Abstract
Background: L-proline is a natural amino acid having secondary amine functionality and acts as a bifunctional catalyst (organo-catalyst). The amino-functional group acts as Lewis base type while carboxylic acids act as Brønsted acid type catalysts. It catalyzed different asymmetric syntheses, including known reactions such as Aldol condensation, Mannich reaction, Michael Addition, Knoevenagel condensation, Hantzsch synthesis, OXA-Michael Henry tandem, Ullmann reactions, Wieland-Miescher ketone synthesis, Robinson annulation, Biginelli reaction, α- amination. It is also an essential catalyst for synthesizing heterocyclic skeletons such as coumarin, spiro-oxindoles, imidazoles, benzimidazoles, quinoxalines, podophyllotoxin, benzothiazoles, isoxazolidines, phenothiazines, aziridine, indole, 1,5-benzodiazepines, pyridine, and quinazolines.
Objective: In this review, we had the objective to critically summarize the use of proline and proline derivatives as catalysts of multicomponent reactions performed in various media and leading to synthetically and biologically relevant heterocycles, a very important class of compounds that constitutes over 60% of drugs and agrochemicals.
Methods: All scholarly articles for L-Proline catalyzed reactions were retrieved from ScienceDirect, Google Scholar , PubMed, etc.
Results and Conclusion: Given the importance of L-Proline based reactions, it has been observed to have tremendous applications in organic chemistry. It can also act as a 'Green catalyst'.
Keywords: L-proline, organo-catalyst, amino acids, bifunctional catalyst, asymmetric synthesis.
Graphical Abstract
[http://dx.doi.org/10.1002/3527604677];
b) New development of organocatalyst; Shibasaki, M., Ed.; CMC-Shuppan: Tokyo, 2006. ;
c) Enantioselective organocatalysis; Dalko, P.I., Ed.; Wiley-VCH: New York, 2007.
[http://dx.doi.org/10.1002/9783527610945];
d) List, B. Asymmetric aminocatalysis. Synlett, 2001, 1675.
[http://dx.doi.org/10.1055/s-2001-18074];
e) Dalko, P.I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. Engl., 2001, 40(20), 3726-3748.
[http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3726:AID-ANIE3726>3.0.CO;2-D] [PMID: 11668532];
f) Jarvo, E.R.; Miller, S.J. Amino acids and peptides as asymmetric organocatalysts. Tetrahedron, 2002, 58, 2481.
[http://dx.doi.org/10.1016/S0040-4020(02)00122-9];
g) Mali, S.N.; Pandey, A. Balanced QSAR and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against trypanosomiases. J. Comput. Biophy. Chem., 2022, 1-32.;
h) List, B. Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanion equivalents. Acc. Chem. Res., 2004, 37(8), 548-557.
[http://dx.doi.org/10.1021/ar0300571] [PMID: 15311954];
i) Miller, S.J. In search of peptide-based catalysts for asym-metric organic synthesis. Acc. Chem. Res., 2004, 37(8), 601-610.
[http://dx.doi.org/10.1021/ar030061c] [PMID: 15311959];
j) Forsyth, S.A.; Pringle, J.M.; MacFarlane, D.R. Ionic liq-uids-An overview. Aust. J. Chem., 2004, 57(2), 113-119.
[http://dx.doi.org/10.1071/CH03231];
k) Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3(5), 719-724.
[http://dx.doi.org/10.1039/b415217b] [PMID: 15731852];
l) Tanaka, F.; Barbas, C.F., III Organocatalytic asymmetric synthesis using proline and related molecules. Part 1. Yuki Gosei Kagaku Kyokai-shi, 2005, 63, 709.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.63.709];
m) Limbach, M. 5-(pyrrolidin-2-yl)-1H-tetrazole and 5-[(pyrrolidin-2-yl)methyl]-1H-tetrazole: Proline surrogates with increased potential in asymmetric catalysis. Chem. Biodivers., 2006, 3(2), 119-133.
[http://dx.doi.org/10.1002/cbdv.200690016] [PMID: 17193251];
n) Marques, M.M.B. Catalytic enantioselective cross-Mannich reaction of aldehydes. Angew. Chem. Int. Ed., 2006, 45(3), 348-352.
[http://dx.doi.org/10.1002/anie.200502630] [PMID: 16342308];
o) Guillena, G.; Nájera, C.; Ramón, D.J. Enantioselective direct aldol reaction: The blossoming of modern organocatalysis. Tetrahedron Asymmetry, 2007, 18, 2249.
[http://dx.doi.org/10.1016/j.tetasy.2007.09.025]
[http://dx.doi.org/10.1016/j.surfin.2018.08.004];
b) Kanti Das, T.; Ganguly, S.; Remanan, S.; Das, N.C. Temperature‐ Dependent Study of Catalytic Ag Nanoparticles Entrapped resin nanocomposite towards reduction of 4‐nitrophenol. ChemistrySelect, 2019, 4(13), 3665-3671.
[http://dx.doi.org/10.1002/slct.201900470];
c) Das, T.K.; Ganguly, S.; Remanan, S.; Ghosh, S.; Das, N.C. Mussel-inspired Ag/poly (norepinephrine)/MnO2 heterogene-ous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline: An alternative approach. Res. Chem. Intermed., 2020, 46(7), 3629-3650.
[http://dx.doi.org/10.1007/s11164-020-04165-0];
d) Das, T.K.; Das, N.C. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. Int. Nano Lett., 2022, 1-20.
[http://dx.doi.org/10.1007/s40089-021-00362-w];
e) Fache, F.; Piva, O. Synthesis and applications of the first polyfluorous proline derivative. Tetrahedron Asymmetry, 2003. 14, 139, 598.
[http://dx.doi.org/10.1016/S0957-4166(02)00796-6]
[http://dx.doi.org/10.1002/chir.20107] [PMID: 15669082]
[http://dx.doi.org/10.1016/j.tet.2005.06.113]
[http://dx.doi.org/10.1002/anie.200601156] [PMID: 16856197]
[http://dx.doi.org/10.1021/jo0486084] [PMID: 15651798];
b) Itagaki, N.; Kimura, M.; Sugahara, T.; Iwabuchi, Y. Organocatalytic entry to chiral bicyclo[3.n.1]alkanones via direct asymmetric intramolecular aldolization. Org. Lett., 2005, 7(19), 4185-4188.
[http://dx.doi.org/10.1021/ol051569d] [PMID: 16146383];
c) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Highly diastereo-and enantioselective direct aldol reactions in water. Angew. Chem. Int. Ed., 2006, 45(6), 958-961.
[http://dx.doi.org/10.1002/anie.200502488] [PMID: 16385603]
[http://dx.doi.org/10.1021/ol051570c] [PMID: 16146382];
b) Itagaki, N.; Iwabuchi, Y. Enantio- and diastereo-controlled synthesis of (+)-juvabione employing organocatalytic desymmetrization and photoinduced fragmentation. Chem. Commun. (Camb.),, 2007, (11), 1175-1176.
[http://dx.doi.org/10.1039/b616641e] [PMID: 17347730]
[http://dx.doi.org/10.1016/j.molcata.2006.03.035];
b) Srinivasan, M.; Perumal, S.; Selvaraj, S. (L)-Proline catalysed efficient synthesis of 3-substituted 2, 6-diarylpiperidin-4-ones. ARKIVOC, 2005, xi, 201.
[http://dx.doi.org/10.3998/ark.5550190.0006.b17];
c) Sabitha, G.; Fatima, N.; Reddy, E.V.; Yadav, J.S. First examples of proline‐catalyzed domino knoevenagel/hetero‐dielsalder/ elimination reactions. Adv. Synth. Catal., 2005, 347, 1353.
[http://dx.doi.org/10.1002/adsc.200505144];
d) Dodda, R.; Zhao, C.G. L-proline-catalyzed one-pot three-component reaction for the synthesis of β-alkoxy ketones. Synthesis, 2006, 19, 3238.
[http://dx.doi.org/10.1021/jo0519458] [PMID: 16388667];
b) Kantam, M.L.; Rajasekhar, C.V.; Gopikrishna, G.; Reddy, K.R.; Choudary, B.M. Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Lett., 2006, 47, 5965.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.042];
c) Hahn, B.T.; Fröhlich, R.; Harms, K.; Glorius, F. Proline-catalyzed highly enantioselective and anti-selective Mannich reaction of unactivated ketones: Synthesis of chiral α-amino acids. Angew. Chem. Int. Ed. Engl., 2008, 47(51), 9985-9988.
[http://dx.doi.org/10.1002/anie.200803515] [PMID: 19006133]
[http://dx.doi.org/10.1021/ar0300468] [PMID: 15311957];
b) Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437];
c) Lacoste, E. Proline: An essential amino acid as effective chiral organocatalyst. Synlett, 2006, 12, 1973.
[http://dx.doi.org/10.1055/s-2006-947332];
d) Alcaide, B.; Almendros, P.; Luna, A.; Torres, M.R. Proline-catalyzed diastereoselective direct aldol reaction between 4-oxoazetidine-2-carbaldehydes and ketones. J. Org. Chem., 2006, 71(13), 4818-4822.
[http://dx.doi.org/10.1021/jo0604235] [PMID: 16776507];
e) Zotova, N.; Franzke, A.; Armstrong, A.; Blackmond, D.G. Clarification of the role of water in proline-mediated aldol reactions. J. Am. Chem. Soc., 2007, 129(49), 15100-15101.
[http://dx.doi.org/10.1021/ja0738881] [PMID: 18001021];
f) Chandrasekhar, S.; Narsihmulu, C.; Reddy, R.N.; Sultan, S.S. Asymmetric aldol reactions in poly (ethylene glycol) catalyzed by L-proline. Tetrahedron Lett., 2004, 45, 4581.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.116];
g) Kumar, I.; Rode, V.C. L-Proline catalyzed direct diastereoselective aldol reactions: Towards the synthesis of lyxo-(2S, 3S, 4S)-phytosphingosine. Tetrahedron Asymmetry, 2007, 18, 1975.
[http://dx.doi.org/10.1016/j.tetasy.2007.08.018];
h) Bernard, A.M.; Frongia, A.; Guillot, R.; Piras, P.P.; Secci, F.; Spiga, M. L-Proline-catalyzed direct intermolecular asymmetric aldol reactions of 1-phenylthiocycloalkyl carboxaldehydes with ketones. Easy access to spiro- and fused-cyclobutyl tetrahydrofurans and cyclopentanones. Org. Lett., 2007, 9(3), 541-544.
[http://dx.doi.org/10.1021/ol063084a] [PMID: 17249807];
i) List, B.; Pojarliev, P.; Castello, C. Proline-catalyzed asymmetric aldol reactions between ketones and α-unsubstituted aldehydes. Org. Lett., 2001, 3(4), 573-575.
[http://dx.doi.org/10.1021/ol006976y] [PMID: 11178828]
b) Kotrusz, P.; Toma, S. L-Proline catalysed Michael additions of different active methylene compounds to α-enones in ionic liquid. ARKIVOC, 2006, 100.
[http://dx.doi.org/10.3998/ark.5550190.0007.510];
c) Kotrusz, P.; Toma, S. L-proline catalyzed Michael additions of thiophenols to α,β-unsaturated compounds, particularly α-enones, in the ionic liquid [bmim]PF6. Molecules, 2006, 11(2), 197-205.
[http://dx.doi.org/10.3390/11020197] [PMID: 17962790];
d) List, B.; Pojarliev, P.; Martin, H.J. Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org. Lett., 2001, 3(16), 2423-2425.
[http://dx.doi.org/10.1021/ol015799d] [PMID: 11483025]
[http://dx.doi.org/10.1142/S2737416521500125];
b) Xie, H.; Zu, L.; Oueis, H.R.; Li, H.; Wang, J.; Wang, W. Proline-catalyzed direct inverse electron demand diels-alder reactions of ketones with 1,2,4,5-tetrazines. Org. Lett., 2008, 10(10), 1923-1926.
[http://dx.doi.org/10.1021/ol800417q] [PMID: 18410125]
[http://dx.doi.org/10.1021/jo00925a003];
b) Eder, U.; Sauer, G.; Wiechert, R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew. Chem. Int. Ed. Engl., 1971, 10, 496.
[http://dx.doi.org/10.1002/anie.197104961];
c) Agami, C.; Platzer, N.; Sevestre, H. Enantioselective cyclizations of acyclic 1, 5-diketones. Bull. Soc. Chim. Fr., 1987, 2, 358-360.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y]
[http://dx.doi.org/10.1016/S0040-4039(01)88662-7];
b) Yamada, S.; Otani, G. Asymmetric synthesis with amino acid II asymmetric synthesis of optically active 4, 4-disubstituted-cyclohexenone. Tetrahedron Lett., 1969, 10(48), 4237-4240.
[http://dx.doi.org/10.1016/S0040-4039(01)88663-9]
[http://dx.doi.org/10.1021/ja0174231] [PMID: 11817958]
[http://dx.doi.org/10.1246/cl.2004.1168];
b) Mabry, J.; Ganem, B. Studies on the Biginelli reaction: A mild and selective route to 3, 4-dihydropyrimidin-2 (1H)-ones via enamine intermediates. Tetrahedron Lett., 2006, 47, 55.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.124]
[http://dx.doi.org/10.2174/1573409916666200302120942] [PMID: 32141422]
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1];
b) Shen, Z.; Li, B.; Wang, L.; Zhang, Y. Proline-catalyzed aldol reactions of acyl cyanides with acetone: An efficient and convenient synthesis of 1, 3-diketones. Tetrahedron Lett., 2005, 46, 8785-8788.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.036]
[http://dx.doi.org/10.1039/b602696f] [PMID: 16633553];
b) Ramachary, D.B.; Reddy, G.B. Towards organo-click reactions: Development of pharmaceutical ingredients by using direct organocatalytic bio-mimetic reductions. Org. Biomol. Chem., 2006, 4(24), 4463-4468.
[http://dx.doi.org/10.1039/b612611a] [PMID: 17268640];
c) Ramachary, D.B.; Kishor, M. Organocatalytic sequential one-pot double cascade asymmetric synthesis of Wieland-Miescher ketone analogues from a Knoevenagel/hydrogenation/Robinson annulation sequence: Scope and applications of organocatalytic biomimetic reductions. J. Org. Chem., 2007, 72(14), 5056-5068.
[http://dx.doi.org/10.1021/jo070277i] [PMID: 17552564];
d) Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Organocatalytic cascade reactions based on push-pull dienamine platform: Synthesis of highly substituted anilines. J. Org. Chem., 2007, 72(4), 1458-1463.
[http://dx.doi.org/10.1021/jo0623639] [PMID: 17288390];
e) Ramachary, D.B.; Kishore, M.; Reddy, Y.V. Development of pharmaceutical drugs, drug intermediates and ingredients by using direct organo-click reactions. Eur. J. Org. Chem., 2008, 6, 975-993.
[http://dx.doi.org/10.1002/ejoc.200701014];
f) Ramachary, D.B.; Kishor, M. Direct amino acid-catalyzed cascade biomimetic reductive alkylations: Application to the asymmetric synthesis of Hajos-Parrish ketone analogues. Org. Biomol. Chem., 2008, 6(22), 4176-4187.
[http://dx.doi.org/10.1039/b807999d] [PMID: 18972048];
g) Ramachary, D.B.; Reddy, Y.V.; Kishor, M. Multi-catalysis reactions: Direct organocatalytic sequential one-pot synthesis of highly functionalized cyclopenta[b]chromen-1-ones. Org. Biomol. Chem., 2008, 6(22), 4188-4197.
[http://dx.doi.org/10.1039/b812551a] [PMID: 18972049];
h) Ramachary, D.B.; Kishore, M.; Ramakumar, K. A novel and green protocol for two-carbon homologation: A direct amino acid/K2CO3-catalyzed four-component reaction of aldehydes, active methylenes, Hantzsch, esters and alkyl halides. Tetrahedron Lett., 2006, 47, 651.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.128]
[http://dx.doi.org/10.1080/00397910802222746]
[http://dx.doi.org/10.1016/j.tetlet.2005.12.005];
b) Varala, R.; Adapa, S.R. A practical and efficient synthesis of thalidomide via Na/Liquid NH3 Methodology. Org. Process Res. Dev., 2005, 9, 853.
[http://dx.doi.org/10.1021/op050129z];
c) An, Z.; Zhang, W.; Shi, H.; He, J. An effective heterogeneous L-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support. J. Catal., 2006, 241, 319-327.
[http://dx.doi.org/10.1016/j.jcat.2006.04.035];
d) Karade, N.N.; Budhewar, V.H.; Shinde, S.V.; Jadhav, W.N. L-proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction. Lett. Org. Chem., 2007, 4, 16.
[http://dx.doi.org/10.2174/157017807780037405];
e) Shi, C.L.; Shi, D.Q.; Kim, S.H.; Huang, Z.B.; Ji, S.J.; Ji, M. A novel and efficient one-pot synthesis of furo [3'; 4'; 5, 6] pyrido [2, 3-c] pyrazole derivatives using organocatalysts. Tetrahedron, 2008, 64, 2425-2432.
[http://dx.doi.org/10.1016/j.tet.2007.12.053];
f) Shi, C.L.; Shi, D.Q.; Kim, S.H.; Huang, Z.B.; Ji, M. A novel and efficient synthesis of 3, 3'-Benzylidenebis (4-hydroxy-6-methylpyridin-2 (1H)-one) derivatives through a multi-component reaction catalyzed by l-prolin. Aust. J. Chem., 2008, 61, 547-551.
[http://dx.doi.org/10.1071/CH08113];
g) Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem., 2010, 12(2), 231-237.
[http://dx.doi.org/10.1021/cc9001185] [PMID: 20085353]
[http://dx.doi.org/10.1039/c1gc15794a]
[http://dx.doi.org/10.3390/molecules17044300] [PMID: 22491679];
b) Bora, P.P.; Bihani, M.; Bez, G. Beyond enzymatic promiscuity: Asymmetric induction by l-proline on lipase catalyzed synthesis of polyfunctionalized 4 H-pyrans. RSC Advances, 2015, 5, 50597-50603.
[http://dx.doi.org/10.1039/C5RA08785F]
b) Mukhopadhyay, C.; Tapaswi, P.K.; Butcher, R.J. L-Proline-catalyzed one-pot expeditious synthesis of highly substituted pyridines at room temperature. Tetrahedron Lett., 2010, 51, 1797-1802.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.106]
[http://dx.doi.org/10.1016/j.crci.2011.12.001]
[http://dx.doi.org/10.1039/C4RA00876F]
[http://dx.doi.org/10.1016/j.tetlet.2006.02.137];
b) Li, G.L.; Zhao, G. Efficient allylation of aldehydes promoted by carboxylic acids. J. Org. Chem., 2005, 70(11), 4272-4278.
[http://dx.doi.org/10.1021/jo050186q] [PMID: 15903300];
c) Yanagisawa, A.; Nakamura, Y.; Arai, T. α-Amino acid-promoted asymmetric allylation of aldehydes with allylstannanes. Tetrahedron Asymmetry, 2004, 15, 1909.
[http://dx.doi.org/10.1016/j.tetasy.2004.04.036]
[http://dx.doi.org/10.1016/j.tetlet.2011.04.048]
[http://dx.doi.org/10.1002/anie.200351916] [PMID: 14502744];
b) Ramachary, D.B.; Chowdari, N.S.; Barbas, C.F., III The first organocatalytic hetero-domino knoevenagel-diels-alder-epimerization reactions: Diastereoselective synthesis of highly substituted Spiro[cyclohexane-1,2'-indan]-1'3'4-trione. Synlett, 2003.;
c) Ramachary, D.B.; Anebouselvy, K.; Chowdari, N.S.; Barbas, C.F., III Direct organocatalytic asymmetric hetero-domino reactions: The Knoevenagel/Diels-Alder/epimerization sequence for the highly diastereoselective synthesis of symmetrical and nonsymmetrical synthons of benzoannelated centropolyquinanes. J. Org. Chem., 2004, 69(18), 5838-5849.
[http://dx.doi.org/10.1021/jo049581r] [PMID: 15373469];
d) Ramachary, D.B.; Barbas, C.F., III Direct amino acid-catalyzed asymmetric desymmetrization of meso-compounds: Tandem aminoxylation/O-N bond heterolysis reactions. Org. Lett., 2005, 7(8), 1577-1580.
[http://dx.doi.org/10.1021/ol050246e] [PMID: 15816756];
e) Ramachary, D.B.; Reddy, Y.V.; Prakash, B.V. Double cascade reactions based on the barbas dienamine platform: Highly stereoselective synthesis of functionalized cyclohexanes for cardiovascular agents. Org. Biomol. Chem., 2008, 6(4), 719-726.
[http://dx.doi.org/10.1039/b718122a] [PMID: 18264572]
[http://dx.doi.org/10.1002/adsc.200800090];
b) Gruttadauria, M.; Salvo, A.M.P.; Giacalone, F.; Agrigento, P.; Noto, R. Enhanced activity and stereoselectivity of polystyrene-supported proline-based organic catalysts for direct asymmetric aldol reaction in water. Eur. J. Org. Chem., 2009, 31, 5437.
[http://dx.doi.org/10.1002/ejoc.200900829]
[http://dx.doi.org/10.1002/anie.200352097] [PMID: 14502748];
b) Calogero, S. Supported l-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. J. Catal., 2011, 282, 112.
[http://dx.doi.org/10.1016/j.jcat.2011.06.004];
c) Doyagüez, E.G.; Calderón, F.; Sanchez, F.; Fernandez-Mayoralas, A. Asymmetric aldol reaction catalyzed by a heterogenized proline on a mesoporous support. The role of the nature of solvents. J. Org. Chem., 2007, 72(24), 9353-9356.
[http://dx.doi.org/10.1021/jo070992s] [PMID: 17958368]
[http://dx.doi.org/10.1002/adsc.201900558]
[http://dx.doi.org/10.1021/ja994280y]
[http://dx.doi.org/10.1021/ja028634o] [PMID: 12515489]
[http://dx.doi.org/10.1039/c003588b] [PMID: 20454721]
[http://dx.doi.org/10.1039/C6OB00783J] [PMID: 27215302]
[http://dx.doi.org/10.1002/anie.200351266] [PMID: 12820268]
[http://dx.doi.org/10.1016/j.tetlet.2004.03.190];
b) Mossé, S.; Alexakis, A. Organocatalyzed asymmetric reactions via microwave activation. Org. Lett., 2006, 8(16), 3577-3580.
[http://dx.doi.org/10.1021/ol0614727] [PMID: 16869664]
[http://dx.doi.org/10.1021/ja01565a041]
[http://dx.doi.org/10.1021/ja011403h] [PMID: 11697970];
b) Bahmanyar, S.; Houk, K.N. The origin of stereoselectivity in proline-catalyzed intramolecular aldol reactions. J. Am. Chem. Soc., 2001, 123(51), 12911-12912.
[http://dx.doi.org/10.1021/ja011714s] [PMID: 11749554];
c) Bahmanyar, S.; Houk, K.N.; Martin, H.J.; List, B. Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. J. Am. Chem. Soc., 2003, 125(2475);
d) Bahmanyar, S.; Houk, K.N. Origins of opposite absolute stereoselectivities in proline-catalyzed direct Mannich and aldol reactions. Org. Lett., 2003, 5, 1249.;
e) Clemente, F.R.; Houk, K.N. Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew. Chem. Int. Ed., 2004, 43, 5765.;
f) Cheong, P.H-Y.; Warrier, J.S.; Hanessian, S. Catalysis of the Hajos—Parrish—Eder—Sauer—Wiechert reaction by cis- and trans-4,5-Methanoprolines: Sensitivity of proline catalysis to pyrrolidine ring. Adv. Synth. Catal., 2004, 346, 1111.;
g) Cheong, P.H-Y.; Houk, K.N. Origins and predictions of stereoselectivity in intramolecular aldol reactions catalyzed by proline derivatives. Synthesis, 2005, 9, 1533.;
h) Clemente, F.R.; Houk, K.N. Theoretical studies of stereoselectivities of intramolecular aldol cyclizations catalyzed by amino acids. J. Am. Chem. Soc., 2005, 12711294.;
i) Arnó, M.; Domingo, K.R. Density functional theory study of the mechanism of the proline-catalyzed intermolecular aldol reaction. Theor. Chem. Acc., 2002, 108, 232.;
j) Rankin, K.N.; Gauld, J.W.; Boyd, R.J. Density functional study of the proline-catalyzed direct aldol reaction. J. Phys. Chem. A, 2002, 106, 5155.;
k) List, B.; Hoang, L.; Martin, H.J. New mechanistic studies on the proline-catalyzed aldol reaction. Proc. Natl. Acad. Sci., 2004, 101, 5839.;
l) Marquez, C.; Metzger, J.O. ESI-MS study on the aldol reaction catalyzed by L-proline. Chem. Commun. (Camb.), 2006, 14, 1539-1541.
[http://dx.doi.org/10.1016/S0040-4039(02)02412-7]
[http://dx.doi.org/10.1002/1521-3773(20010202)40:3<529:AID-ANIE529>3.0.CO;2-X] [PMID: 11180360]
[http://dx.doi.org/10.1002/anie.200353546] [PMID: 15114579]
[http://dx.doi.org/10.1021/ja00354a034];
b) Orsini, F.; Pelizzoni, F.; Forte, M.; Sisti, M.; Bombieri, G.; Benetollo, F. Behaviour of aminoacids and aliphatic aldehydes in dipolar aprotic solvents: Formation of oxazolidinones-behaviour of aminoacids and aliphatic aldehydes in dipolar aprotic solvents. J. Heterocycl. Chem., 1989, 26, 837-841.
[http://dx.doi.org/10.1002/jhet.5570260360];
c) Szöllosi, G.; London, G.; Baláspiri, L.; Somlai, C.; Bartók, M. Enantioselective direct aldol addition of acetone to aliphatic aldehydes. Chirality, 2003, 15(Suppl.), S90-S96.
[http://dx.doi.org/10.1002/chir.10267] [PMID: 12884379]
[http://dx.doi.org/10.1021/ja001460v]
[http://dx.doi.org/10.1039/b304019b]
[http://dx.doi.org/10.1021/ol0485417] [PMID: 15387543]
[http://dx.doi.org/10.1021/ja0262378] [PMID: 12059180]
[http://dx.doi.org/10.1021/ol049927k] [PMID: 15012087];
b) Kumar, I.; Rode, C.V. Stereoselective synthesis of 2-amino-1, 3, 5-hexane triols using l-proline catalyzed aldol reaction. Tetrahedron Asymmetry, 2006, 17, 763.
[http://dx.doi.org/10.1016/j.tetasy.2006.02.013]
[http://dx.doi.org/10.1016/j.tetlet.2004.06.062]
[http://dx.doi.org/10.1016/j.tetlet.2004.09.061];
b) Ward, D.E.; Jheengut, V.; Akinnusi, O.T. Enantioselective direct intermolecular aldol reactions with enantiotopic group selectivity and dynamic kinetic resolution. Org. Lett., 2005, 7(6), 1181-1184.
[http://dx.doi.org/10.1021/ol050195l] [PMID: 15760169]
[http://dx.doi.org/10.1055/s-2006-950421]
[http://dx.doi.org/10.1016/j.tetasy.2006.06.022];
b) Zhou, Y.; Shan, Z. Chiral diols: A new class of additives for direct aldol reaction catalyzed by L-proline. J. Org. Chem., 2006, 71(25), 9510-9512.
[http://dx.doi.org/10.1021/jo060802y] [PMID: 17137384]
[http://dx.doi.org/10.1016/j.tetlet.2005.08.066];
b) Baker-Glenn, C.; Ancliff, R.; Gouverneur, V. A bio-catalytic route to enantioenriched, sulfanyl aldol products. Tetrahedron, 2004, 60, 7607.
[http://dx.doi.org/10.1016/j.tet.2004.06.033];
c) Edin, M.; Bäckvall, J-E.; Córdova, A. Tandem enantioselective organo-and biocatalysis: A direct entry for the synthesis of enantiomerically pure aldols. Tetrahedron Lett., 2004, 45, 7697.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.079]
[http://dx.doi.org/10.1021/ol0492952] [PMID: 15176816]
[http://dx.doi.org/10.1021/ol052164w] [PMID: 16235968]
[http://dx.doi.org/10.1016/j.tetlet.2006.05.165]
[http://dx.doi.org/10.1039/b200681b] [PMID: 12120152]
[http://dx.doi.org/10.1016/j.tetlet.2006.03.085]
[http://dx.doi.org/10.1021/ja062091r] [PMID: 16756289]
[http://dx.doi.org/10.3987/COM-06-10856]
[http://dx.doi.org/10.1002/anie.200601392] [PMID: 17001595];
b) Hayashi, Y. In water or in the presence of water? Angew. Chem. Int. Ed., 2006, 45, 8103.;
c) Blackmond, D.G.; Armstrong, A.; Coombe, V.; Wells, A. Water in organocatalytic processes: Debunking the myths. Angew. Chem. Int. Ed., 2007, 46, 3798.;
d) Córdova, A.; Notz, W.; Barbas, C.F. Direct organocata-lytic aldol reactions in buffered aqueous media. Chem. Commun., 2002, 3024.;
e) Peng, Y-Y.; Ding, Q-P.; Li, Z.; Wang, P.G.; Cheng, J-P. Proline catalyzed aldol reactions in aqueous micelles: An environmentally friendly reaction system. Tetrahedron Lett., 2003, 44, 3871.;
f) Nyberg, A. I.; Usano, A.; Pihko, P.M Proline-catalyzed ketone-aldehyde aldol reactions are accelerated by water. Synlett., 2004, 1891;
g) Wu, Y-S.; Chen, Y.; Deng, D-S.; Cai, J. Proline-catalyzed asymmetric direct aldol reaction assisted by D-camphorsulfonic acid in aqueous media. Synlett, 2005, 1627.;
h) Balalaie, S.; Bararjanian, M.; Amani, A.M.; Movas-sagh, B. (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo [b] pyran derivatives in aqueous media. Synlett, 2006, 263.
[http://dx.doi.org/10.1039/b301117h] [PMID: 12772917];
b) Wu, Y-S.; Shao, W-Y.; Zheng, C-Q.; Huang, Z-L.; Cai, J.; Deng, Q-Y. Studies on direct stereoselective aldol reactions in aqueous media. Helv. Chim. Acta, 2004, 87, 1377.
[http://dx.doi.org/10.1002/hlca.200490125];
c) Fernandez-Lopez, R.; Kofoed, J.; Machuqueiro, M.; Darbre, T. A selective direct aldol reaction in aqueous media catalyzed byzinc-proline. Eur. J. Org. Chem., 2005, 24, 5268-5276.
[http://dx.doi.org/10.1002/ejoc.200500352];
d) Kofoed, J.; Darbre, T.; Reymond, J-L. Dual mechanism of zinc-proline catalyzed aldol reactions in water. Chem. Commun. (Camb.), 2006, (14), 1482-1484.
[http://dx.doi.org/10.1039/b600703a] [PMID: 16575434]
[http://dx.doi.org/10.1016/j.tet.2005.09.122]
[http://dx.doi.org/10.1016/S0040-4039(02)02104-4];
b) Kotrusz, P.; Kmentová, I.; Gotov, B.; Toma, Š.; Solčániová, E. Proline-catalysed asymmetric aldol reaction in the room temperature ionic liquid [bmim] PF6. Chem. Commun. (Camb.), 2002, 21, 2510.
[http://dx.doi.org/10.1039/B206911C];
c) Kitazume, T.; Jiang, Z.; Kasai, K.; Mihara, Y.; Suzuki, M. Synthesis of fluorinated materials catalyzed by proline or antibody 38C2 in ionic liquid. J. Fluor. Chem., 2003, 121, 205.
[http://dx.doi.org/10.1016/S0022-1139(03)00032-0];
d) Chowdari, N.S.; Ramachary, D.B.; Barbas, C.F., III Organocatalysis in ionic liquids: Highly efficient L-proline-catalyzed direct asymmetric Mannich reactions involving ketone and aldehyde nucleophiles. Synlett, 2003, 35(12), 1906-1909.;
e) Gruttadauria, M.; Riela, S.; Lo Meo, P.; D’Anna, F.; Noto, R. Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Lett., 2004, 45, 6113.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.066]
[http://dx.doi.org/10.1002/anie.200603028] [PMID: 17183591];
b) Zhong, L.; Xiao, J.; Li, C. An unexpected inversion of enantioselectivity in direct asymmetric aldol reactions on a unique L-proline/γ-Al2O3 catalyst. J. Catal., 2006, 243, 442.
[http://dx.doi.org/10.1016/j.jcat.2006.07.025];
c) Hayashi, Y.; Matsuzawa, M.; Yamaguchi, J.; Yonehara, S.; Matsumoto, Y.; Shoji, M.; Hashizume, D.; Koshino, H. Large nonlinear effect observed in the enantiomeric excess of proline in solution and that in the solid state. Angew. Chem. Int. Ed., 2006, 45(28), 4593-4597.
[http://dx.doi.org/10.1002/anie.200601506] [PMID: 16819754];
d) Rodríguez, B.; Rantanen, T.; Bolm, C. Solvent-free asymmetric organocatalysis in a ball mill. Angew. Chem. Int. Ed., 2006, 45(41), 6924-6926.
[http://dx.doi.org/10.1002/anie.200602820] [PMID: 17001709]
[http://dx.doi.org/10.1002/1521-3765(20021216)8:24<5652::AID-CHEM5652>3.0.CO;2-J] [PMID: 12693046];
b) Bøgevig, A.; Poulsen, T.B.; Zhuang, W.; Jørgensen, K.A. Formation of optically active functionalized β-hydroxy nitrones using a proline catalyzed aldol reaction of aldehydes with carbonyl compounds and hydroxylamines. Synlett, 2003, 35(12), 1915-1918.;
c) Arnó, M.; Zaragozá, R.J.; Domingo, L.R. The nucleo-philic addition of nitrones to carbonyl compounds: Insights on the nature of the mechanism of the l-proline induced asymmetric reaction from a DFT analysis. Tetrahedron Asymmetry, 2004, 15, 1541.
[http://dx.doi.org/10.1016/j.tetasy.2004.03.031]
[http://dx.doi.org/10.1021/ja980299+];
b) Sigman, M.S.; Vachal, P.; Jacobsen, E.N. A general catalyst for the asymmetric strecker reaction this work was supported by the NIH (GM-43214). A postdoctoral fellow-ship to M.S.S. (NIH), and a predoctoral fellowship to P.V. sponsored by Alfred Bader are gratefully acknowledged. Angew. Chem. Int. Ed. Engl., 2000, 39(7), 1279-1281.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1279:AID-ANIE1279>3.0.CO;2-U] [PMID: 10767031];
c) Sigman, M.S.; Jacobsen, E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc., 1998, 120, 4901.
[http://dx.doi.org/10.1021/ja980139y];
d) Krueger, C.A.; Kuntz, K.W.; Dzierba, C.D.; Wirschun, W.G.; Gleason, J.D.; Snapper, M.L.; Hoveyda, A.H. Ti-catalyzed enantioselective addition of cyanide to imines. A practical synthesis of optically pure α-amino acids. J. Am. Chem. Soc., 1999, 121, 4284.
[http://dx.doi.org/10.1021/ja9840605]
[http://dx.doi.org/10.1016/S0040-4020(99)00449-4];
b) Desale, V.J.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S. Synthesis, admetSAR Predictions, DPPH Radical Scavenging Activity, and Potent Anti-mycobacterial Studies of Hydrazones of Substituted 4- (anilino methyl) benzohydrazides (Part 2). Curr. Computeraided Drug Des., 2021, 17(4), 493-503.
[http://dx.doi.org/10.2174/1573409916666200615141047] [PMID: 32538732];
c) Juhl, K.; Gathergood, N.; Jørgensen, K.A. Catalytic asymmetric direct mannich reactions of carbonyl compounds with α-Imino Esters. Angew. Chem. Int. Ed., 2001, 40(16), 2995-2997.
[http://dx.doi.org/10.1002/1521-3773(20010817)40:16<2995::AID-ANIE2995>3.0.CO;2-M] [PMID: 12203627];
d) Córdova, A.; Notz, W.; Zhong, G.; Betancort, J.M.; Barbas, C.F. III A highly enantioselective amino acid-catalyzed route to functionalized α-amino acids. J. Am. Chem. Soc., 2002, 124(9), 1842-1843.
[http://dx.doi.org/10.1021/ja017270h] [PMID: 11866583];
e) Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C.F. III A highly enantioselective route to either enantiomer of both α- and β-amino acid derivatives. J. Am. Chem. Soc., 2002, 124(9), 1866-1867.
[http://dx.doi.org/10.1021/ja017833p] [PMID: 11866595]
[http://dx.doi.org/10.1021/ja026412k] [PMID: 12033850]
[http://dx.doi.org/10.1016/j.jcat.2018.06.013]
[http://dx.doi.org/10.1016/j.tetasy.2006.03.023]
[http://dx.doi.org/10.1016/j.tet.2005.08.113]
[http://dx.doi.org/10.1038/nature06740] [PMID: 18288105]
[http://dx.doi.org/10.1016/j.tet.2011.06.107]
[http://dx.doi.org/10.1016/j.tet.2010.10.079]
[http://dx.doi.org/10.1016/j.ejmech.2009.09.001] [PMID: 19781824]
[http://dx.doi.org/10.1016/j.tetasy.2009.12.013]
[http://dx.doi.org/10.1002/anie.201913069] [PMID: 31837281]
[http://dx.doi.org/10.1021/ja001923x]
[http://dx.doi.org/10.1016/j.tet.2015.10.027]
[http://dx.doi.org/10.1039/C1GC16297G]
[http://dx.doi.org/10.1016/j.tetlet.2012.04.033]
[http://dx.doi.org/10.1016/j.tetlet.2008.09.155]
[http://dx.doi.org/10.1016/j.cclet.2015.07.029]
[http://dx.doi.org/10.1007/BF03246538]
[http://dx.doi.org/10.1016/j.molcata.2005.03.024]
[http://dx.doi.org/10.1055/s-0033-1340289];
b) Bhanja, C.; Jena, S.; Nayak, S.; Mohapatra, S. Organocatalytic tandem Michael addition reactions: A powerful access to the enantioselective synthesis of functionalized chromenes, thiochromenes and 1,2-dihydroquinolines. Beilstein J. Org. Chem., 2012, 8, 1668-1694.
[http://dx.doi.org/10.3762/bjoc.8.191] [PMID: 23209500];
c) Xu, D.; Wang, Y.; Luo, S.; Zhang, S.; Zhong, A.; Chen, H.; Xu, Z. A novel enantioselective catalytic Tandem Oxa-Michael-Henry reaction: One-pot organocatalytic asymmetric synthesis of 3-Nitro-2H-chromenes. Adv. Synth. Catal., 2008, 350, 2610.
[http://dx.doi.org/10.1002/adsc.200800535];
d) Karthikeyan, T.; Sankararaman, S. New pyrrolidine-triazole-based C2 symmetric organocatalysts and their utility in the asymmetric Michael reaction of β-nitrostyrenes and the synthesis of nitrochromenes. Tetrahedron Asymmetry, 2008, 19, 2741.
[http://dx.doi.org/10.1016/j.tetasy.2008.12.007];
e) Das, B.C.; Mohapatra, S.; Campbell, P.D.; Nayak, S.; Mahalingam, S.M.; Evans, T. Synthesis of function-oriented 2-phenyl-2H-chromene derivatives using L-pipecolinic acid and substituted guanidine organocatalysts. Tetrahedron Lett., 2010, 51(19), 2567-2570.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.143] [PMID: 21785516];
f) Zhang, Z.; Jakab, G.; Schreiner, P.R. Enantioselective synthesis of 2-aryl-3-nitro-2H-chromenes catalyzed by a bi-functional thiourea. Synlett, 2011, 9, 1262.;
g) Yin, G.; Zhang, R.; Li, L.; Tian, J.; Chen, L. One-pot enantioselective synthesis of 3-Nitro-2H-chromenes catalyzed by a Simple 4-Hydroxyprolinamide with 4-Nitrophenol as Cocatalyst. J. Org. Chem., 2013, 24, 5431.
[http://dx.doi.org/10.1351/PAC-CON-08-08-19]
[http://dx.doi.org/10.1021/jo047758b] [PMID: 15787561]
[http://dx.doi.org/10.1016/j.tet.2008.02.022]
[http://dx.doi.org/10.1002/jhet.5570420534]
[http://dx.doi.org/10.1016/j.tetlet.2009.12.098]
[http://dx.doi.org/10.1007/s12039-013-0527-2]
b) Enantioselective solvent-free Robinson annulation reactions Proc. Indian Acad. Sci. Chem. Sci., 2001, 113, 197.
[http://dx.doi.org/10.1016/S0957-4166(99)00142-1]
[http://dx.doi.org/10.1007/BF03245854]
[http://dx.doi.org/10.1038/nature04820] [PMID: 16778886];
b) Berkessel, A.; Groeger, H. Asymmetric Organocatlysis;
[http://dx.doi.org/10.1007/s10562-015-1586-4]
[http://dx.doi.org/10.1039/c3gc37128j]
[http://dx.doi.org/10.1016/j.tetlet.2011.05.092]
[http://dx.doi.org/10.1080/00397910701396906]
[http://dx.doi.org/10.1007/s11164-022-04728-3];
b) Behbahani, F.K.; Alipour, F. One-pot synthesis of 2-amino-4H-pyrans and 2-amino-tetrahydro-4H-chromenes using L-proline, GU. J. Sci., 2015, 28, 387-393.
[http://dx.doi.org/10.1007/s13738-012-0160-x]
[http://dx.doi.org/10.1039/c2gc35668f]
[http://dx.doi.org/10.1016/j.tetlet.2010.02.149]
b) Grošelj, U.; Schweizer, W.B.; Ebert, M.O.; Seebach, D. 5-Benzyl-3-methylimidazolidin-4-one-derived reactive intermediates of Organocatalysis-A Comforting Resemblance of X-Ray, NMR, and DFT solid-phase, liquid-phase, and gas-phase structures. Helv. Chim. Acta, 2009, 92, 1-13.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.135]
[http://dx.doi.org/10.1155/2013/593803]
[http://dx.doi.org/10.1016/j.tetlet.2012.10.055]
[http://dx.doi.org/10.3390/molecules171213856] [PMID: 23174901]
[http://dx.doi.org/10.1039/c2gc36040c]
[http://dx.doi.org/10.1631/jzus.B0820079] [PMID: 19067468]
[http://dx.doi.org/10.1021/jo9006738] [PMID: 19432437]
[http://dx.doi.org/10.1016/j.tet.2014.08.005]
[http://dx.doi.org/10.1039/C5RA27552K]
[http://dx.doi.org/10.1016/j.molcata.2013.07.009]
[http://dx.doi.org/10.1002/hlca.201000307]
[http://dx.doi.org/10.1039/c3ra43023e]
[http://dx.doi.org/10.3184/174751913X13687116634925]
[http://dx.doi.org/10.1055/s-0036-1588456]
[http://dx.doi.org/10.1055/s-0036-1591949]
[http://dx.doi.org/10.1039/c2gc35822k]
[http://dx.doi.org/10.5012/bkcs.2009.30.9.1963]
[http://dx.doi.org/10.1016/j.tet.2009.10.019]
[http://dx.doi.org/10.1016/j.arabjc.2011.12.004]
[http://dx.doi.org/10.1016/j.tetlet.2013.03.017]
[http://dx.doi.org/10.1016/j.tetlet.2006.11.010]
[http://dx.doi.org/10.1039/C4RA08615E]
[http://dx.doi.org/10.1016/j.catcom.2006.11.026]
[http://dx.doi.org/10.1021/cc100003c] [PMID: 20503973]
[http://dx.doi.org/10.1002/chem.200902932] [PMID: 20151437]
[http://dx.doi.org/10.1002/anie.200905646] [PMID: 20058286]
b) Zhang, H. Cai, Q.; Ma, D. L -Proline-promoted cui-catalyzed C-S bond formation between aryl iodides and thi-ols. Synth. Commun., 2007, 37, 25.
[http://dx.doi.org/10.1080/00397910600977533]
b) Ma, D.; Cai, Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Res., 2008, 41, 1450.;
c) Evano, G.; Toumi, M. Coste, Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.;
d) Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108, 3054.;
e) Monnier, F.; Taillefer, M. Catalytic C-C, C-N, and C-O ullmann-type coupling reactions. Angew. Chem. Int. Ed., 2009, 48, 6954.
[http://dx.doi.org/10.1021/ol302058g] [PMID: 22920713]
[http://dx.doi.org/10.1055/s-0034-1378523]
[http://dx.doi.org/10.1055/s-0033-1338526]
[http://dx.doi.org/10.1081/SCC-200034752]
[http://dx.doi.org/10.1039/C6RA22429F]
[http://dx.doi.org/10.1021/ja068120f] [PMID: 17388592]
[http://dx.doi.org/10.1038/s41598-018-35676-x] [PMID: 30470821]
[http://dx.doi.org/10.1016/j.tetlet.2013.11.016]
[http://dx.doi.org/10.1016/j.cclet.2010.12.012]
[http://dx.doi.org/10.1080/00397910802044306]
[http://dx.doi.org/10.1080/00304948.2018.1549907]
[http://dx.doi.org/10.1016/j.tet.2006.12.074]
[http://dx.doi.org/10.1007/s12039-013-0419-5]
[http://dx.doi.org/10.1007/s10562-019-02767-x]
[http://dx.doi.org/10.1039/c2gc35765h]
[http://dx.doi.org/10.1039/C6RA05441B]
b) Ehteshami, M.; Nijhuis, M.; Bernatchez, J.A.; Ablenas, C.J.; McCormick, S.; Jong, D.D.; Jochmans, D.; Götte, M. Formation of a quaternary complex of HIV-1 reverse transcriptase with a nucleotide-competing inhibitor and its ATP enhancer. J. Biol. Chem., 2013, 28, 17336-17346.;
c) Bai, D.L.; Tang, X.C.; He, X.C.; Huperzine, A. A potential therapeutic agent for treatment of alzheimer’s disease. Curr. Med. Chem., 2000, 7, 355-374.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.123]