Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

An Update on Recent Green Synthetic Approaches to Coumarins

Author(s): Bhargav Bhimani, Ashish Patel* and Drashti Shah

Volume 21, Issue 1, 2024

Published on: 16 September, 2022

Page: [22 - 39] Pages: 18

DOI: 10.2174/1570193X19666220701111051

Price: $65

Abstract

Coumarin and its derivatives are privileged heterocyclic motifs and important building blocks for developing the biologically active compound due to its significant role in the development of new drugs. As a result, many methodologies have been developed to synthesize this important class of compounds. However, some methods are associated with toxic and corrosive catalysts, longer reaction time, poor yield, less purity, and by-products along with the desired product. In order to minimize the utilization and generation of toxic organic substances, green synthetic methods are applied in this manner. Green chemistry methods cover a wide range of methods, including the application of ultrasound and microwaves, ionic liquids and deep eutectic solvents, solvent-free and catalyst-free synthesis, and mechanosynthesis. These green synthetic methods have successfully performed all typical condensation reactions for coumarin synthesis like Knoevenagel, Perkin, Kostanecki-Robinson, Pechmann, and Reformatsky reactions. Compared to conventional methods, these methods not only minimize the use and generation of harmful chemicals but also improve reaction efficiency in terms of product yields, purity, energy consumption, and post-synthetic procedures. Due to the implication of coumarin (2-oxo-2H-1-benzopyran) backbone as a biologically active ubiquitous fragment and the recent demands of reducing toxic solvents, catalysts, and energy consumption, this review summarized various green synthetic methods for coumarin synthesis. Moreover, researchers working on this coumarin scaffold synthesis can find handy information from this review on the green synthetic approaches to their synthesis.

Keywords: Coumarin, green chemistry, phenols, β-ketoester, sustainable chemistry, solvents

Graphical Abstract

[1]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 963248.
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[2]
Prahadeesh, N.; Sithambaresan, M.; Mathiventhan, U. A study on hydrogen peroxide scavenging activity and ferric reducing ability of simple coumarins. Emerg. Sci. J., 2018, 2(6), 417-427.
[http://dx.doi.org/10.28991/esj-2018-01161]
[3]
Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.H.; Sun, C.M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem., 2006, 13(23), 2795-2818.
[http://dx.doi.org/10.2174/092986706778521968] [PMID: 17073630]
[4]
Bairagi, S.H.; Salaskar, P.P.; Loke, S.D.; Surve, N.N.; Tandel, D.V.; Dusara, M.D. Medicinal significance of coumarins: A review. Int. J. Pharm. Res., 2012, 4, 16-19.
[5]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[6]
O’Kennedy, R.; Thornes, R.D. Coumarins: Biology, applications and mode of action, 1st ed; Wiley & Sons: New York, 1997.
[7]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
[8]
Fan, H.; Peng, J.; Hamann, M.T.; Hu, J.F. Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem. Rev., 2008, 108(1), 264-287.
[http://dx.doi.org/10.1021/cr078199m] [PMID: 18095718]
[9]
Ridley, C.P.; Reddy, M.V.; Rocha, G.; Bushman, F.D.; Faulkner, D.J. Total synthesis and evaluation of lamellarin α 20-Sulfate analogues. Bioorg. Med. Chem., 2002, 10(10), 3285-3290.
[http://dx.doi.org/10.1016/S0968-0896(02)00237-7] [PMID: 12150874]
[10]
Reddy, M.S.; Srinivasulu, M.; Satyanarayana, N.; Kondapi, A.K.; Venkateswarlu, Y. New potent cytotoxic lamellarin alkaloids from Indian ascidian Didemnum obscurum. Tetrahedron, 2005, 61(39), 9242-9247.
[http://dx.doi.org/10.1016/j.tet.2005.07.067]
[11]
McKee, T.C.; Fuller, R.W.; Covington, C.D.; Cardellina, J.H., II; Gulakowski, R.J.; Krepps, B.L.; McMahon, J.B.; Boyd, M.R. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii. J. Nat. Prod., 1996, 59(8), 754-758.
[http://dx.doi.org/10.1021/np9603784] [PMID: 8792623]
[12]
Flavin, M.T.; Rizzo, J.D.; Khilevich, A.; Kucherenko, A.; Sheinkman, A.K.; Vilaychack, V.; Lin, L.; Chen, W.; Greenwood, E.M.; Pengsuparp, T.; Pezzuto, J.M.; Hughes, S.H.; Flavin, T.M.; Cibulski, M.; Boulanger, W.A.; Shone, R.L.; Xu, Z.Q. Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (+/-)-calanolide A and its enantiomers. J. Med. Chem., 1996, 39(6), 1303-1313.
[http://dx.doi.org/10.1021/jm950797i] [PMID: 8632437]
[13]
Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Johnson, R.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 1993, 36(26), 4131-4138.
[http://dx.doi.org/10.1021/jm00078a001] [PMID: 7506311]
[14]
Abdou, M.M. 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications. Arab. J. Chem., 2017, 10, 3664-3675.
[http://dx.doi.org/10.1016/j.arabjc.2014.04.005]
[15]
Al-Ayed, A.S. Synthesis, spectroscopy and electrochemistry of New 3-(5-Aryl-4,5-Dihydro-1H-Pyrazol-3-yl)-4-Hydroxy-2H-Chromene-2-One 4, 5 as a novel class of potential antibacterial and antioxidant derivatives. Int. J. Org. Chem. (Irvine), 2011, 1(3), 87-96.
[http://dx.doi.org/10.4236/ijoc.2011.13014]
[16]
Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The antimicrobial agents. Syst. Rev. Pharm., 2017, 8(1), 62-70.
[http://dx.doi.org/10.5530/srp.2017.1.11]
[17]
Kayser, O.; Kolodziej, H. Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Med., 1997, 63(6), 508-510.
[http://dx.doi.org/10.1055/s-2006-957752] [PMID: 9434601]
[18]
Liu, H.; Ren, Z.L.; Wang, W.; Gong, J.X.; Chu, M.J.; Ma, Q.W.; Wang, J.C.; Lv, X.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur. J. Med. Chem., 2018, 157, 81-87.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.059] [PMID: 30075404]
[19]
Sahoo, J.; Kumar, P.S.; Mekap, S.K. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J. Taibah Univ. Sci., 2015, 9(2), 187-195.
[http://dx.doi.org/10.1016/j.jtusci.2014.08.001]
[20]
Vekariya, R.H.; Patel, K.D.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. A one pot, three component synthesis of coumarin hybrid thiosemicarbazone derivatives and their antimicrobial evolution. J. Assoc. Arab. Univ. Basic Appl. Sci., 2017, 23(1), 10-19.
[http://dx.doi.org/10.1016/j.jaubas.2016.04.002]
[21]
Basanagouda, M.; Shivashankar, K.; Kulkarni, M.V.; Rasal, V.P.; Patel, H.; Mutha, S.S.; Mohite, A.A. Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin. Eur. J. Med. Chem., 2010, 45(3), 1151-1157.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.022] [PMID: 20047777]
[22]
Soni, J.N.; Soman, S.S. Reactions of coumarin-3-carboxylate, its crystallographic study and antimicrobial activity. Pharma Chem., 2014, 6, 396-403.
[23]
Vyas, K.B.; Nimavat, K.S.; Jani, G.R.; Hathi, M.V. Synthesis and antimicrobial activity of coumarin derivatives metal complexes: An in vitro evaluation. Orbital: Electron. J. Chem., 2009, 1, 183-192.
[24]
Wei, Y.; Li, S.Q.; Hao, S.H. New angular oxazole-fused coumarin derivatives: Synthesis and biological activities. Nat. Prod. Res., 2018, 32(15), 1824-1831.
[http://dx.doi.org/10.1080/14786419.2017.1405408] [PMID: 29156971]
[25]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Novel macromolecules derived from coumarin: Synthesis and antioxidant activity. Sci. Rep., 2015, 5(1), 11825.
[http://dx.doi.org/10.1038/srep11825] [PMID: 26134661]
[26]
Matos, M.J.; Mura, F.; Vazquez-Rodriguez, S.; Borges, F.; Santana, L.; Uriarte, E.; Olea-Azar, C. Study of coumarin-resveratrol hybrids as potent antioxidant compounds. Molecules, 2015, 20(2), 3290-3308.
[http://dx.doi.org/10.3390/molecules20023290] [PMID: 25690290]
[27]
Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.; Olea-Azar, C.; Barriga, G. Synthesis and antioxidant study of new polyphenolic hybrid-coumarins. Arab. J. Chem., 2018, 11(4), 525-537.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.007]
[28]
Nagamallu, R.; Srinivasan, B.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem. Lett., 2016, 26(2), 690-694.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.038] [PMID: 26631319]
[29]
Salem, M.A.I.; Marzouk, M.I.; El-Kazak, A.M. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules, 2016, 21(2), 249.
[http://dx.doi.org/10.3390/molecules21020249] [PMID: 26907244]
[30]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[31]
Bagheri, S.M.; Khoobi, M.; Nadri, H.; Moradi, A.; Emami, S.; Jalili-Baleh, L.; Jafarpour, F.; Homayouni Moghadam, F.; Foroumadi, A.; Shafiee, A. Synthesis and anticholinergic activity of 4-hydroxycoumarin derivatives containing substituted benzyl-1,2,3-triazole moiety. Chem. Biol. Drug Des., 2015, 86(5), 1215-1220.
[http://dx.doi.org/10.1111/cbdd.12588] [PMID: 26010139]
[32]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.021] [PMID: 23644208]
[33]
Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[34]
Olmedo, D.; Sancho, R.; Bedoya, L.M.; López-Pérez, J.L.; Del Olmo, E.; Muñoz, E.; Alcamí, J.; Gupta, M.P.; San Feliciano, A. 3-Phenylcoumarins as inhibitors of HIV-1 replication. Molecules, 2012, 17(8), 9245-9257.
[http://dx.doi.org/10.3390/molecules17089245] [PMID: 22858844]
[35]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[36]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[37]
Akoudad, S.; Darweesh, S.K.; Leening, M.J.; Koudstaal, P.J.; Hofman, A.; van der Lugt, A.; Stricker, B.H.; Ikram, M.A.; Vernooij, M.W. Use of coumarin anticoagulants and cerebral microbleeds in the general population. Stroke, 2014, 45(11), 3436-3439.
[http://dx.doi.org/10.1161/STROKEAHA.114.007112] [PMID: 25316276]
[38]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[39]
Wijayabandara, M.D.J.; Choudhary, M.I.; Adhikari, A. Characterization of an anti-hyperglycemic coumarin from the fruits of Averrhoa. P. Ann. Sci. Sess. Fac. Med. Sci., 2015, 2, 1-35.
[40]
Kinza Aslam, K.; Khosa, M.K.; Jahan, N.; Nosheen, S. Short communication: Synthesis and applications of Coumarin. Pak. J. Pharm. Sci., 2010, 23(4), 449-454.
[PMID: 20884461]
[41]
Frosch, P.J.; Johansen, J.D.; Menné, T.; Pirker, C.; Rastogi, S.C.; Andersen, K.E.; Bruze, M.; Goossens, A.; Lepoittevin, J.P.; White, I.R. Further important sensitizers in patients sensitive to fragrances. Contact Dermat., 2002, 47(5), 279-287.
[http://dx.doi.org/10.1034/j.1600-0536.2002.4704171.x] [PMID: 12534532]
[42]
Schonberg, A.; Latif, N. Furochromones and coumarins xi. the molluscicidal activity of bergapten, isopimpinillin and xanthotoxin. J. Am. Chem. Soc., 1954, 76(23), 6208.
[http://dx.doi.org/10.1021/ja01652a112]
[43]
Myung, N.; Connelly, S.; Kim, B.; Park, S.J.; Wilson, I.A.; Kelly, J.W.; Choi, S. Bifunctional coumarin derivatives that inhibit transthyretin amyloidogenesis and serve as fluorescent transthyretin folding sensors. Chem. Commun. (Camb.), 2013, 49(80), 9188-9190.
[http://dx.doi.org/10.1039/c3cc44667k] [PMID: 23989101]
[44]
O’Kennedy, R.; Thornes, R.D. Coumarins: Biology, applications, and mode of action; John Wiley & Sons: Chichester, UK, 1997.
[45]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagani, A.; Parikh, P.; Shah, H.; Bambharoliya, T. Benzimidazole as ubiquitous structural fragment: An update on development of its green synthetic approaches. Mini Rev. Org. Chem., 2021, 18(8), 1064-1085.
[http://dx.doi.org/10.2174/1570193X17999201211194908]
[46]
Patel, A.; Shah, J.; Patel, K.; Patel, H.; Dobariya, D.; Shah, U.; Patel, M.; Chokshi, A.; Patel, S.; Parekh, N.; Shah, H.; Patel, H.; Bambharoliya, T. Ultrasound assisted one-pot synthesis of tetrahydropyrimidne derivatives through biginelli condensation: A catalyst free green chemistry approach. Lett. Org. Chem., 2021, 18(9), 749-756.
[http://dx.doi.org/10.2174/1570178617999201105162851]
[47]
Molnar, M.; Loncaric, M.; Kovak, M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr. Org. Chem., 2020, 24(1), 4-43.
[http://dx.doi.org/10.2174/1385272824666200120144305]
[48]
Kumar, B.V.; Naik, H.S.B.; Girija, D.; Kumar, B.V. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through knoevenagel condensation. J. Chem. Sci., 2011, 123(5), 615-621.
[http://dx.doi.org/10.1007/s12039-011-0133-0]
[49]
Valizadeh, H.; Gholipur, H.; Shockravi, A. Microwave assisted synthesis of coumarins via potassium carbonate catalyzed knoevenagel condensation in 1- n-butyl-3-methylimidazolium bromide ionic liquid. J. Heterocycl. Chem., 2007, 44(4), 867-870.
[http://dx.doi.org/10.1002/jhet.5570440419]
[50]
Martínez, J.; Sánchez, L.; Pérez, F.J.; Carranza, V.; Delgado, F.; Reyes, L.; Miranda, R. Uncatalysed production of coumarin-3-carboxylic acids: A green approach. J. Chem. Sci., 2016, 2016, 1-6.
[51]
Naik, M.A.; Mishra, B.G.; Dubey, A. Combustion synthesized WO3-ZrO2 nanocomposites as catalyst for the solvent-free synthesis of coumarins. Colloids Surf. A Physicochem. Eng. Asp., 2008, 317(1), 234-238.
[http://dx.doi.org/10.1016/j.colsurfa.2007.10.019]
[52]
Frère, S.; Thiéry, V.; Besson, T. Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: Application to the preparation of 4-substituted 7-aminocoumarins. Tetrahedron Lett., 2001, 42(15), 2791-2794.
[http://dx.doi.org/10.1016/S0040-4039(01)00295-7]
[53]
Konrádová, D.; Kozubíková, H.; Doležal, K.; Pospíšil, J. Microwave-assisted synthesis of phenylpropanoids and coumarins: Total synthesis of osthol. Eur. J. Org. Chem., 2017, 2017(35), 5204-5213.
[http://dx.doi.org/10.1002/ejoc.201701021]
[54]
Murugavel, G.; Punniyamurthy, T. Microwave-assisted copper-catalyzed four-component tandem synthesis of 3-N-sulfonylamidine coumarins. J. Org. Chem., 2015, 80(12), 6291-6299.
[http://dx.doi.org/10.1021/acs.joc.5b00738] [PMID: 26024048]
[55]
Osman, H.; Arshad, A.; Lam, C.K.; Bagley, M.C. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives. Chem. Cent. J., 2012, 6(1), 32.
[http://dx.doi.org/10.1186/1752-153X-6-32] [PMID: 22510146]
[56]
Rabahi, A. Makhloufi-Chebli, M.; Hamdi, S.M.; Silva, A.M.; Kheffache, D.; Boutemeur-Kheddis, B.; Hamdi, M. Synthesis and optical properties of coumarins and iminocoumarins: Estimation of ground- and excited- state dipole moments from a solvatochromic shift and theoretical methods. J. Mol. Liq., 2014, 195, 240-247.
[http://dx.doi.org/10.1016/j.molliq.2014.02.029]
[57]
Fiorito, S.; Genovese, S.; Taddeo, V.A.; Epifano, F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett., 2015, 56(19), 2434-2436.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.079]
[58]
Sharma, D.; Makrandi, J.K. Iodine-mediated one-pot synthesis of 3-cyanocoumarins and 3-cyano-4- methylcoumarins. J. Serb. Chem. Soc., 2014, 79(5), 527-531.
[http://dx.doi.org/10.2298/JSC130127140S]
[59]
Bouasla, S. Amaro-Gahete, J.; Esquivel, D.; López, M.I.; Jiménez-Sanchidrián, C.; Teguiche, M.; Romero-Salguero, F.J Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts. Molecules, 2017, 22(12), 2072.
[http://dx.doi.org/10.3390/molecules22122072]
[60]
Moradi, L.; Rabiei, K.; Belali, F. ChemInform abstract: Meglumine sulfate catalyzed solvent-free one-pot synthesis of coumarins under microwave and thermal conditions. Synth. Commun., 2016, 47(15), 1283-1291.
[http://dx.doi.org/10.1080/00397911.2016.1201512]
[61]
Vahabi, V.; Hatamjafari, F. Microwave assisted convenient one-pot synthesis of coumarin derivatives via Pechmann condensation catalyzed by FeF3 under solvent-free conditions and antimicrobial activities of the products. Molecules, 2014, 19(9), 13093-13103.
[http://dx.doi.org/10.3390/molecules190913093] [PMID: 25255747]
[62]
Ajani, O.O.; Nwinyi, O.C. Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-{3-(s-aryl and s-heteroaromatic)acryloyl}-2H-chromen-2-one derivatives. J. Heterocycl. Chem., 2010, 47, 179-187.
[63]
Bogdal, D. Coumarins: Fast synthesis by knoevenagel condensation under microwave irradiation. J. Chem. Res. Synop., 1998, 1(8), 468-469.
[http://dx.doi.org/10.1039/a801724g]
[64]
Heravi, M.M.; Hekmatshoar, R.; Emamgholizadeh, M. Solid state synthesis of substituted coumarin-3-carboxylic acids via the Knoevenagel condensation under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(9), 1893-1896.
[http://dx.doi.org/10.1080/10426500490466814]
[65]
Valizadeh, H.; Mamaghani, M.; Badrian, A. Effect of microwave irradiation on reaction of arylaldehyde derivatives with some active methylene compounds in aqueous media. Synth. Commun., 2005, 35(6), 785-790.
[http://dx.doi.org/10.1081/SCC-200050942]
[66]
Bandgar, B.P.; Uppalla, L.S.; Kurule, D.S. Solvent-free one-pot rapid synthesis of 3-carboxycoumarins using focused microwaves. Green Chem., 1999, 1(5), 243-245.
[http://dx.doi.org/10.1039/a905811g]
[67]
Mirjafary, Z.; Saeidian, H.; Moghaddam, F.M. Microwave-assisted synthesis of 3-substituted coumarins Using ZrOCl2.8H2O as an effective catalyst. Trans. C. Chem. Chem. Eng., 2009, 16, 12-16.
[68]
Jiang, S.; Gao, J.; Han, L. One-pot catalyst-free synthesis of 3-heterocyclic coumarins. Res. Chem. Intermed., 2016, 42(2), 1017-1028.
[http://dx.doi.org/10.1007/s11164-015-2070-x]
[69]
Yadav, L.D.S.; Singh, S.; Rai, V.K. Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O: Synthesis of 3- mercaptocoumarins. Green Chem., 2009, 11(6), 878-882.
[http://dx.doi.org/10.1039/b904655k]
[70]
Phadtare, S.B.; Shankarling, G.S. Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ. Chem. Lett., 2012, 10(4), 363-368.
[http://dx.doi.org/10.1007/s10311-012-0360-8]
[71]
Brahmachari, G. Room temperature one-pot green synthesis of coumarin-3-carboxylic acids in water: A practical method for the large-scale synthesis. ACS Sustain. Chem.& Eng., 2015, 3(9), 2350-2358.
[http://dx.doi.org/10.1021/acssuschemeng.5b00826]
[72]
He, X.; Shang, Y.; Zhou, Y.; Yu, Z.; Han, G.; Jin, W.; Chen, J. Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multi-component reaction of salicylaldehydes, Meldrum’s acid and alcohols. Tetrahedron, 2015, 71(5), 863-868.
[http://dx.doi.org/10.1016/j.tet.2014.12.042]
[73]
He, X.; Yan, Z.; Hu, X.; Zuo, Y.; Jiang, C.; Jin, L.; Shang, Y. FeCl3-catalyzed cascade reaction: An efficient approach to functionalized coumarin derivatives. Synth. Commun., 2014, 44(10), 1507-1514.
[http://dx.doi.org/10.1080/00397911.2013.862833]
[74]
Kiyani, H.; Daroonkala, M.D. A cost-effective and green aqueous synthesis of 3-substituted coumarins catalyzed by potassium phthalimide. Bull. Chem. Soc. Ethiop., 2015, 29, 449-456.
[http://dx.doi.org/10.4314/bcse.v29i3.13]
[75]
Alvim, J., Jr; Dias, R.L.; Castilho, M.S.; Oliva, G.; Correa, A.G. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi. J. Braz. Chem. Soc., 2005, 16(4), 763-773.
[http://dx.doi.org/10.1590/S0103-50532005000500014]
[76]
Heravi, M.M.; Sadjadi, S.; Oskooie, H.A.; Shoar, R.H.; Bamoharram, F.F. The synthesis of coumarin-3-carboxylic acids and 3-acetyl-coumarin derivatives using heteropolyacids as heterogeneous and recyclable catalysts. Catal. Commun., 2008, 9(3), 470-474.
[http://dx.doi.org/10.1016/j.catcom.2007.07.005]
[77]
Creaven, B.S.; Egan, D.A.; Kavanagh, K.; McCann, M.; Noble, A.; Thati, B.; Walsh, M. Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver(I) complexes. Inorg. Chim. Acta, 2006, 359(12), 3976-3984.
[http://dx.doi.org/10.1016/j.ica.2006.04.006]
[78]
Mohamed, H.M.; Abd El-Wahab, A.H.; Ahmed, K.A.; El-Agrody, A.M.; Bedair, A.H.; Eid, F.A.; Khafagy, M.M. Synthesis, reactions and antimicrobial activities of 8-ethoxycoumarin derivatives. Molecules, 2012, 17(1), 971-988.
[http://dx.doi.org/10.3390/molecules17010971] [PMID: 22258342]
[79]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sonkar, R.; Bhatia, G.; Khanna, A.K. Novel coumarin derivatives as potential antidyslipidemic agents. Bioorg. Med. Chem. Lett., 2010, 20(14), 4248-4251.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.023] [PMID: 20542691]
[80]
Bhusal, R.P.; Cho, P.Y.; Kim, S.A.; Park, H.; Kim, H.S. Synthesis of green emitting coumarin bioconjugate for the selective determination of flu antigen. Bull. Korean Chem. Soc., 2011, 32(5), 1461-1462.
[http://dx.doi.org/10.5012/bkcs.2011.32.5.1461]
[81]
Abdel-Wahab, B.F.; Mohamed, H.A.; Farhat, A.A. Ethyl coumarin-3- carboxylate. Synthesis and chemical properties. Org. Comm., 2014, 7(1), 1-27.
[82]
Pu, W.; Lin, Y.; Zhang, J.; Wang, F.; Wang, C.; Zhang, G. 3-Arylcoumarins: Synthesis and potent anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2014, 24(23), 5432-5434.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.033] [PMID: 25453803]
[83]
Rahmani-Nezhad, S.; Khosravani, L.; Saeedi, M.; Divsalar, K.; Firoozpour, L.; Pourshojaei, Y.; Sarrafi, Y.; Nadri, H.; Moradi, A.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Synthesis and evaluation of coumarin-resveratrol hybrids as 15-lipoxygenaze inhibitors. Synth. Commun., 2015, 45(6), 741-749.
[http://dx.doi.org/10.1080/00397911.2014.979947]
[84]
Rezaei, R.; Farjam, M.H.; Farasat, M. Coumarin synthesis via Pechmann condensation utilizing starch sulfuric acid as a green and efficient catalyst under solvent-free conditions. Org. Chem. Indian J., 2014, 10, 73-78.
[85]
Amoozadeh, A.; Ahmadzadeh, M.; Kolvari, E. Easy access to coumarin derivatives using alumina sulfuric acid as an efficient and reusable catalyst under solvent-free conditions. J. Chem., 2012, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/767825]
[86]
Gholap, S.S.; Deshmukh, U.P.; Tambe, M.S. Synthesis and in-vitro antimicrobial screening of 3-cinnamoyl coumarin and 3-[3-(1H-indol-2-yl)-3-aryl-propanoyl]-2H-chromen-2-ones. Iran. J. Catal., 2013, 3, 171-176.
[87]
Karade, N.N. Gampawar, S.V.; Shinde, S.V.; Jadhav, W.N. L-Proline catalyzed solvent-free knoevenagel condensation for the synthesis of 3-substituted coumarins. Chin. J. Chem., 2007, 25(11), 1686-1689.
[http://dx.doi.org/10.1002/cjoc.200790311]
[88]
Abbasi, Z.; Rezayati, S.; Bagheri, M.; Hajinasiri, R. Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solventand halogen-free protocol for the synthesis of coumarin derivatives. Chin. Chem. Lett., 2017, 28(1), 75-82.
[http://dx.doi.org/10.1016/j.cclet.2016.06.022]
[89]
Karami, B.; Farahi, M.; Khodabakhshi, S. Rapid synthesis of novel and known coumarin-3-carboxylic acids using stannous chloride dihydrate under solvent-free conditions. Helv. Chim. Acta, 2012, 95(3), 455-460.
[http://dx.doi.org/10.1002/hlca.201100342]
[90]
Su, C.; Chen, Z.C.; Zheng, Q.G. Organic reactions in ionic liquids: knoevenagel condensation catalyzed by ethylenediammonium diacetate. Synthesis, 2003, 4, 555-559.
[91]
Harjani, J.R.; Nara, S.J.; Salunkhe, M.M. Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the knoevenagel condensation. Tetrahedron Lett., 2002, 43(6), 1127-1130.
[http://dx.doi.org/10.1016/S0040-4039(01)02341-3]
[92]
Heravi, M.M.; Ansari, P.; Saeedi, M.; Karimi, N.; Tavakoli-Hosseini, N. Green and Practical synthesis of benzopyran and 3-substituted coumarin derivatives by bronsted acid ionic liquid. Bull. Chem. Soc. Ethiop., 2011, 25(2), 315-320.
[http://dx.doi.org/10.4314/bcse.v25i2.65915]
[93]
Shaterian, H.R.; Aghakhanizadeh, M. Ionic-liquid-catalyzed green synthesis of coumarin derivatives under solvent-free conditions. Chin. J. Catal., 2013, 34(9), 1690-1696.
[http://dx.doi.org/10.1016/S1872-2067(12)60654-8]
[94]
Das, S.; Majee, A.; Hajra, A. A convenient synthesis of coumarins using reusable ionic liquid as catalyst. Green Chem. Lett. Rev., 2011, 4(4), 349-353.
[http://dx.doi.org/10.1080/17518253.2011.572296]
[95]
Kumar, V.; Tomar, S.; Patel, R.; Yousaf, A.; Parmar, V.S.; Malhotra, S.V. FeCl3-catalyzed Pechmann synthesis of coumarins in ionic liquids. Synth. Commun., 2008, 38(15), 2646-2654.
[http://dx.doi.org/10.1080/00397910802219569]
[96]
Sugino, T.; Tanaka, K. Solvent-free coumarin synthesis. Chem. Lett., 2001, 30(2), 110-111.
[http://dx.doi.org/10.1246/cl.2001.110]
[97]
Kantharaju, K.; Khatavi, S.Y. Mechanochemical synthesis of coumarin-3- carboxylic acid using water extract of papaya. Int. J. Eng. Technol. Sci. Res., 2017, 4(9), 510-513.
[98]
Chavan, O.S.; Baseer, M.A. Comparative study of various synthetic methods of 7-hydroxy-4-methyl coumarins via Pechmann reaction. Der Chemica Sinica, 2014, 5(5), 67-70.
[99]
Shockravi, A.; Shargi, H.; Valizadeh, H.; Heravi, M.M. Solvent free synthesis of coumarins. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(11), 2555-29.
[http://dx.doi.org/10.1080/10426500214560]
[100]
Ghomi, J.S.; Akbarzadeh, Z. Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: A rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem., 2018, 40(Pt A), 78-83.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.022] [PMID: 28946485]
[101]
Prousis, K.C.; Avlonitis, N.; Heropoulos, G.A.; Calogeropoulou, T. FeCl3-catalysed ultrasonic-assisted, solvent-free synthesis of 4-substituted coumarins. A useful complement to the Pechmann reaction. Ultrason. Sonochem., 2014, 21(3), 937-942.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.018] [PMID: 24262761]
[102]
Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N.PhI. (OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett., 2017, 58(32), 3183-3187.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.018]
[103]
Harishkumar, H.N.; Mahadevan, K.M.; Kumar, C.K.; Satyanarayan, N.D.A. Facile, choline chloride/urea catalyzed solid phase synthesis of coumarins via knoevenagel condensation. Org. Commun., 2011, 4(2), 26-32.
[104]
Keshavarzipour, F.; Tavakol, H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J. Iran. Chem. Soc., 2016, 13(1), 149-153.
[http://dx.doi.org/10.1007/s13738-015-0722-9]
[105]
Zhang, Y.; Zhu, A.; Li, Q.; Li, L.; Zhao, Y.; Wang, J. Cholinium ionic liquids as cheap and reusable catalysts for the synthesis of coumarins via Pechmann reaction under solvent-free conditions. RSC Advances, 2014, 4(44), 22946-22950.
[http://dx.doi.org/10.1039/C4RA02227K]
[106]
Ni, S.; Cao, J.; Mei, H.; Han, J.; Li, S.; Pan, Y. Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: Easy access to 3-iodocoumarins. Green Chem., 2016, 18(14), 3935-3939.
[http://dx.doi.org/10.1039/C6GC01027J]
[107]
Sashidhara, K.; Palnati, G.; Avula, S.; Kumar, A. Efficient and general synthesis of 3-aryl coumarins using cyanuric chloride. Synlett, 2012, 23(4), 611-621.
[http://dx.doi.org/10.1055/s-0031-1290344]
[108]
Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. Silver-mediated radical cyclization of alkynoates and α-keto acids leading to coumarins via cascade double C-C bond formation. J. Org. Chem., 2015, 80(3), 1550-1556.
[http://dx.doi.org/10.1021/jo502474z] [PMID: 25562802]
[109]
Liu, T.; Ding, Q.; Zong, Q.; Qiu, G. Radical 5-exo cyclization of alkynoates with 2-oxoacetic acids for synthesis of 3-acylcoumarins. Org. Chem. Front., 2015, 2(6), 670-673.
[http://dx.doi.org/10.1039/C5QO00029G]
[110]
Rao, H.S.P.; Sivakumar, S. Condensation of α-aroylketene dithioacetals and 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins. J. Org. Chem., 2006, 71(23), 8715-8723.
[http://dx.doi.org/10.1021/jo061372e] [PMID: 17080998]
[111]
Mahmoud, A.; Ali, A.; Ali, E.R. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chin. J. Catal., 2015, 36(7), 1124-1130.
[http://dx.doi.org/10.1016/S1872-2067(14)60308-9]
[112]
Augustine, J.K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tetrahedron Lett., 2012, 53(33), 4422-4425.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.037]
[113]
Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, E.P.; Reddy, M.V. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett., 2004, 14(15), 4093-4097.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.016] [PMID: 15225733]
[114]
Reddy, N.S.; Gumireddy, K.; Mallireddigari, M.R.; Cosenza, S.C.; Venkatapuram, P.; Bell, S.C.; Reddy, E.P.; Reddy, M.V. Novel coumarin-3-(N-aryl)carboxamides arrest breast cancer cell growth by inhibiting ErbB-2 and ERK1. Bioorg. Med. Chem., 2005, 13(9), 3141-3147.
[http://dx.doi.org/10.1016/j.bmc.2005.02.051] [PMID: 15809149]
[115]
Watson, B.T.; Christiansen, G.E. Solid phase synthesis of substituted coumarin-3-carboxylic acids via the Knoevenagel condensation. Tetrahedron Lett., 1998, 39(33), 6087-6090.
[http://dx.doi.org/10.1016/S0040-4039(98)01255-6]
[116]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagani, A.; Shah, U.; Patel, M.; Patel, S.; Bhimani, B.; Bambharoliya, T. Quinoxaline as ubiquitous structural fragment: An update on the recent development of its green synthetic approaches. Curr. Org. Chem., 2021, 25(24), 3004-3016.
[http://dx.doi.org/10.2174/1385272825666211125102145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy