID: 25802872]
[172]
De Vita, D.; Angeli, A.; Pandolfi, F.; Bortolami, M.; Costi, R.; Di Santo, R.; Suffredini, E.; Ceruso, M.; Del Prete, S.; Capasso, C.; Scipione, L.; Supuran, C.T. Inhibition of the α-carbonic anhydrase from Vibrio cholerae with amides and sulfonamides incorporating imidazole moieties. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 798-804.
[http://dx.doi.org/10.1080/14756366.2017.1327522] [PMID: 28569564]
[173]
Georgey, H.H.; Manhi, F.M.; Mahmoud, W.R.; Mohamed, N.A.; Berrino, E.; Supuran, C.T. 1,2,4-Trisubstituted imidazolinones with dual carbonic anhydrase and p38 mitogen-activated protein kinase inhibitory activity. Bioorg. Chem., 2019, 82, 109-116.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.037] [PMID: 30312865]
[174]
Anduran, E.; Aspatwar, A.; Parvathaneni, N-K.; Suylen, D.; Bua, S.; Nocentini, A.; Parkkila, S.; Supuran, C.T.; Dubois, L.; Lambin, P.; Winum, J.Y. Hypoxia-activated prodrug derivatives of carbonic anhydrase inhibitors in benzenesulfonamide series: Synthesis and biological evaluation. Molecules, 2020, 25(10), 2347.
[http://dx.doi.org/10.3390/molecules25102347] [PMID: 32443462]
[175]
Allam, H.A.; Fahim, S.H.F.; Abo-Ashour, M.; Nocentini, A.; Elbakry, M.E.; Abdelrahman, M.A.; Eldehna, W.M.; Ibrahim, H.S.; Supuran, C.T. Application of hydrazino and hydrazido linkers to connect benzenesulfonamides with hydrophilic/phobic tails for targeting the middle region of human carbonic anhydrases active site: Selective inhibitors of hCA IX. Eur. J. Med. Chem., 2019, 179, 547-556.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.081] [PMID: 31276899]
[176]
Supuran, C.T.; Kalinin, S.; Tanç, M.; Sarnpitak, P.; Mujumdar, P.; Poulsen, S-A.; Krasavin, M. Isoform-selective inhibitory profile of 2-imidazoline-substituted benzene sulfonamides against a panel of human carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2016, 31(Sup. 1), 197-202.
[http://dx.doi.org/10.1080/14756366.2016.1178248] [PMID: 27160030]
[177]
Zhang, H-Z.; Jeyakkumar, P.; Kumar, K.V.; Zhou, C-H. Synthesis of novel sulfonamide azoles via C–N cleavage of sulfonamides by azole ring and relational antimicrobial study. New J. Chem., 2015, 39(7), 5776-5796.
[http://dx.doi.org/10.1039/C4NJ01932F]
[178]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole‐based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[179]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[180]
Singh, N.; Pandurangan, A.; Rana, K.; Anand, P.; Ahamad, A.; Tiwari, A.K. Benzimidazole: A short review of their antimicrobial activities. Int. Curr. Pharm. J., 2012, 1(5), 110-118.
[http://dx.doi.org/10.3329/icpj.v1i5.10284]
[181]
El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur. J. Med. Chem., 2017, 137, 439-449.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[182]
Zhang, H-Z.; He, S-C.; Peng, Y-J.; Zhang, H-J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L-L.; Zhou, C-H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[183]
Rouffet, M.; de Oliveira, C.A.F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J.A.; Cohen, S.M. From sensors to silencers: Quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. J. Am. Chem. Soc., 2010, 132(24), 8232-8233.
[http://dx.doi.org/10.1021/ja101088j] [PMID: 20507095]
[184]
Zubrienė, A.; Čapkauskaitė, E.; Gylytė, J.; Kišonaitė, M.; Tumkevičius, S.; Matulis, D. Benzenesulfonamides with benzimidazole moieties as inhibitors of carbonic anhydrases I, II, VII, XII and XIII. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 124-131.
[http://dx.doi.org/10.3109/14756366.2012.757223] [PMID: 23356363]
[185]
Čapkauskaitė, E.; Zakšauskas, A.; Ruibys, V.; Linkuvienė, V.; Paketurytė, V.; Gedgaudas, M.; Kairys, V.; Matulis, D. Benzimidazole design, synthesis, and docking to build selective carbonic anhydrase VA inhibitors. Bioorg. Med. Chem., 2018, 26(3), 675-687.
[http://dx.doi.org/10.1016/j.bmc.2017.12.035] [PMID: 29305297]
[186]
Singh, S. 3D-QSAR CoMFA Studies on benzenesulfonamides with benzimidazole moieties as inhibitors of carbonic anhydrases XII as antitumor agents. Curr. Enzym. Inhib., 2019, 15(1), 69-77.
[http://dx.doi.org/10.2174/1573408015666190402100338]
[187]
Milite, C.; Amendola, G.; Nocentini, A.; Bua, S.; Cipriano, A.; Barresi, E.; Feoli, A.; Novellino, E.; Da Settimo, F.; Supuran, C.T.; Castellano, S.; Cosconati, S.; Taliani, S. Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1697-1710.
[http://dx.doi.org/10.1080/14756366.2019.1666836] [PMID: 31537132]
[188]
Čapkauskaitė, E.; Linkuvienė, V.; Smirnov, A.; Milinavičiūtė, G.; Timm, D.D.; Kasiliauskaitė, A.; Manakova, E.; Gražulis, S.; Matulis, D. Combinatorial design of isoform‐selective N‐alkylated benzimidazole‐based inhibitors of carbonic anhydrases. ChemistrySelect, 2017, 2(19), 5360-5371.
[http://dx.doi.org/10.1002/slct.201700531]
[189]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015] [PMID: 29778528]
[190]
Ma, T.; Huang, M.; Li, A.; Zhao, F.; Li, D.; Liu, D.; Zhao, L. Design, synthesis and biological evaluation of benzimidazole derivatives as novel human Pin1 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(14), 1859-1863.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.045] [PMID: 31103446]
[191]
Gao, Q.L.; Wu, B.W.; Li, D.; Shi, L.; Zhu, T.; Lou, J.F.; Jin, C.Y.; Zhang, Y.B.; Zhang, S.Y.; Liu, H.M. Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. Eur. J. Med. Chem., 2019, 183, 111731.
[http://dx.doi.org/10.1016/j.ejmech.2019.111731] [PMID: 31577977]
[192]
Sharma, R.; Bali, A.; Chaudhari, B.B. Synthesis of methanesulphonamido-benzimidazole derivatives as gastro-sparing anti-inflammatory agents with antioxidant effect. Bioorg. Med. Chem. Lett., 2017, 27(13), 3007-3013.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.017] [PMID: 28512025]
[193]
Singh, A.; Srivastava, R.; Singh, R.K. Design, synthesis, and antibacterial activities of novel heterocyclic arylsulphonamide derivatives. Interdiscip. Sci., 2018, 10(4), 748-761.
[http://dx.doi.org/10.1007/s12539-016-0207-2] [PMID: 28194576]
[194]
Banerjee, R.; Kumar, H.; Banerjee, M. Medicinal significance of furan derivatives: A review. Int. J. Res. Phytochem. Pharmacol., 2015, 5(3), 48-57.
[195]
Zeni, G.; Lüdtke, D.S.; Nogueira, C.W.; Panatieri, R.B.; Braga, A.L.; Silveira, C.C.; Stefani, H.A.; Rocha, J.B.T. New acetylenic furan derivatives: Synthesis and anti-inflammatory activity. Tetrahedron Lett., 2001, 42(51), 8927-8930.
[http://dx.doi.org/10.1016/S0040-4039(01)01984-0]
[196]
Malladi, S.; Nadh, R.V.; Babu, K.S.; Babu, P.S. Synthesis and antibacterial activity studies of 2, 4-di substituted furan derivatives. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(4), 345-353.
[http://dx.doi.org/10.1016/j.bjbas.2017.08.001]
[197]
Desmukh, S.; Pawar, C.D.; Pansare, D.N.; Chavan, S.L.; Pawar, R.; Ubale, M. synthesis and antimicrobial screening of 5-(substituted phenyl)-N-(2-oxo-2-(substituted phenyl) ethyl)-N-methylfuran-2-sulfonamide derivatives. Eur. Chem. Bull., 2019, 8(4), 115-122.
[http://dx.doi.org/10.17628/ecb.2019.8.115-122]
[198]
Purna Chander Rao, G.; Ramesh, V.; Ramachandran, D.; Kalyan Chakravarthy, A. Design, synthesis and anticancer evaluation of novel furan sulphonamide derivatives. Russ. J. Gen. Chem., 2019, 89(3), 486-491.
[http://dx.doi.org/10.1134/S1070363219030204]
[199]
Celebioglu, H.U.; Erden, Y.; Hamurcu, F.; Taslimi, P.; Şentürk, O.S.; Özmen, Ü.Ö.; Tuzun, B.; Gulçin, İ. Cytotoxic effects, carbonic anhydrase isoenzymes, α-glycosidase and acetylcholinesterase inhibitory properties, and molecular docking studies of heteroatom-containing sulfonyl hydrazone derivatives. J. Biomol. Struct. Dyn., 2021, 39(15), 5539-5550.
[http://dx.doi.org/10.1080/07391102.2020.1792345] [PMID: 32691677]
[200]
Meena, L.R.; Sharma, V.S.; Swarnkar, P. Synthesis and biological activity of novel sulfonamides derivatives of various heterocyclic compounds. World Sci. News, 2020, 142, 120-134.
[201]
Gündüzalp, A.B.; Parlakgümüş, G.; Uzun, D.; Özmen, Ü.Ö.; Özbek, N.; Sarı, M.; Tunç, T. Carbonic anhydrase inhibitors: Synthesis, characterization and inhibition activities of furan sulfonylhydrazones against carbonic anhydrase I (hCA I). J. Mol. Struct., 2016, 1105, 332-340.
[http://dx.doi.org/10.1016/j.molstruc.2015.10.054]
[202]
Nevagi, R.J.; Dighe, S.N.; Dighe, S.N. Biological and medicinal significance of benzofuran. Eur. J. Med. Chem., 2015, 97, 561-581.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.085] [PMID: 26015069]
[203]
Dawood, K.M. An update on benzofuran inhibitors: A patent review. Expert Opin. Ther. Pat., 2019, 29(11), 841-870.
[http://dx.doi.org/10.1080/13543776.2019.1673727] [PMID: 31560232]
[204]
Chand, K. Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295.
[http://dx.doi.org/10.1016/j.pharep.2016.11.007] [PMID: 28171830]
[205]
Napiórkowska, M.; Cieślak, M.; Kaźmierczak-Barańska, J.; Królewska-Golińska, K.; Nawrot, B. Synthesis of new derivatives of benzofuran as potential anticancer agents. Molecules, 2019, 24(8), E1529.
[http://dx.doi.org/10.3390/molecules24081529] [PMID: 31003438]
[206]
Mao, Z-W.; Zheng, X.; Lin, Y-P.; Hu, C-Y.; Wang, X-L.; Wan, C-P.; Rao, G-X. Design, synthesis and anticancer activity of novel hybrid compounds between benzofuran and N-aryl piperazine. Bioorg. Med. Chem. Lett., 2016, 26(15), 3421-3424.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.055] [PMID: 27371110]
[207]
Yadav, P.; Singh, P.; Tewari, A.K. Design, synthesis, docking and anti-inflammatory evaluation of novel series of benzofuran based prodrugs. Bioorg. Med. Chem. Lett., 2014, 24(10), 2251-2255.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.087] [PMID: 24745964]
[208]
Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem., 2019, 162, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.025] [PMID: 30448416]
[209]
Abdelrahman, M.A.; Eldehna, W.M.; Nocentini, A.; Ibrahim, H.S.; Almahli, H.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Supuran, C.T. Novel benzofuran-based sulphonamides as selective carbonic anhydrases IX and XII inhibitors: Synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 298-305.
[http://dx.doi.org/10.1080/14756366.2019.1697250] [PMID: 31809607]
[210]
El-Gaby, M.S.; Hassan, M.I.; Hussein, M.F.; Ali, A.M.; Elaasser, M.M.; Faraghally, F.A. Synthesis, characterization and in vitro biological screening of 4-hydroxy naphthalen-1-yl, naphtho [1, 2-b] furan, benzo [h] chromene and 5, 6-dihydropyridazine derivatives containing sulfonamide moiety. Mediterr. J. Chem., 2018, 7(5), 346-358.
[http://dx.doi.org/10.13171/mjc751912061355msaeg]
[211]
Wei, J.; Yang, Y.; Li, Y.; Mo, X.; Guo, X.; Zhang, X.; Xu, X.; Jiang, Z.; You, Q. Synthesis and evaluation of N-(benzofuran-5-yl)aromaticsulfonamide derivatives as novel HIF-1 inhibitors that possess anti-angiogenic potential. Bioorg. Med. Chem., 2017, 25(6), 1737-1746.
[http://dx.doi.org/10.1016/j.bmc.2016.06.021] [PMID: 28209257]
[212]
Thompson, J.C.; Dao, W.T.; Ku, A.; Rodriguez-Beltran, S.L.; Amezcua, M.; Palomino, A.Y.; Lien, T.; Salzameda, N.T. Synthesis and activity of isoleucine sulfonamide derivatives as novel botulinum neurotoxin serotype A light chain inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115659.
[http://dx.doi.org/10.1016/j.bmc.2020.115659] [PMID: 32828426]
[213]
Kawai, T.; Kazuhiko, I.; Takaya, N.; Yamaguchi, Y.; Kishii, R.; Kohno, Y.; Kurasaki, H. Sulfonamide-based non-alkyne LpxC inhibitors as Gram-negative antibacterial agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1045-1049.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.059] [PMID: 28082037]
[214]
Jernigan, F.E.; Hanai, J.I.; Sukhatme, V.P.; Sun, L. Discovery of furan carboxylate derivatives as novel inhibitors of ATP-citrate lyase via virtual high-throughput screening. Bioorg. Med. Chem. Lett., 2017, 27(4), 929-935.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.001] [PMID: 28129980]
[215]
Al-Harbi, S.A.; Bashandy, M.S. Synthesis, antimicrobial and antihuman liver cancer activities of novel sulfonamides incorporating benzofuran, pyrazole, pyrimidine, 1, 4-diazepine and pyridine moieties prepared from (E)-4-(3-(dimethylamino) acryloyl)-N-ethyl-N-methylbenzenesulfo-] namide. Heterocycles, 2015, 91(10), 1905-1925.
[http://dx.doi.org/10.3987/COM-15-13281]
[216]
Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 137.
[http://dx.doi.org/10.1186/s13065-018-0511-5] [PMID: 30564984]
[217]
Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene scaffold as prospective antimicrobial agent: A review. J. Heterocycl. Chem., 2018, 55(9), 2019-2034.
[http://dx.doi.org/10.1002/jhet.3249]
[218]
Shah, R.; Verma, P.K. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem., 2019, 13(1), 54.
[http://dx.doi.org/10.1186/s13065-019-0569-8] [PMID: 31384802]
[219]
Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça, Junior, F.J.B.; de Lima, M.D.C.A.; Pitta, M.G.D.R.; Pitta, I.D.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2018, 29(2), 157-166.
[http://dx.doi.org/10.1097/CAD.0000000000000581] [PMID: 29256900]
[220]
Caridha, D.; Kathcart, A.K.; Jirage, D.; Waters, N.C. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg. Med. Chem. Lett., 2010, 20(13), 3863-3867.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.039] [PMID: 20627564]
[221]
Martone, R.L.; Zhou, H.; Atchison, K.; Comery, T.; Xu, J.Z.; Huang, X.; Gong, X.; Jin, M.; Kreft, A.; Harrison, B.; Mayer, S.C.; Aschmies, S.; Gonzales, C.; Zaleska, M.M.; Riddell, D.R.; Wagner, E.; Lu, P.; Sun, S.C.; Sonnenberg-Reines, J.; Oganesian, A.; Adkins, K.; Leach, M.W.; Clarke, D.W.; Huryn, D.; Abou-Gharbia, M.; Magolda, R.; Bard, J.; Frick, G.; Raje, S.; Forlow, S.B.; Balliet, C.; Burczynski, M.E.; Reinhart, P.H.; Wan, H.I.; Pangalos, M.N.; Jacobsen, J.S. Begacestat (GSI-953): A novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2009, 331(2), 598-608.
[http://dx.doi.org/10.1124/jpet.109.152975] [PMID: 19671883]
[222]
Noreen, M.; Rasool, N.; Gull, Y.; Zahoor, A.F.; Yaqoob, A.; Kousar, S.; Zubair, M.; Bukhari, I.H.; Rana, U.A. A facile synthesis of new 5-aryl-thiophenes bearing sulfonamide moiety via Pd (0)-catalyzed Suzuki–Miyaura cross coupling reactions and 5-bromothiophene-2-acetamide: As potent urease inhibitor, antibacterial agent and hemolytically active compounds. J. Saudi Chem. Soc., 2017, 21, S403-S414.
[http://dx.doi.org/10.1016/j.jscs.2014.04.007]
[223]
Fadda, A.A.; El-badraw, A.M.; Refat, H.M.; Abdel-Latif, E. Synthesis of some new 2-substituted-4-sulfamoylphe-] nylazo-thiophene and/or thiazole derivatives as antibacterial agents. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(5), 778-785.
[http://dx.doi.org/10.1080/10426507.2015.1100183]
[224]
Alım, Z.; Köksal, Z.; Karaman, M. Evaluation of some thiophene-based sulfonamides as potent inhibitors of carbonic anhydrase I and II isoenzymes isolated from human erythrocytes by kinetic and molecular modelling studies. Pharmacol. Rep., 2020, 72(6), 1738-1748.
[http://dx.doi.org/10.1007/s43440-020-00149-4] [PMID: 32748253]
[225]
Abdelsamie, A.S.; Bey, E.; Gargano, E.M.; van Koppen, C.J.; Empting, M.; Frotscher, M. Towards the evaluation in an animal disease model: Fluorinated 17β-HSD1 inhibitors showing strong activity towards both the human and the rat enzyme. Eur. J. Med. Chem., 2015, 103, 56-68.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.030] [PMID: 26322835]
[226]
Noreen, M.; Rasool, N.; Gull, Y.; Zubair, M.; Mahmood, T.; Ayub, K.; Nasim, F.U.; Yaqoob, A.; Zia-Ul-Haq, M.; de Feo, V. Synthesis, density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties. Molecules, 2015, 20(11), 19914-19928.
[http://dx.doi.org/10.3390/molecules201119661] [PMID: 26556326]
[227]
Debbabi, K.F.; Al-Harbi, S.A.; Al-Saidi, H.M.; Aljuhani, E.H.; Abd El-Gilil, S.M.; Bashandy, M.S. Study of reactivity of cyanoacetohydrazonoethyl-N-ethyl-N-methyl benzenesulfonamide: Preparation of novel anticancer and antimicrobial active heterocyclic benzenesulfonamide derivatives and their molecular docking against dihydrofolate reductase. J. Enzyme Inhib. Med. Chem., 2016, 31(sup4), 7-19.
[http://dx.doi.org/10.1080/14756366.2016.1217851] [PMID: 27557134]
[228]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Gazzar, M.G.; Zahran, S.S. Synthesis, anticancer and radiosensitizing evaluation of some novel sulfonamide derivatives. Eur. J. Med. Chem., 2015, 92, 682-692.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.036] [PMID: 25618015]
[229]
Ivanova, J.; Balode, A.; Žalubovskis, R.; Leitans, J.; Kazaks, A.; Vullo, D.; Tars, K.; Supuran, C.T. 5-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: Solution and crystallographic investigations. Bioorg. Med. Chem., 2017, 25(3), 857-863.
[http://dx.doi.org/10.1016/j.bmc.2016.11.045] [PMID: 28024887]
[230]
Toth, P.M.; Lieber, S.; Scheer, F.M.; Schumann, T.; Schober, Y.; Nockher, W.A.; Adhikary, T.; Müller-Brüsselbach, S.; Müller, R.; Diederich, W.E. Design and synthesis of highly active peroxisome proliferator‐activated receptor (PPAR) β/δ inverse agonists with prolonged cellular activity. ChemMedChem, 2016, 11(5), 488-496.
[http://dx.doi.org/10.1002/cmdc.201500594] [PMID: 26864558]
[231]
Yu, Y. Tazeem; Xu, Z.; Du, L.; Jin, M.; Dong, C.; Zhou, H.B.; Wu, S. Design and synthesis of heteroaromatic-based benzenesulfonamide derivatives as potent inhibitors of H5N1 influenza A virus. MedChemComm, 2018, 10(1), 89-100.
[http://dx.doi.org/10.1039/C8MD00474A] [PMID: 31559005]
[232]
Yu, Y.; Tang, Q.; Xu, Z.; Li, S.; Jin, M.; Zhao, Z.; Dong, C.; Wu, S.; Zhou, H-B. Synthesis and structure-activity relationship study of arylsulfonamides as novel potent H5N1 inhibitors. Eur. J. Med. Chem., 2018, 159, 206-216.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.065] [PMID: 30292897]
[233]
Elgaher, W.A.; Sharma, K.K.; Haupenthal, J.; Saladini, F.; Pires, M.; Real, E.; Mély, Y.; Hartmann, R.W. Discovery and structure-based optimization of 2-ureidothiophene-3-carboxylic acids as dual bacterial RNA polymerase and viral reverse transcriptase inhibitors. J. Med. Chem., 2016, 59(15), 7212-7222.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00730] [PMID: 27339173]
[234]
El‐Mekabaty, A.; Awad, H.M. Convenient synthesis of novel sulfonamide derivatives as promising anticancer agents. J. Heterocycl. Chem., 2020, 57(3), 1123-1132.
[http://dx.doi.org/10.1002/jhet.3849]
[235]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[236]
Idhayadhulla, A.; Kumar, R.S.; Nasser, A.A.; Manilal, A. Synthesis and antimicrobial activity of some new pyrrole derivatives. Bull. Chem. Soc. Ethiop., 2012, 26(3), 429-435.
[http://dx.doi.org/10.4314/bcse.v26i3.12]
[237]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208, 112783-112783.
[http://dx.doi.org/10.1016/j.ejmech.2020.112783] [PMID: 32916311]
[238]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G. Synthesis of novel pyrrole and pyrrolo[2,3-d]pyrimidine derivatives bearing sulfonamide moiety for evaluation as anticancer and radiosensitizing agents. Bioorg. Med. Chem. Lett., 2010, 20(21), 6316-6320.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.005] [PMID: 20850308]
[239]
Mohamed, M.-A.; Mohamed, Y.; Eid, N.M.; Barsoum, F.F. Synthesis and biological evaluation of some heterocyclic compounds. J. Appl. Pharm. Res., 2018, 6(2), 01-15.
[240]
Ghorab, M.M.; Ceruso, M.; Alsaid, M.S.; Nissan, Y.M.; Arafa, R.K.; Supuran, C.T. Novel sulfonamides bearing pyrrole and pyrrolopyrimidine moieties as carbonic anhydrase inhibitors: Synthesis, cytotoxic activity and molecular modeling. Eur. J. Med. Chem., 2014, 87, 186-196.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.059] [PMID: 25255434]
[241]
Khalil, O.M.; Kamal, A.M.; Bua, S.; El Sayed Teba, H.; Nissan, Y.M.; Supuran, C.T. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur. J. Med. Chem., 2020, 188, 112021.
[http://dx.doi.org/10.1016/j.ejmech.2019.112021] [PMID: 31901743]
[242]
Niknam, K.; Bavadi, M.; Mojikhalifeh, S.; Shahraki, O. A clean synthesis of 2, 5-dihydro-1 H-pyrrole-2-carboxylates under catalyst-free and solvent-free conditions: Cytotoxicity and molecular docking studies. J. Iran. Chem. Soc., 2018, 15(7), 1613-1623.
[http://dx.doi.org/10.1007/s13738-018-1359-2]
[243]
Firke, S.D.; Bari, S.B. Synthesis, biological evaluation and docking study of maleimide derivatives bearing benzenesulfonamide as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Med. Chem., 2015, 23(17), 5273-5281.
[http://dx.doi.org/10.1016/j.bmc.2015.07.070] [PMID: 26277757]
[244]
Balandis, B.; Ivanauskaitė, G.; Smirnovienė, J.; Kantminienė, K.; Matulis, D.; Mickevičius, V.; Zubrienė, A. Synthesis and structure-affinity relationship of chlorinated pyrrolidinone-bearing benzenesulfonamides as human carbonic anhydrase inhibitors. Bioorg. Chem., 2020, 97, 103658.
[http://dx.doi.org/10.1016/j.bioorg.2020.103658] [PMID: 32088419]
[245]
Bavadi, M.; Niknam, K.; Gharibi, M. Synthesis of new dihydropyrrol-2-one derivatives bearing sulfonamide groups and studies their antibacterial activity. Monatsh. Chem., 2017, 148(6), 1025-1034.
[http://dx.doi.org/10.1007/s00706-016-1847-y]
[246]
Yuan, X.; Lu, P.; Xue, X.; Qin, H.; Fan, C.; Wang, Y.; Zhang, Q. Discovery of 2-azetidinone and 1H-pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain as potential cholesterol absorption inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 849-853.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.077] [PMID: 26783178]
[247]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[248]
Denya, I.; Malan, S.F.; Joubert, J. Indazole derivatives and their therapeutic applications: A patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(6), 441-453.
[http://dx.doi.org/10.1080/13543776.2018.1472240] [PMID: 29718740]
[249]
Cheekavolu, C.; Muniappan, M. In vivo and in vitro anti-inflammatory activity of indazole and its derivatives. J. Clin. Diagn. Res., 2016, 10(9), FF01-FF06.
[http://dx.doi.org/10.7860/JCDR/2016/19338.8465] [PMID: 27790461]
[250]
Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292]
[251]
Sapnakumari, M.; Narayana, B.; Sarojini, B.K.; Madhu, L.N. Synthesis of new indazole derivatives as potential antioxidant agents. Med. Chem. Res., 2014, 23(5), 2368-2376.
[http://dx.doi.org/10.1007/s00044-013-0835-6]
[252]
Wan, Y.; Li, Y.; Yan, C.; Wen, J.; Tang, Z. Discovery of novel indazole-acylsulfonamide hybrids as selective Mcl-1 inhibitors. Bioorg. Chem., 2020, 104, 104217.
[http://dx.doi.org/10.1016/j.bioorg.2020.104217] [PMID: 32911192]
[253]
Kumar, K.; Vedavathi, P.; Kotakadi, V.S.; Reddy, D.; Raju, C. Design, synthesis, spectral characterization and bioactivity evaluation of new sulfonamide and carbamate derivatives of 5-Nitro-1H-indazole. Org. Commun., 2017, 10(3), 239-249.
[http://dx.doi.org/10.25135/acg.oc.24.17.05.023]
[254]
Althaus, J.; Hake, T.; Hanekamp, W.; Lehr, M. 1-(5- Carboxyindazol-1-yl)propan-2-ones as dual inhibitors of cytosolic phospholipase A2α and fatty acid amide hydrolase: Bioisosteric replacement of the carboxylic acid moiety. J. Enzyme Inhib. Med. Chem., 2016, 31(Sup. 1), 131-140.
[http://dx.doi.org/10.1080/14756366.2016.1178246] [PMID: 27162011]
[255]
Wells, C.; Couñago, R.M.; Limas, J.C.; Almeida, T.L.; Cook, J.G.; Drewry, D.H.; Elkins, J.M.; Gileadi, O.; Kapadia, N.R.; Lorente-Macias, A.; Pickett, J.E.; Riemen, A.; Ruela-de-Sousa, R.R.; Willson, T.M.; Zhang, C.; Zuercher, W.J.; Zutshi, R.; Axtman, A.D. SGC-AAK1-1: A chemical probe targeting AAK1 and BMP2K. ACS Med. Chem. Lett., 2019, 11(3), 340-345.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00399] [PMID: 32184967]
[256]
Crocetti, L.; Giovannoni, M.P.; Cantini, N.; Guerrini, G.; Vergelli, C.; Schepetkin, I.A.; Khlebnikov, A.I.; Quinn, M.T. Novel sulfonamide analogs of sivelestat as potent human neutrophil elastase inhibitors. Front Chem., 2020, 8, 795.
[http://dx.doi.org/10.3389/fchem.2020.00795] [PMID: 33033716]
[257]
Chang, C-F.; Lin, W-H.; Ke, Y-Y.; Lin, Y-S.; Wang, W-C.; Chen, C-H.; Kuo, P-C.; Hsu, J.T.A.; Uang, B-J.; Hsieh, H-P. Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design. Eur. J. Med. Chem., 2016, 124, 186-199.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.026] [PMID: 27573544]
[258]
Bassou, O.; Chicha, H.; Allam, A.; Monticone, M.; Gangemi, R.; Maric, I.; Viale, M.; Rakib, E.M. Synthesis and anti‐proliferative activity of novel polysubstitued indazole derivatives. J. Heterocycl. Chem., 2019, 56(1), 343-348.
[http://dx.doi.org/10.1002/jhet.3408]
[259]
Gao, C.; Chang, L.; Xu, Z.; Yan, X-F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L-S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[260]
Wang, S-Q.; Wang, Y-F.; Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[261]
Labib, M.B.; Fayez, A.M.; El-Nahass, E.S.; Awadallah, M.; Halim, P.A. Novel tetrazole-based selective COX-2 inhibitors: Design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. Bioorg. Chem., 2020, 104, 104308.
[http://dx.doi.org/10.1016/j.bioorg.2020.104308] [PMID: 33011534]
[262]
Suresh, A.; Suresh, N.; Misra, S.; Kumar, M.M.K.; Sekhar, K.V.G.C. Design, synthesis and biological evaluation of new substituted sulfonamide tetrazole derivatives as antitubercular agents. ChemistrySelect, 2016, 1(8), 1705-1710.
[http://dx.doi.org/10.1002/slct.201600286]
[263]
Siles, R.; Kawasaki, Y.; Ross, P.; Freire, E. Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases. Bioorg. Med. Chem. Lett., 2011, 21(18), 5305-5309.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.023] [PMID: 21807511]
[264]
Yıldırır, Y.; Us, M.; Colak, N.; Özkan, H.; Yavuz, S.; Disli, A.; Ozturk, S.; Turker, L. The synthesis and investigation of the antimicrobial activity of some new phenylselanyl-1-(toluene-4-sulfonyl)-1H-tetrazole derivatives. Med. Chem. Res., 2009, 18(2), 91-97.
[http://dx.doi.org/10.1007/s00044-008-9110-7]
[265]
Esirden, İ.; Tanç, M.; Supuran, C.T.; Kaya, M. Microwave assisted synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene skeletons as inhibitors of the carbonic anhydrases isoforms I, II, IV and VII. Bioorg. Med. Chem. Lett., 2017, 27(1), 86-89.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.028] [PMID: 27876475]
[266]
Jawabrah Al-Hourani, B.; El-Barghouthi, M.I.; McDonald, R.; Al-Awaida, W.; Sharma, S.K.; Wuest, F. Synthesis and crystal structure of N-[(dimethylamino)methylidene]-4-[1-(4-nitrophenyl)-1H-tetrazol-5-yl]-benzenesulfonamide: Molecular docking and bioassay studies as cyclooxygenase-2 inhibitor. J. Mol. Struct., 2016, 1119, 220-226.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.071]
[267]
Akram, T.; Abbasi, M.A.; Mahmood, A.; de Lima, E.B.; Perveen, F.; Ashraf, M.; Ahmad, I.; Goumri-Said, S. Synthesis, molecular structure, spectroscopic properties and biological evaluation of 4-substituted-N-(1H-tetrazol-5-yl) benzenesulfonamides: Combined experimental, DFT and docking study. J. Mol. Struct., 2019, 1195, 119-130.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.065]
[268]
Jawabrah Al-Hourani, B.; Al-Awaida, W.; Matalka, K.Z.; El-Barghouthi, M.I.; Alsoubani, F.; Wuest, F. Structure-activity relationship of novel series of 1,5-disubstituted tetrazoles as cyclooxygenase-2 inhibitors: Design, synthesis, bioassay screening and molecular docking studies. Bioorg. Med. Chem. Lett., 2016, 26(19), 4757-4762.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.034] [PMID: 27567369]
[269]
Lin, S-Y.; Yeh, T-K.; Song, J-S.; Hung, M-S.; Cheng, M-F.; Liao, F-Y.; Li, A-S.; Cheng, S-Y.; Lin, L-M.; Chiu, C-H.; Wu, M.H.; Lin, Y.J.; Hsiao, W.; Sun, M.; Wang, Y.H.; Huang, C.H.; Tang, Y.C.; Chang, H.H.; Huang, Z.T.; Chao, Y.S.; Shih, C.; Pan, S.L.; Wu, S.Y.; Kuo, C.C.; Ueng, S.H. 4-Bromophenylhydrazinyl benzenesulfonylphenylureas as indoleamine 2,3-dioxygenase inhibitors with in vivo target inhibition and anti-tumor efficacy. Bioorg. Chem., 2018, 77, 600-607.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.010] [PMID: 29494816]
[270]
Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: Design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 805-820.
[http://dx.doi.org/10.1080/14756366.2017.1326110] [PMID: 28587532]
[271]
Okasha, R.M.; Alsehli, M.; Ihmaid, S.; Althagfan, S.S.; El-Gaby, M.S.A.; Ahmed, H.E.A.; Afifi, T.H. First example of Azo-Sulfa conjugated chromene moieties: Synthesis, characterization, antimicrobial assessment, docking simulation as potent class I histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2019, 92, 103262.
[http://dx.doi.org/10.1016/j.bioorg.2019.103262] [PMID: 31518757]
[272]
Nawaz, M.; Abbasi, M.W.; Hisaindee, S. Synthesis, characterization, anti-bacterial, anti-fungal and nematicidal activities of 2-amino-3-cyanochromenes. J. Photochem. Photobiol. B, 2016, 164, 160-163.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.09.032] [PMID: 27689740]
[273]
Kumar, M.; Jeyachandran, V. Antioxidant actions of amino chromene products with alkyl tail: Synthesis and characterisation. Int. J. Mod. Agric., 2020, 9(4), 1054-1058.
[274]
Qiang, D.; Shi, J.B.; Song, B.A.; Liu, X.H. Novel 2 H-chromen derivatives: Design, synthesis and anticancer activity. RSC Advances, 2014, 4(11), 5607-5617.
[http://dx.doi.org/10.1039/c3ra47252c]
[275]
Reis, J.; Gaspar, A.; Milhazes, N.; Borges, F. Chromone as a privileged scaffold in drug discovery: Recent advances. J. Med. Chem., 2017, 60(19), 7941-7957.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01720] [PMID: 28537720]
[276]
Duan, Y.D.; Jiang, Y.Y.; Guo, F.X.; Chen, L.X.; Xu, L.L.; Zhang, W.; Liu, B. The antitumor activity of naturally occurring chromones: A review. Fitoterapia, 2019, 135, 114-129.
[http://dx.doi.org/10.1016/j.fitote.2019.04.012] [PMID: 31029639]
[277]
Liu, Q.; Qiang, X.; Li, Y.; Sang, Z.; Li, Y.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of chromone-2-carboxamido-alkylbenzylamines as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(5), 911-923.
[http://dx.doi.org/10.1016/j.bmc.2015.01.042] [PMID: 25678013]
[278]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Shinde, D.B.; Kathwate, S.H.; Gill, C.H. Novel o‐alkylated chromones as antimicrobial agents: Ultrasound mediated synthesis, molecular docking and ADME prediction. J. Heterocycl. Chem., 2017, 54(5), 2678-2685.
[http://dx.doi.org/10.1002/jhet.2868]
[279]
Ghorab, M.M.; Alsaid, M.S.; Al-Ansary, G.H.; Abdel-Latif, G.A.; Abou El Ella, D.A. Analogue based drug design, synthesis, molecular docking and anticancer evaluation of novel chromene sulfonamide hybrids as aromatase inhibitors and apoptosis enhancers. Eur. J. Med. Chem., 2016, 124, 946-958.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.020] [PMID: 27770735]
[280]
Ul-Haq, Z.; Usmani, S.; Mahmood, U.; Al-Rashida, M.; Abbas, G. In-silico analysis of chromone containing sulfonamide derivatives as human carbonic anhydrase inhibitors. Med. Chem., 2013, 9(4), 608-616.
[http://dx.doi.org/10.2174/1573406411309040015] [PMID: 23151266]
[281]
Ekinci, D.; Al-Rashida, M.; Abbas, G.; Şentürk, M.; Supuran, C.T. Chromone containing sulfonamides as potent carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2012, 27(5), 744-747.
[http://dx.doi.org/10.3109/14756366.2011.614607] [PMID: 21985426]
[282]
Gouda, M.A. Synthesis and antioxidant evaluation of some novel thiophene, pyrazole, chromene, pyrazolotriazine derivatives bearing sulfonamide moiety. J. Heterocycl. Chem., 2017, 54(1), 268-277.
[http://dx.doi.org/10.1002/jhet.2576]
[283]
Abid, S.M.A.; Younus, H.A.; Al-Rashida, M.; Arshad, Z.; Maryum, T.; Gilani, M.A.; Alharthi, A.I.; Iqbal, J. Sulfonyl hydrazones derived from 3-formylchromone as non-selective inhibitors of MAO-A and MAO-B: Synthesis, molecular modelling and in-silico ADME evaluation. Bioorg. Chem., 2017, 75, 291-302.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.001] [PMID: 29065322]
[284]
Kaur, L.; Singh, M.P. Synthesis and pharmacological evaluation of substituted n-(3-formyl-4-oxo-4h-chromen-2-yl)-n-phenylbenzenesulfonamide and its derivatives. Int. J. Pharm. Sci. Res., 2017, 8(10), 4461-4472.
[285]
Awadallah, F.M.; El-Waei, T.A.; Hanna, M.M.; Abbas, S.E.; Ceruso, M.; Oz, B.E.; Guler, O.O.; Supuran, C.T. Synthesis, carbonic anhydrase inhibition and cytotoxic activity of novel chromone-based sulfonamide derivatives. Eur. J. Med. Chem., 2015, 96, 425-435.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.033] [PMID: 25912674]
[286]
Chopra, A.; Singh, L.; Kapoor, V.; Dhingra, R.; Passi, N. Design, synthesis, molecular docking and evaluation of antimicrobial activity of 4-amino-n-[(4-oxo-2-(phenylamino)-4h-chromen-3-yl) methy-lene]benzenesulfonamide and their derivatives. Int. J. Pharm. Sci. Res., 2019, 10, 3073-3084.
[287]
He, Z-X.; Gong, Y-P.; Zhang, X.; Ma, L-Y.; Zhao, W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur. J. Med. Chem., 2021, 209, 112946.
[http://dx.doi.org/10.1016/j.ejmech.2020.112946] [PMID: 33129590]
[288]
Asif, M. Calcium sensitizing and phosphodiesterase-III inhibitory activity of pyridazine compounds: A review. J. Chem. Rev., 2019, 1(1), 47-65.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.1.4765]
[289]
Ahmed, E.M.; Hassan, M.S.A.; El-Malah, A.A.; Kassab, A.E. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation. Bioorg. Chem., 2020, 95, 103497.
[http://dx.doi.org/10.1016/j.bioorg.2019.103497] [PMID: 31838289]
[290]
Mustafa, M.; Mostafa, Y.A. Antimicrobial pyridazines: Synthesis, characterization, cytotoxicity, substrate promiscuity, and molecular docking. Chem. Biodivers., 2020, 17(6), e2000100.
[http://dx.doi.org/10.1002/cbdv.202000100] [PMID: 32239712]
[291]
Murineddu, G.; Deligia, F.; Ragusa, G.; García-Toscano, L.; Gómez-Cañas, M.; Asproni, B.; Satta, V.; Cichero, E.; Pazos, R.; Fossa, P.; Loriga, G.; Fernández-Ruiz, J.; Pinna, G.A. Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB1 receptor ligand antagonists. Bioorg. Med. Chem., 2018, 26(1), 295-307.
[http://dx.doi.org/10.1016/j.bmc.2017.11.051] [PMID: 29229226]
[292]
Deeb, A.; El-Eraky, W.; El-Awdan, S.; Mahgoub, S. Pyridazine and its related compounds. Part 34. Hypoglycemic and hypolipidemic activity of some novel condensed pyridazine sulfonamides. Med. Chem. Res., 2014, 23(1), 34-41.
[http://dx.doi.org/10.1007/s00044-013-0605-5]
[293]
Yaseen, R.; Ekinci, D.; Senturk, M.; Hameed, A.D.; Ovais, S.; Rathore, P.; Samim, M.; Javed, K.; Supuran, C.T. Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(4), 1337-1341.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.016] [PMID: 26804228]
[294]
Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg. Chem., 2020, 102, 104057.
[http://dx.doi.org/10.1016/j.bioorg.2020.104057] [PMID: 32663667]
[295]
Deeb, A.A.; El-Eraky, W.I.; Mohamed, S.M. Pyridazine and its related compounds. Part 35 [1]: Synthesis, characterization and antimicrobial activity of some novel pyridazine and triazolopyridazine containing sulfonamides. Eur. J. Chem., 2015, 6(1), 88-92.
[http://dx.doi.org/10.5155/eurjchem.6.1.88-92.1166]
[296]
Elmeligie, S.; Ahmed, E.M.; Abuel-Maaty, S.M.; Zaitone, S.A-B.; Mikhail, D.S. Design and synthesis of pyridazine containing compounds with promising anticancer activity. Chem. Pharm. Bull. (Tokyo), 2017, 65(3), 236-247.
[http://dx.doi.org/10.1248/cpb.c16-00532] [PMID: 28250345]
[297]
Krasavin, M.; Shetnev, A.; Baykov, S.; Kalinin, S.; Nocentini, A.; Sharoyko, V.; Poli, G.; Tuccinardi, T.; Korsakov, M.; Tennikova, T.B.; Supuran, C.T. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur. J. Med. Chem., 2019, 168, 301-314.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.044] [PMID: 30826507]
[298]
Altalbawy, F. Synthesis, in vitro Antimicrobial and anticancer evaluation of some new pyridazines and polyfunctionally substituted heterocyclic compounds. Asian J. Chem., 2015, 27(12), 4361-4368.
[http://dx.doi.org/10.14233/ajchem.2015.19123]
[299]
Irfan, A.; Tahir, O.A.; Umer, M.; Ahmad, S.; Kousar, H. A review on biological studies of Quinoxaline derivatives. World J. Pharm. Sci., 2017, 6(2), 11-30.
[300]
Montana, M.; Mathias, F.; Terme, T.; Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem., 2019, 163, 136-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.059] [PMID: 30503938]
[301]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[302]
Kaushal, T.; Srivastava, G.; Sharma, A.; Singh Negi, A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg. Med. Chem., 2019, 27(1), 16-35.
[http://dx.doi.org/10.1016/j.bmc.2018.11.021] [PMID: 30502116]
[303]
Al-Marhabi, A.R.; Abbas, H-A.S.; Ammar, Y.A. Synthesis, characterization and biological evaluation of some quinoxaline derivatives: A promising and potent new class of antitumor and antimicrobial agents. Molecules, 2015, 20(11), 19805-19822.
[http://dx.doi.org/10.3390/molecules201119655] [PMID: 26540036]
[304]
Shahin, M.I.; Abou El Ella, D.A.; Ismail, N.S.M.; Abouzid, K.A.M. Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold. Bioorg. Chem., 2014, 56, 16-26.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.010] [PMID: 24922538]
[305]
El Newahie, A.M.S.; Nissan, Y.M.; Ismail, N.S.M.; Abou El Ella, D.A.; Khojah, S.M.; Abouzid, K.A.M. Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers. Molecules, 2019, 24(6), 1175.
[http://dx.doi.org/10.3390/molecules24061175] [PMID: 30934622]
[306]
Ingle, R.; Marathe, R.; Magar, D.; Patel, H.M.; Surana, S.J. Sulphonamido-quinoxalines: Search for anticancer agent. Eur. J. Med. Chem., 2013, 65, 168-186.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.028] [PMID: 23708011]
[307]
Alavi, S.; Mosslemin, M.H.; Mohebat, R.; Massah, A.R. Green synthesis of novel quinoxaline sulfonamides with antibacterial activity. Res. Chem. Intermed., 2017, 43(8), 4549-4559.
[http://dx.doi.org/10.1007/s11164-017-2895-6]
[308]
Ji, Y.; Chen, X.; Chen, H.; Zhang, X.; Fan, Z.; Xie, L.; Ma, B.; Zhu, C. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1658-1669.
[http://dx.doi.org/10.1016/j.bmc.2019.03.015] [PMID: 30858026]
[309]
Bhoj, P.S.; Ingle, R.G.; Goswami, K.; Jena, L.; Wadher, S. Apoptotic impact on Brugia malayi by sulphonamido-quinoxaline: Search for a novel therapeutic rationale. Parasitol. Res., 2018, 117(5), 1559-1572.
[http://dx.doi.org/10.1007/s00436-018-5834-6] [PMID: 29568978]
[310]
Bhati, S. In silico evaluation of inhibitory potential of sulfonamide derivatives against diadenosine tetraphosphate hydrolase as antimalarial agents. Asian J. Pharm., 2017, 11, S47.
[311]
Gensicka-Kowalewska, M.; Cholewiński, G.; Dzierzbicka, K. Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Advances, 2017, 7(26), 15776-15804.
[http://dx.doi.org/10.1039/C7RA01026E]
[312]
Zhang, B.; Li, X.; Li, B.; Gao, C.; Jiang, Y. Acridine and its derivatives: A patent review (2009 - 2013). Expert Opin. Ther. Pat., 2014, 24(6), 647-664.
[http://dx.doi.org/10.1517/13543776.2014.902052] [PMID: 24848259]
[313]
Munawar, R.; Mushtaq, N.; Arif, S.; Ahmed, A.; Akhtar, S.; Ansari, S.; Meer, S.; Saify, Z.S.; Arif, M. Synthesis of 9-aminoacridine derivatives as anti-Alzheimer agents. Am. J. Alzheimers Dis. Other Demen., 2016, 31(3), 263-269.
[http://dx.doi.org/10.1177/1533317515603115] [PMID: 26385945]
[314]
Arya, S.; Kumar, A.; Kumar, N.; Roy, P.; Sondhi, S.M. Synthesis and anticancer activity evaluation of some acridine derivatives. Med. Chem. Res., 2015, 24(5), 1942-1951.
[http://dx.doi.org/10.1007/s00044-014-1268-6]
[315]
Kaya, M.; Yıldırır, Y.; Çelik, G.Y. Synthesis, characterization, and in vitro antimicrobial and antifungal activity of novel acridines. Pharm. Chem. J., 2015, 48(11), 722-726.
[http://dx.doi.org/10.1007/s11094-015-1181-4]
[316]
Esirden, İ.; Ulus, R.; Aday, B.; Tanç, M.; Supuran, C.T.; Kaya, M. Synthesis of novel acridine bis-sulfonamides with effective inhibitory activity against the carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem., 2015, 23(20), 6573-6580.
[http://dx.doi.org/10.1016/j.bmc.2015.09.022] [PMID: 26422787]
[317]
Yeşildağ, İ.; Ulus, R.; Başar, E.; Aslan, M.; Kaya, M.; Bülbül, M. Facile, highly efficient, and clean one-pot synthesis of acridine sulfonamide derivatives at room temperature and their inhibition of human carbonic anhydrase isoenzymes. Monatsh. Chem., 2014, 145(6), 1027-1034.
[http://dx.doi.org/10.1007/s00706-013-1145-x]
[318]
Ulus, R.; Yeşildağ, I.; Tanç, M.; Bülbül, M.; Kaya, M.; Supuran, C.T. Synthesis of novel acridine and bis acridine sulfonamides with effective inhibitory activity against the cytosolic carbonic anhydrase isoforms II and VII. Bioorg. Med. Chem., 2013, 21(18), 5799-5805.
[http://dx.doi.org/10.1016/j.bmc.2013.07.014] [PMID: 23910989]
[319]
Ulus, R.; Esirden, İ.; Aday, B.; Turgut, G.Ç.; Şen, A.; Kaya, M. Synthesis of novel acridine-sulfonamide hybrid compounds as acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Med. Chem. Res., 2018, 27(2), 634-641.
[http://dx.doi.org/10.1007/s00044-017-2088-2]
[320]
Ulus, R.; Kaya, M.; Demir, D.; Tunca, E.; Bülbül, M. Three-component synthesis and carbonic anhydrase inhibitory properties of novel octahydroacridines incorporating sulfaguanidine scaffold. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 63-69.
[http://dx.doi.org/10.1080/14756366.2016.1187605] [PMID: 27237188]
[321]
Soliman, A.; Kamel, M.; Eweas, A.; Wietrzyk, J.; Milczarek, M. The antiproliferative activity and molecular docking studies of some sulfonamides against cancer cell lines compared to normal cells. Egypt. J. Chem., 2018, 61(3), 330-340.
[http://dx.doi.org/10.21608/ejchem.2018.2934.1242]
[322]
Bragagni, M.; Carta, F.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis of an acridine orange sulfonamide derivative with potent carbonic anhydrase IX inhibitory action. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 701-706.
[http://dx.doi.org/10.1080/14756366.2017.1302441] [PMID: 28335646]
[323]
Aswathy, J. A concise review on phthlazine derivatives and its biological activities. J. Pharm. Sci. Res., 2019, 11(7), 2526-2532.
[324]
Sangshetti, J.; Pathan, S.K.; Patil, R.; Akber Ansari, S.; Chhajed, S.; Arote, R.; Shinde, D.B. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg. Med. Chem., 2019, 27(18), 3979-3997.
[http://dx.doi.org/10.1016/j.bmc.2019.07.050] [PMID: 31401008]
[325]
El-Helby, A.A.; Ayyad, R.R.A.; Zayed, M.F.; Abulkhair, H.S.; Elkady, H.; El-Adl, K. Design, synthesis, in silico ADMET profile and GABA-A docking of novel phthalazines as potent anticonvulsants. Arch. Pharm. (Weinheim), 2019, 352(5), e1800387.
[http://dx.doi.org/10.1002/ardp.201800387] [PMID: 30989729]
[326]
El-Hashash, M.A.; Guirguis, D.B.; Abdel-Wahed, N.A.; Kadhim, M.A. Synthesis of novel series of phthalazine derivatives with antibacterial and antifungal evaluation. J. Chem. Eng. Process Technol, 2014, 5(4), 1000191-1000196.
[327]
Hameed, A.D.; Ovais, S.; Yaseen, R.; Rathore, P.; Samim, M.; Singh, S.; Sharma, K.; Akhtar, M.; Javed, K. Synthesis and biological evaluation of new phthalazinone derivatives as anti‐inflammatory and anti‐proliferative agents. Arch. Pharm. (Weinheim), 2016, 349(2), 150-159.
[http://dx.doi.org/10.1002/ardp.201500336] [PMID: 26725221]
[328]
Abbasi, M.; Nazifi, S.; Nazifi, Z.; Massah, A.R. Synthesis, characterization and in vitro antibacterial activity of novel phthalazine sulfonamide derivatives. J. Chem. Sci., 2017, 129(8), 1257-1266.
[http://dx.doi.org/10.1007/s12039-017-1337-8]
[329]
Türkeş, C.; Arslan, M.; Demir, Y.; Çoçaj, L.; Rifati Nixha, A.; Beydemir, Ş. Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 89, 103004.
[http://dx.doi.org/10.1016/j.bioorg.2019.103004] [PMID: 31129502]
[330]
Ran, J-H.; Li, M.; Tou, W-I.; Lei, T-L.; Zhou, H.; Chen, C.Y-C.; Yang, B-X. Phenylphthalazines as small-molecule inhibitors of urea transporter UT-B and their binding model. Acta Pharmacol. Sin., 2016, 37(7), 973-983.
[http://dx.doi.org/10.1038/aps.2016.4] [PMID: 27238209]
[331]
Singh, A.; Kaur, N.; Sharma, S.; Bedi, P. Recent progress in biologically active xanthones. J. Chem. Pharm. Res., 2016, 8, 75-131.
[332]
Ramakrishnan, S.; Paramewaran, S.; Nasir, N.M. Synthetic approaches to biologically active xanthones: An update. Chem. Pap., 2021, 75(2), 455-470.
[http://dx.doi.org/10.1007/s11696-020-01320-0]
[333]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[334]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183-195.
[PMID: 24516330]
[335]
Kou, X.; Song, L.; Wang, Y.; Yu, Q.; Ju, H.; Yang, A.; Shen, R. Design, synthesis and anti-Alzheimer’s disease activity study of xanthone derivatives based on multi-target strategy. Bioorg. Med. Chem. Lett., 2020, 30(4), 126927.
[http://dx.doi.org/10.1016/j.bmcl.2019.126927] [PMID: 31901382]
[336]
Malekpoor, M.; Gharaghani, S.; Sharifzadeh, A.; Mirsattari, S.N.; Massah, A.R. Synthesis and antibacterial evaluation of novel Xanthone Sulfonamides. J. Chem. Res., 2015, 39(8), 433-437.
[http://dx.doi.org/10.3184/174751915X14373971129805]
[337]
Wang, P.; Jiang, L.; Cao, Y.; Ye, D.; Zhou, L. The design and synthesis of N-xanthone benzenesulfonamides as novel phosphoglycerate mutase 1 (PGAM1) inhibitors. Molecules, 2018, 23(6), 1396.
[http://dx.doi.org/10.3390/molecules23061396] [PMID: 29890679]
[338]
Li, X.; Zou, Y.; Zhao, Q.; Yang, Y.; Wu, M.; Huang, T.; Hu, H.; Wu, Q. Synthesis, biological evaluation, and molecular docking studies of Xanthone Sulfonamides as ACAT inhibitors. Chem. Biol. Drug Des., 2015, 85(3), 394-403.
[http://dx.doi.org/10.1111/cbdd.12419] [PMID: 25146964]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy