Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Systematic Review Article

Vigilance Needed in Treating Leprosy Patients in Accordance with WHO’s AWaRe

Author(s): Pugazhenthan Thangaraju*, Hemasri Velmurugan, Sree Sudha Tanguturi Yella and Sajitha Venkatesan

Volume 17, Issue 2, 2022

Published on: 13 September, 2022

Page: [95 - 102] Pages: 8

DOI: 10.2174/2772434417666220720111849

Price: $65

Abstract

Background: Leprosy is a highly stigmatized disease that can range from a minor skin lesion to life-threatening conditions such as deformities and disability. The World Health Organization (WHO) has developed a tool called "Access, Watch, and Reserve" (AWaRe) to reduce antibiotic misuse and abuse.

Aim: The purpose of this review is to determine whether the drugs used in the leprosy treatment regimen are complied with the AWaRe programme, in order to improve the quality of hospital antibiotic use and reduce the incidence of antimicrobial resistance (AMR).

Methods: We started by looking for antibiotics that are used in the treatment and chemoprophylaxis of leprosy, as defined by the WHO's AWaRe classification. Furthermore, we look for studies on antibiotics that showed sensitivity or less resistance after antimicrobial sensitivity testing (AST) on isolates from infected leprosy ulcers, as well as their AWaRe category.

Results: There were 32 studies found, but only 5 of them met the inclusion criteria. They consisted of four cross-sectional studies and one descriptive retrospective study. A total of 19 antibiotics were identified in 5 studies, with 9 (47.4%) antibiotics in the access category, 8 (42.1%) antibiotics in the watch group, and 2 (10.5%) antibiotics in the reserve group.

Conclusion: As per our knowledge, this is the first study to explore antibiotics in leprosy treatment, chemoprophylaxis, and complications such as ulcer compliance with the AWaRe programme. Antimicrobial resistance is on the rise, which is a global issue that continues to pose challenges to clinical practices. This review may provide physicians with an overview of the current state of drug prescribing trends in leprosy, whether in accordance with the AWaRe classification in selecting the right drug when the use of antimicrobials is indicated and may also aid in rational drug prescribing.

Keywords: Leprosy, ulcer, complication, antibiotics, AWaRe program, WHO.

Graphical Abstract

[1]
Amann, S.; Neef, K.; Kohl, S. Antimicrobial resistance (AMR). Eur. J. Hosp. Pharm. Sci. Pract., 2019, 26(3), 175-177.
[http://dx.doi.org/10.1136/ejhpharm-2018-001820] [PMID: 31428328]
[2]
[3]
Jani, K.; Srivastava, V.; Sharma, P.; Vir, A.; Sharma, A. Easy access to antibiotics; Spread of antimicrobial resistance and implementation of one health approach in India. J. Epidemiol. Glob. Health, 2021, 11(4), 444-452.
[http://dx.doi.org/10.1007/s44197-021-00008-2] [PMID: 34734384]
[4]
Nguyen, NV; Do, NTT; Nguyen, CTK Community-level consumption of antibiotics according to the AWaRe (Access, Watch, Reserve) classification in rural Vietnam JAC Antimicrob Resist, 2020, 2(3)
[http://dx.doi.org/10.1093/jacamr/dlaa048]
[5]
Donà, D.; Sharland, M. The urgent need for simple and globally applicable quality indicators of optimal prescribing for children using the Access, Watch, Reserve (AWaRe) system. J. Pediatric Infect. Dis. Soc., 2021, 10(8), 845-846.
[http://dx.doi.org/10.1093/jpids/piab008] [PMID: 34124764]
[6]
WHO model list of essential medicines 2017. Available from: https://www.who.int/medicines/news/2017/20th_essential_med-list/en/
[7]
Hsia, Y.; Sharland, M.; Jackson, C.; Wong, I.C.K.; Magrini, N.; Bielicki, J.A. Consumption of oral antibiotic formulations for young children according to the WHO Access, Watch, Reserve (AWaRe) antibiotic groups: An analysis of sales data from 70 middle-income and high-income countries. Lancet Infect. Dis., 2019, 19(1), 67-75.
[http://dx.doi.org/10.1016/S1473-3099(18)30547-4] [PMID: 30522834]
[8]
WHO. Access, Watch, Reserve (AWaRe). 2019. Available from: https://adoptaware.org/#problem
[9]
Thangaraju, P.; Venkatesan, S. Showkath AMK Final leprosy push: Out of society. Indian J. Community Med., 2018, 43(1), 58-59.
[http://dx.doi.org/10.4103/ijcm.IJCM_155_17] [PMID: 29531443]
[10]
Thangaraju, P.; Venkatesan, S. Showkath AMK Leprosy Case Detection Campaign (LCDC) for active surveillance. Trop. Doct., 2018, 48(1), 72-73.
[http://dx.doi.org/10.1177/0049475517702059] [PMID: 28403695]
[11]
Sarno, E.N.; Duppre, N.C.; Sales, A.M.; Hacker, M.A.; Nery, J.A.; de Matos, H.J. Leprosy exposure, infection and disease: a 25-year surveillance study of leprosy patient contacts. Mem. Inst. Oswaldo Cruz, 2012, 107(8), 1054-1059.
[12]
Araujo, S.; Freitas, L.O.; Goulart, L.R.; Goulart, I.M.B. Molecular evidence for the aerial route of infection of Mycobacterium leprae and the role of asymptomatic carriers in the persistence of leprosy. Clin. Infect. Dis., 2016, 63(11), 1412-1420.
[http://dx.doi.org/10.1093/cid/ciw570]
[13]
Gama, R.S.; Gomides, T.A.R.; Gama, C.F.M. High frequency of M. leprae DNA detection in asymptomatic household contacts. BMC Infect. Dis., 2018, 18(1), 153.
[http://dx.doi.org/10.1186/s12879-018-3056-2]
[14]
Ploemacher, T.; Faber, W.R.; Menke, H.; Rutten, V.; Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis., 2020, 14(4), e0008276.
[http://dx.doi.org/10.1371/journal.pntd.0008276]
[15]
Walker, S.L.; Lockwood, D.N.J. Leprosy. Clin. Dermatol., 2007, 25(2), 165-172.
[http://dx.doi.org/10.1016/j.clindermatol.2006.05.012] [PMID: 17350495]
[16]
Degang, Y.; Akama, T.; Hara, T. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages. PLoS Negl. Trop. Dis., 2012, 6(12), e1936.
[http://dx.doi.org/10.1371/journal.pntd.0001936] [PMID: 23236531]
[17]
Nery, J.A.C.; Sales, A.M.; Hacker, M.A.V.B. Low rate of relapse after twelve-dose multidrug therapy for hansen’s disease: A 20-year cohort study in a brazilian reference center. PLoS Negl. Trop. Dis., 2021, 6, e1936.
[18]
Chagas, D.F.; Diniz, L.M.; Lucas, E.A.; Moraes, M.O. Relapse in leprosy and drug resistance assessment in a tertiary hospital of the state of Espírito Santo, Brazil. Rev. Soc. Bras. Med. Trop., 2021, 54, e0375-e2020.
[19]
Naaz, F.; Mohanty, P.S.; Bansal, A.K.; Kumar, D.; Gupta, U.D. Challenges beyond elimination in leprosy. Int. J. Mycobacteriol., 2017, 6(3), 222-228.
[http://dx.doi.org/10.4103/ijmy.ijmy_70_17] [PMID: 28776519]
[20]
Mandal, B.C. Present leprosy situation in India and the decade long experience of this correspondent. Nihon Hansenbyo Gakkai Zasshi, 2001, 70(1), 25-29.
[http://dx.doi.org/10.5025/hansen.70.25] [PMID: 11244784]
[21]
WHO Expert Committee on Leprosy. World Health Organ. Tech. Rep. Ser., 2012, 968(968), 1-61.
[PMID: 22970604]
[22]
Chemotherapy of leprosy. Report of a WHO study group. World Health Organ. Tech. Rep. Ser., 1994, 847, 1-24.
[PMID: 7817604]
[23]
Prasad, R.; Gupta, N.; Banka, A. Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management. Lung India, 2018, 35(1), 78-81.
[http://dx.doi.org/10.4103/lungindia.lungindia_98_17] [PMID: 29319042]
[24]
Jacobson, R.R.; Hastings, R.C. Rifampin-resistant leprosy. Lancet, 1976, 2(7998), 1304-1305.
[http://dx.doi.org/10.1016/S0140-6736(76)92071-7] [PMID: 63780]
[25]
White, C.; Franco, P.C. Leprosy in the 21st century. Clin. Microbiol. Rev., 2015, 28(1), 80-94.
[http://dx.doi.org/10.1128/CMR.00079-13] [PMID: 25567223]
[26]
Ebineshan, K.; Pallapati, M.S.; Srikantam, A. Occurrence of bacterial biofilm in leprosy plantar ulcers. Lepr. Rev., 2020, 91(2), 130-138.
[http://dx.doi.org/10.47276/lr.91.2.130]
[27]
Saha, R.; Sarkar, S.; Majumder, M.; Banerjee, G. Bacteriologiacal profile of aerobic and anaerobic isolates of trophic ulcer in leprosy: A study from Eastern India. Indian J. Dermatol., 2019, 64(5), 372-376.
[http://dx.doi.org/10.4103/ijd.IJD_310_19] [PMID: 31543531]
[28]
Thangaraju, P.; Ravichandran, U.A.; Tamilselvan, T. Drug sensitivity and the changing patterns of bacterial isolates of infected ulcers of leprosy patients in central leprosy institute-retrospective analysis. Aust. J. Basic Appl. Sci., 2015, 9, 469-473.
[29]
Ramos, J.M.; Pérez, T.R.; García, G.C. Leprosy ulcers in a rural hospital of Ethiopia: Pattern of aerobic bacterial isolates and drug sensitivities. Ann. Clin. Microbiol. Antimicrob., 2014, 13(1), 47.
[http://dx.doi.org/10.1186/s12941-014-0047-z] [PMID: 25228044]
[30]
Lema, T.; Woldeamanuel, Y.; Asrat, D. The pattern of bacterial isolates and drug sensitivities of infected ulcers in patients with leprosy in ALERT, Kuyera and Gambo hospitals, Ethiopia. Lepr. Rev., 2012, 83(1), 40-51.
[http://dx.doi.org/10.47276/lr.83.1.40] [PMID: 22655469]
[31]
Richardus, J.H.; Tiwari, A.; Barth, J.T. Leprosy Post-Exposure Prophylaxis with single-dose rifampicin (LPEP): An international feasibility programme. Lancet Glob. Health, 2021, 9(1), e81-e90.
[http://dx.doi.org/10.1016/S2214-109X(20)30396-X] [PMID: 33129378]
[32]
Moet, F.J.; Pahan, D.; Oskam, L.; Richardus, J.H. Effectiveness of single dose rifampicin in preventing leprosy in close contacts of patients with newly diagnosed leprosy: Cluster randomised controlled trial. BMJ, 2008, 336(7647), 761-764.
[http://dx.doi.org/10.1136/bmj.39500.885752.BE] [PMID: 18332051]
[33]
You, E.Y.; Kang, T.J.; Kim, S.K.; Lee, S.B.; Chae, G.T. Mutations in genes related to drug resistance in Mycobacterium leprae isolates from leprosy patients in Korea. J. Infect., 2005, 50(1), 6-11.
[http://dx.doi.org/10.1016/j.jinf.2004.03.012] [PMID: 15603834]
[34]
WHO. AWaRe (Access, Watch, Reserve); , 2021. Available from: https://www.who.int/publications/i/item/2021-aware-classification
[35]
Crofton, J.; Mitchison, D.A. Streptomycin resistance in pulmonary tuberculosis. BMJ, 1948, 2(4588), 1009-1015.
[http://dx.doi.org/10.1136/bmj.2.4588.1009] [PMID: 18100441]
[36]
Cooreman, E. Global leprosy update, 2015: Time for action, accountability and inclusion. Wkly. Epidemiol. Rec., 2015, 91(35), 405-420.
[PMID: 27592500]
[37]
Cambau, E.; Perani, E.; Guillemin, I.; Jamet, P.; Ji, B. Multidrug-resistance to dapsone, rifampicin, and ofloxacin in Mycobacterium leprae. Lancet, 1997, 349(9045), 103-104.
[http://dx.doi.org/10.1016/S0140-6736(05)60888-4] [PMID: 8996430]
[38]
Maeda, S.; Matsuoka, M.; Nakata, N. Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob. Agents Chemother., 2001, 45(12), 3635-3639.
[http://dx.doi.org/10.1128/AAC.45.12.3635-3639.2001] [PMID: 11709358]
[39]
Ishii, N. Recent advances in the treatment of leprosy. Dermatol. Online J., 2003, 9(2), 5.
[http://dx.doi.org/10.5070/D31TD1J7FT] [PMID: 12639458]
[40]
Chauffour, A.; Lecorche, E.; Reibel, F. Prospective study on antimicrobial resistance in leprosy cases diagnosed in France from 2001 to 2015. Clin. Microbiol. Infect., 2018, 24(11), 1213.e5-1213.e8.
[http://dx.doi.org/10.1016/j.cmi.2018.06.004] [PMID: 29906598]
[41]
Williams, D.L.; Lewis, C.; Sandoval, F.G. Drug resistance in patients with leprosy in the United States. Clin. Infect. Dis., 2014, 58(1), 72-73.
[http://dx.doi.org/10.1093/cid/cit628] [PMID: 24065328]
[42]
Lockwood, D.N.J.; Krishnamurthy, P.; Kumar, B.; Penna, G. Single-dose rifampicin chemoprophylaxis protects those who need it least and is not a cost-effective intervention. PLoS Negl. Trop. Dis., 2018, 12(6), e0006403.
[http://dx.doi.org/10.1371/journal.pntd.0006403] [PMID: 29879118]
[43]
Mieras, L.; Anthony, R.; van Brakel, W. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy. Infect. Dis. Poverty, 2016, 5(1), 46.
[http://dx.doi.org/10.1186/s40249-016-0140-y] [PMID: 27268059]
[46]
Cambau, E.; Saunderson, P.; Matsuoka, M. Antimicrobial resistance in leprosy: Results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin. Microbiol. Infect., 2018, 24(12), 1305-1310.
[http://dx.doi.org/10.1016/j.cmi.2018.02.022] [PMID: 29496597]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy