Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Mini-Review Article

A Systematic Review of Various In-vivo Screening Models as well as the Mechanisms Involved in Parkinson's Disease Screening Procedures

Author(s): Ankita Wal, Pranay Wal*, Himangi Vig, Abdul Samad, Madhusmruti Khandai and Sachin Tyagi

Volume 19, Issue 2, 2024

Published on: 29 August, 2022

Page: [124 - 136] Pages: 13

DOI: 10.2174/2772432817666220707101550

Price: $65

Abstract

Background: Parkinson's disease is the second most common neurological ailment. It is also known that it affects practically all other brain components, although only gradually. Animal models are mostly used to test the efficacy of treatment against a specific enzyme and aid in creating a new drug dose.

Objective: The purpose of this review is to highlight in vivo Parkinson's disease screening approaches, as well as the mechanism of action of each drug involved in Parkinson's disease development, and discuss the limitations of each model. In addition, it also sheds light on Parkinson's disease genetic models.

Methods: The data for the publication was gathered from databases, such as PubMed, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate, after a thorough examination of diverse research findings linked to Parkinson’s disease and its screening models.

Results: Each chemical or drug has a unique mechanism for causing disease, whether through the production of reactive oxygen species or the blockage of the dopamine receptor. Almost every disease symptom, whether physical or behavioral, is covered by each of the constructed models' unique set of indicators and symptoms.

Conclusion: Animal models are typically used to assess a medicine's activity against a specific enzyme and aid in the creation of a new drug dose. The process, restrictions, and mechanisms interfering with the screening, as well as the level of animal suffering, must all be thoroughly reviewed before any model for screening for Parkinson's disease can be implemented.

Keywords: Parkinson’s disease, 6-hydroxydopamine model, 1-methyl 4-phenyl-1, 2, 3, 6-tetrahydropyridine model, reserpine antagonism, chlorpromazine antagonism, tremorine, oxotremorine antagonism.

Graphical Abstract

[1]
Haas, B.R.; Stewart, T.H.; Zhang, J. Premotor biomarkers for Parkinson’s disease - A promising direction of research. Transl. Neurodegener., 2012, 1(1), 11.
[http://dx.doi.org/10.1186/2047-9158-1-11] [PMID: 23211054]
[2]
Klockgether, T.; Turski, L. Excitatory amino acids and the basal ganglia: Implications for the therapy of Parkinson’s disease. Trends Neurosci., 1989, 12(8), 285-286.
[http://dx.doi.org/10.1016/0166-2236(89)90007-6] [PMID: 2475945]
[3]
Fahn, S.; Sulzer, D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx, 2004, 1(1), 139-154.
[http://dx.doi.org/10.1602/neurorx.1.1.139] [PMID: 15717014]
[4]
Luthman, J.; Fredriksson, A.; Sundström, E.; Jonsson, G.; Archer, T. Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: Motor behavior and monoamine alterations at adult stage. Behav. Brain Res., 1989, 33(3), 267-277.
[http://dx.doi.org/10.1016/S0166-4328(89)80121-4] [PMID: 2547396]
[5]
Van Kampen, J.M.; McGeer, E.G.; Stoessl, A.J. Dopamine transporter function assessed by antisense knockdown in the rat: Protection from dopamine neurotoxicity. Synapse, 2000, 37(3), 171-178.
[http://dx.doi.org/10.1002/1098-2396(20000901)37:3<171:AID-SYN1>3.0.CO;2-R] [PMID: 10881039]
[6]
Cohen, G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology, 1984, 5(1), 77-82.
[PMID: 6326007]
[7]
Blum, D.; Torch, S.; Lambeng, N.; Nissou, M.; Benabid, A.L.; Sadoul, R.; Verna, J.M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol., 2001, 65(2), 135-172.
[http://dx.doi.org/10.1016/S0301-0082(01)00003-X] [PMID: 11403877]
[8]
Truong, L.; Allbutt, H.; Kassiou, M.; Henderson, J.M. Developing a preclinical model of Parkinson’s disease: A study of behaviour in rats with graded 6-OHDA lesions. Behav. Brain Res., 2006, 169(1), 1-9.
[http://dx.doi.org/10.1016/j.bbr.2005.11.026] [PMID: 16413939]
[9]
Bové, J.; Zhou, C.; Jackson-Lewis, V.; Taylor, J.; Chu, Y.; Rideout, H.J.; Wu, D.C.; Kordower, J.H.; Petrucelli, L.; Przedborski, S. Proteasome inhibition and Parkinson’s disease modeling. Ann. Neurol., 2006, 60(2), 260-264.
[http://dx.doi.org/10.1002/ana.20937] [PMID: 16862585]
[10]
Hasegawa, E.; Takeshige, K.; Oishi, T.; Murai, Y.; Minakami, S. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun., 1990, 170(3), 1049-1055.
[http://dx.doi.org/10.1016/0006-291X(90)90498-C] [PMID: 2167668]
[11]
Hensley, K.; Pye, Q.N.; Maidt, M.L.; Stewart, C.A.; Robinson, K.A.; Jaffrey, F.; Floyd, R.A. Interaction of α-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J. Neurochem., 1998, 71(6), 2549-2557.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71062549.x] [PMID: 9832155]
[12]
Burns, R.S.; Chiueh, C.C.; Markey, S.P.; Ebert, M.H.; Jacobowitz, D.M.; Kopin, I.J. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA, 1983, 80(14), 4546-4550.
[http://dx.doi.org/10.1073/pnas.80.14.4546] [PMID: 6192438]
[13]
Nomoto, M.; Jenner, P.; Marsden, C.D. The D1 agonist SKF 38393 inhibits the antiparkinsonian activity of the D2 agonist LY 171555 in the MPTP-treated marmoset. Neurosci. Lett., 1988, 93(2-3), 275-280.
[http://dx.doi.org/10.1016/0304-3940(88)90095-X] [PMID: 2907373]
[14]
Meredith, G.E.; Totterdell, S.; Beales, M.; Meshul, C.K. Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson’s disease. Exp. Neurol., 2009, 219(1), 334-340.
[http://dx.doi.org/10.1016/j.expneurol.2009.06.005] [PMID: 19523952]
[15]
Everett, G.M. Tremor produced by drugs. Nature, 1956, 177(4522), 1238.
[http://dx.doi.org/10.1038/1771238a0] [PMID: 13334520]
[16]
Cho, A.K.; Haslett, W.L.; Jenden, D.J. The identification of an active metabolite of tremorine. Biochem. Biophys. Res. Commun., 1961, 5(4), 276-279.
[http://dx.doi.org/10.1016/0006-291X(61)90162-0] [PMID: 13693213]
[17]
Jurna, I.; Nell, T.; Schreyer, I. Motor disturbance induced by tremorine and oxotremorine. Naunyn Schmiedebergs Arch. Pharmakol., 1970, 267(1), 80-98.
[http://dx.doi.org/10.1007/BF00997117] [PMID: 4393397]
[18]
Slater, P.; Dickinson, S.L. Effects of lesions in some basal ganglia nuclei and efferent projections on tremorine-induced limb rigidity in rats. Exp. Neurol., 1983, 80(1), 31-41.
[http://dx.doi.org/10.1016/0014-4886(83)90004-3] [PMID: 6832273]
[19]
Glow, P.H. Some aspects of the effects of acute reserpine treatment on behaviour. J. Neurol. Neurosurg. Psychiatry, 1959, 22(1), 11-32.
[http://dx.doi.org/10.1136/jnnp.22.1.11] [PMID: 13642073]
[20]
Colpaert, F.C. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology, 1987, 26(9), 1431-1440.
[http://dx.doi.org/10.1016/0028-3908(87)90110-9] [PMID: 3670563]
[21]
Wagner, B.H.; Anderson, R.J. Prevention of reserpine rigidity by alpha-2 adrenergic antagonists. Pharmacol. Biochem. Behav., 1982, 16(5), 731-735.
[http://dx.doi.org/10.1016/0091-3057(82)90226-X] [PMID: 6124006]
[22]
Henry, J.P.; Sagné, C.; Botton, D.; Isambert, M.F.; Gasnier, B. Molecular pharmacology of the vesicular monoamine transporter. Adv. Pharmacol., 1998, 42, 236-239.
[http://dx.doi.org/10.1016/S1054-3589(08)60736-X] [PMID: 9327887]
[23]
Abílio, V.C.; Vera, J.A., Jr; Ferreira, L.S.; Duarte, C.R.; Carvalho, R.C.; Grassl, C.; Martins, C.R.; Torres-Leite, D.; Bignotto, M.; Tufik, S. Ribeiro, Rde, A.; Frussa-Filho, R. Effects of melatonin on orofacial movements in rats. Psychopharmacology, 2002, 161(4), 340-347.
[http://dx.doi.org/10.1007/s00213-002-1081-7] [PMID: 12073160]
[24]
Lohr, J.B. Oxygen radicals and neuropsychiatric illness. Some speculations. Arch. Gen. Psychiatry, 1991, 48(12), 1097-1106.
[http://dx.doi.org/10.1001/archpsyc.1991.01810360061009] [PMID: 1845228]
[25]
Riaz, B.; Ikram, R.; Sikandar, B. Anticataleptic activity of Zamzam water in chlorpromazine induced animal model of Parkinson disease. Pak. J. Pharm. Sci., 2018, 31(2), 393-397.
[PMID: 29618426]
[26]
Khatoon, H.; Najam, R.; Mirza, T.; Sikandar, B. Beneficial anti-Parkinson effects of camel milk in chlorpromazine induced animal model: Behavioural and histopathological study. Pak. J. Pharm. Sci., 2016, 29(5), 1525-1529.
[PMID: 27731807]
[27]
McEvoy, J.P. Antipsychotic drugs. Encyclopedia of neuroscience; Elsevier Ltd: Amsterdam, 2009, pp. 487-492.
[http://dx.doi.org/10.1016/B978-008045046-9.00375-2]
[28]
Sandhu, K.; Rana, A. Evaluation of antiparkinson’s activity of Nigella sativa seeds in chlorpromazine induced experimental animal model. Acad. Sci., 2013, 5(3), 975-1491.
[29]
Cairo, T.A.; Woodward, T.S.; Ngan, E.T. Decreased encoding efficiency in schizophrenia. Biol. Psychiatry, 2006, 59(8), 740-746.
[http://dx.doi.org/10.1016/j.biopsych.2005.08.009] [PMID: 16229823]
[30]
Pierre, J.M. Extrapyramidal symptoms with atypical antipsychotics: Incidence, prevention and management. Drug Saf., 2005, 28(3), 191-208.
[http://dx.doi.org/10.2165/00002018-200528030-00002] [PMID: 15733025]
[31]
Allen, R.M. Dopamine hypersensitivity and tardive dyskinesia. Am. J. Psychiatry, 1977, 134(10), 1154-1155.
[http://dx.doi.org/10.1176/ajp.134.10.1154] [PMID: 900277]
[32]
Dexter, D.T.; Holley, A.E.; Flitter, W.D.; Slater, T.F.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Increased levels of lipid hydroperoxides in the Parkinsonian substantia nigra: An HPLC and ESR study. Mov. Disord., 1994, 9(1), 92-97.
[http://dx.doi.org/10.1002/mds.870090115] [PMID: 8139611]
[33]
Tripathi, K.D. Essentials of Medical Pharmacology; JP Medical Ltd: London, 2013, pp. 452-460.
[34]
Chadwick, B.; Waller, D.G.; Edwards, J.G. Potentially hazardous drug interactions with psychotropics. Adv. Psychiatr. Treat., 2005, 11(6), 440-449.
[http://dx.doi.org/10.1192/apt.11.6.440]
[35]
McDonnell, P.J.; Jacobs, M.R. Hospital admissions resulting from preventable adverse drug reactions. Ann. Pharmacother., 2002, 36(9), 1331-1336.
[http://dx.doi.org/10.1345/aph.1A333] [PMID: 12196047]
[36]
Lucca, J.M.; Ramesh, M.; Parthasarathi, G.; Raman, R. An adverse drug interaction of haloperidol with levodopa. Indian J. Psychol. Med., 2015, 37(2), 220-222.
[http://dx.doi.org/10.4103/0253-7176.155636] [PMID: 25969611]
[37]
Duty, S.; Jenner, P. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol., 2011, 164(4), 1357-1391.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[38]
Remington, G.; Mamo, D.; Labelle, A.; Reiss, J.; Shammi, C.; Mannaert, E.; Mann, S.; Kapur, S. A PET study evaluating dopamine D2 receptor occupancy for long-acting injectable risperidone. Am. J. Psychiatry, 2006, 163(3), 396-401.
[http://dx.doi.org/10.1176/appi.ajp.163.3.396] [PMID: 16513859]
[39]
Kapur, S.; Zipursky, R.; Jones, C.; Remington, G.; Houle, S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: A double-blind PET study of first-episode schizophrenia. Am. J. Psychiatry, 2000, 157(4), 514-520.
[http://dx.doi.org/10.1176/appi.ajp.157.4.514] [PMID: 10739409]
[40]
Sharif, Z.A. Pharmacokinetics, metabolism, and drug-drug interactions of atypical antipsychotics in special populations. Prim. Care Companion J. Clin. Psychiatry, 2003, 5(Suppl. 6), 22-25.
[41]
Elliott, P.J.; Close, S.P.; Walsh, D.M.; Hayes, A.G.; Marriott, A.S. Neuroleptic-induced catalepsy as a model of Parkinson’s disease. II. Effect of glutamate antagonists. J. Neural Transm. Park. Dis. Dement. Sect., 1990, 2(2), 91-100.
[http://dx.doi.org/10.1007/BF02260897] [PMID: 1977410]
[42]
Cousins, M.S.; Carriero, D.L.; Salamone, J.D. Tremulous jaw movements induced by the acetylcholinesterase inhibitor tacrine: Effects of antiparkinsonian drugs. Eur. J. Pharmacol., 1997, 322(2-3), 137-145.
[http://dx.doi.org/10.1016/S0014-2999(97)00008-3] [PMID: 9098680]
[43]
Gyertyán, I.; Sághy, K. The selective dopamine D3 receptor antagonists, SB 277011-A and S 33084 block haloperidol-induced catalepsy in rats. Eur. J. Pharmacol., 2007, 572(2-3), 171-174.
[http://dx.doi.org/10.1016/j.ejphar.2007.06.035] [PMID: 17628535]
[44]
Zhang, J.; Fitsanakis, V.A.; Gu, G.; Jing, D.; Ao, M.; Amarnath, V.; Montine, T.J. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: A link through mitochondrial dysfunction. J. Neurochem., 2003, 84(2), 336-346.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01525.x] [PMID: 12558996]
[45]
Tateno, F.; Sakakibara, R.; Yokoi, Y.; Kishi, M.; Ogawa, E.; Uchiyama, T.; Yamamoto, T.; Yamanishi, T.; Takahashi, O. Levodopa ameliorated anorectal constipation in de novo Parkinson’s disease: The QL-GAT study. Parkinsonism Relat. Disord., 2011, 17(9), 662-666.
[http://dx.doi.org/10.1016/j.parkreldis.2011.06.002] [PMID: 21705259]
[46]
Abou-Sleiman, P.M.; Muqit, M.M.; Wood, N.W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci., 2006, 7(3), 207-219.
[http://dx.doi.org/10.1038/nrn1868] [PMID: 16495942]
[47]
Antony, P.M.; Diederich, N.J.; Balling, R. Parkinson’s disease mouse models in translational research. Mamm. Genome, 2011, 22(7-8), 401-419.
[http://dx.doi.org/10.1007/s00335-011-9330-x] [PMID: 21559878]
[48]
Dawson, T.M.; Ko, H.S.; Dawson, V.L. Genetic animal models of Parkinson’s disease. Neuron, 2010, 66(5), 646-661.
[http://dx.doi.org/10.1016/j.neuron.2010.04.034] [PMID: 20547124]
[49]
Kitada, T.; Tong, Y.; Gautier, C.A.; Shen, J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J. Neurochem., 2009, 111(3), 696-702.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06350.x] [PMID: 19694908]
[50]
Kirik, D.; Rosenblad, C.; Burger, C.; Lundberg, C.; Johansen, T.E.; Muzyczka, N.; Mandel, R.J.; Björklund, A. Parkinson-like neuro-degeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J. Neurosci., 2002, 22(7), 2780-2791.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02780.2002] [PMID: 11923443]
[51]
Fernagut, P.O.; Chesselet, M.F. Alpha-synuclein and transgenic mouse models. Neurobiol. Dis., 2004, 17(2), 123-130.
[http://dx.doi.org/10.1016/j.nbd.2004.07.001] [PMID: 15474350]
[52]
Chesselet, M.F. in vivo alpha-synuclein overexpression in rodents: A useful model of Parkinson’s disease? Exp. Neurol., 2008, 209(1), 22-27.
[http://dx.doi.org/10.1016/j.expneurol.2007.08.006] [PMID: 17949715]
[53]
Richfield, E.K.; Thiruchelvam, M.J.; Cory-Slechta, D.A.; Wuertzer, C.; Gainetdinov, R.R.; Caron, M.G.; Di Monte, D.A.; Federoff, H.J. Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice. Exp. Neurol., 2002, 175(1), 35-48.
[http://dx.doi.org/10.1006/exnr.2002.7882] [PMID: 12009758]
[54]
Thiruchelvam, M.J.; Powers, J.M.; Cory-Slechta, D.A.; Richfield, E.K. Risk factors for dopaminergic neuron loss in human α-synuclein transgenic mice. Eur. J. Neurosci., 2004, 19(4), 845-854.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03139.x] [PMID: 15009131]
[55]
Cookson, M.R. The role of Leucine-Rich Repeat Kinase 2 (LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci., 2010, 11(12), 791-797.
[http://dx.doi.org/10.1038/nrn2935] [PMID: 21088684]
[56]
Li, Y.; Liu, W.; Oo, T.F.; Wang, L.; Tang, Y.; Jackson-Lewis, V.; Zhou, C.; Geghman, K.; Bogdanov, M.; Przedborski, S.; Beal, M.F.; Burke, R.E.; Li, C. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat. Neurosci., 2009, 12(7), 826-828.
[http://dx.doi.org/10.1038/nn.2349] [PMID: 19503083]
[57]
Li, X.; Patel, J.C.; Wang, J.; Avshalumov, M.V.; Nicholson, C.; Buxbaum, J.D.; Elder, G.A.; Rice, M.E.; Yue, Z. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J. Neurosci., 2010, 30(5), 1788-1797.
[http://dx.doi.org/10.1523/JNEUROSCI.5604-09.2010] [PMID: 20130188]
[58]
Dawson, T.M.; Dawson, V.L. The role of parkin in familial and sporadic Parkinson’s disease. Mov. Disord., 2010, 25(S1)(Suppl. 1), S32-S39.
[http://dx.doi.org/10.1002/mds.22798] [PMID: 20187240]
[59]
Itier, J.M.; Ibáñez, P.; Mena, M.A.; Abbas, N.; Cohen-Salmon, C.; Bohme, G.A.; Laville, M.; Pratt, J.; Corti, O.; Pradier, L.; Ret, G.; Joubert, C.; Periquet, M.; Araujo, F.; Negroni, J.; Casarejos, M.J.; Canals, S.; Solano, R.; Serrano, A.; Gallego, E.; Sanchez, M.; Denefle, P.; Benavides, J.; Tremp, G.; Rooney, T.A.; Brice, A.; Garcia de Yebenes, J. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet., 2003, 12(18), 2277-2291.
[http://dx.doi.org/10.1093/hmg/ddg239] [PMID: 12915482]
[60]
Goldberg, M.S.; Fleming, S.M.; Palacino, J.J.; Cepeda, C.; Lam, H.A.; Bhatnagar, A.; Meloni, E.G.; Wu, N.; Ackerson, L.C.; Klapstein, G.J.; Gajendiran, M.; Roth, B.L.; Chesselet, M.F.; Maidment, N.T.; Levine, M.S.; Shen, J. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem., 2003, 278(44), 43628-43635.
[http://dx.doi.org/10.1074/jbc.M308947200] [PMID: 12930822]
[61]
Whitworth, A.J.; Theodore, D.A.; Greene, J.C.; Beneš, H.; Wes, P.D.; Pallanck, L.J. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2005, 102(22), 8024-8029.
[http://dx.doi.org/10.1073/pnas.0501078102] [PMID: 15911761]
[62]
Von Coelln, R.; Thomas, B.; Savitt, J.M.; Lim, K.L.; Sasaki, M.; Hess, E.J.; Dawson, V.L.; Dawson, T.M. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10744-10749.
[http://dx.doi.org/10.1073/pnas.0401297101] [PMID: 15249681]
[63]
Perez, F.A.; Palmiter, R.D. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 2174-2179.
[http://dx.doi.org/10.1073/pnas.0409598102] [PMID: 15684050]
[64]
Wang, C.; Lu, R.; Ouyang, X.; Ho, M.W.; Chia, W.; Yu, F.; Lim, K.L. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J. Neurosci., 2007, 27(32), 8563-8570.
[http://dx.doi.org/10.1523/JNEUROSCI.0218-07.2007] [PMID: 17687034]
[65]
Park, J.; Lee, S.B.; Lee, S.; Kim, Y.; Song, S.; Kim, S.; Bae, E.; Kim, J.; Shong, M.; Kim, J.M.; Chung, J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 2006, 441(7097), 1157-1161.
[http://dx.doi.org/10.1038/nature04788] [PMID: 16672980]
[66]
Clark, I.E.; Dodson, M.W.; Jiang, C.; Cao, J.H.; Huh, J.R.; Seol, J.H.; Yoo, S.J.; Hay, B.A.; Guo, M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 2006, 441(7097), 1162-1166.
[http://dx.doi.org/10.1038/nature04779] [PMID: 16672981]
[67]
Lakso, M.; Vartiainen, S.; Moilanen, A.M.; Sirviö, J.; Thomas, J.H.; Nass, R.; Blakely, R.D.; Wong, G. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem., 2003, 86(1), 165-172.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01809.x] [PMID: 12807436]
[68]
Imai, Y.; Gehrke, S.; Wang, H.Q.; Takahashi, R.; Hasegawa, K.; Oota, E.; Lu, B. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J., 2008, 27(18), 2432-2443.
[http://dx.doi.org/10.1038/emboj.2008.163] [PMID: 18701920]
[69]
Klaidman, L.K.; Adams, J.D., Jr; Leung, A.C.; Kim, S.S.; Cadenas, E. Redox cycling of MPP+: Evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic. Biol. Med., 1993, 15(2), 169-179.
[http://dx.doi.org/10.1016/0891-5849(93)90056-Z] [PMID: 8397142]
[70]
Jackson-Lewis, V.; Przedborski, S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat. Protoc., 2007, 2(1), 141-151.
[http://dx.doi.org/10.1038/nprot.2006.342] [PMID: 17401348]
[71]
Schmidt, N.; Ferger, B. Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm., 2001, 108(11), 1263-1282.
[http://dx.doi.org/10.1007/s007020100004] [PMID: 11768626]
[72]
Basil, A.H.; Sim, J.P.L.; Lim, G.G.Y.; Lin, S.; Chan, H.Y.; Engelender, S.; Lim, K.L. AF-6 protects against dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Front. Cell. Neurosci., 2017, 11, 241.
[http://dx.doi.org/10.3389/fncel.2017.00241] [PMID: 28848400]
[73]
Farquharson, M.E.; Johnston, R.G. Antagonism of the effects of tremorine by tropine derivatives. Br. J. Pharmacol. Chemother., 1959, 14(4), 559-566.
[http://dx.doi.org/10.1111/j.1476-5381.1959.tb00964.x] [PMID: 13821613]
[74]
Algeri, S.; Achilli, G.; Calderini, G.; Perego, C.; Ponzio, F.; Toffano, G. Age-related changes in metabolic responses to chronic monoamine depletion in central dopaminergic and serotonergic systems of rats treated with reserpine. Neurobiol. Aging, 1987, 8(1), 61-66.
[http://dx.doi.org/10.1016/0197-4580(87)90059-5] [PMID: 2436067]
[75]
Abílio, V.C.; Araujo, C.C.; Bergamo, M.; Calvente, P.R.; D’Almeida, V. Ribeiro, Rde.A.; Frussa-Filho, R. Vitamin E attenuates reserpine-induced oral dyskinesia and striatal oxidized glutathione/reduced glutathione ratio (GSSG/GSH) enhancement in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(1), 109-114.
[http://dx.doi.org/10.1016/S0278-5846(02)00340-8] [PMID: 12551732]
[76]
Burger, M.; Fachinetto, R.; Calegari, L.; Paixão, M.W.; Braga, A.L.; Rocha, J.B. Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide. Brain Res. Bull., 2004, 64(4), 339-345.
[http://dx.doi.org/10.1016/j.brainresbull.2004.09.006] [PMID: 15561469]
[77]
Bergamo, M.; Abílio, V.C.; Queiroz, C.M.; Barbosa-Júnior, H.N.; Abdanur, L.R.; Frussa-Filho, R. Effects of age on a new animal model of tardive dyskinesia. Neurobiol. Aging, 1997, 18(6), 623-629.
[http://dx.doi.org/10.1016/S0197-4580(97)00152-8] [PMID: 9461060]
[78]
Gajre, M.P.; Jain, D.; Jadhav, A. Accidental haloperidol poisoning in children. Indian J. Pharmacol., 2012, 44(6), 803-804.
[http://dx.doi.org/10.4103/0253-7613.103307] [PMID: 23248417]
[79]
Satar, S.; Yilmaz, H.L.; Gokel, Y.; Toprak, N. A case of child abuse: Haloperidol poisoning of a child caused by his mother. Eur. J. Emerg. Med., 2001, 8(4), 317-319.
[http://dx.doi.org/10.1097/00063110-200112000-00013] [PMID: 11785601]
[80]
Rosen, K.M.; Veereshwarayya, V.; Moussa, C.E.; Fu, Q.; Goldberg, M.S.; Schlossmacher, M.G.; Shen, J.; Querfurth, H.W. Parkin protects against mitochondrial toxins and β-amyloid accumulation in skeletal muscle cells. J. Biol. Chem., 2006, 281(18), 12809-12816.
[http://dx.doi.org/10.1074/jbc.M512649200] [PMID: 16517603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy