Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Congenital Solitary Functioning Kidney: A Review

Author(s): Eduarda Almeida Wakabayashi, Alexandre Negrão Pantaleão, Renata Araújo Avendanha, Felipe Baptista Brunheroto and Ana Cristina Simões e Silva*

Volume 30, Issue 2, 2023

Published on: 09 September, 2022

Page: [203 - 219] Pages: 17

DOI: 10.2174/0929867329666220629142556

Price: $65

Abstract

Background: Solitary functioning kidney (SFK) is a subgroup of the Congenital Anomalies of the Kidneys and Urinary Tract (CAKUT). Although the prognosis of these patients was considered good in the past, numerous studies have shown different levels of kidney damage associated with this condition. Serum creatinine measurement is still the most used marker to assess renal function, even though the limitations are widely known.

Objective: The present review aims to summarize and update the scientific literature on congenital SFK, discussing its pathophysiology, diagnosis, complications, prognosis, role of novel urinary biomarkers, treatment, and follow-up.

Results: The natural history of congenital SFK is still an unresolved issue due to several factors. Although it has not yet been proven in humans, Brenner’s hyperfiltration hypothesis is the most concrete theory to explain the poor renal outcomes of patients born with one functioning kidney. The search for novel urinary biomarkers capable of assessing renal function and predicting renal outcomes has already started, but there are still few studies on this specific population. Among the most studied markers, Cystatin C, EGF and NGAL have shown potential usefulness for the follow-up of these patients. The treatment still relies on the search for kidney injury and general renoprotective measures.

Conclusion: Further research with a longer follow-up duration is needed to better understand the natural course of congenital SFK and the role of novel urinary biomarkers in this specific population. Thus, it will be possible to improve the prognosis of these patients.

Keywords: Solitary functioning kidney, CAKUT, children, renal function, hyperfiltration, urinary biomarkers, chronic kidney disease.

[1]
Quirino, I.G.; Diniz, J.S.S.; Bouzada, M.C.F.; Pereira, A.K.; Lopes, T.J.; Paixão, G.M.; Barros, N.N.; Figueiredo, L.C.; Cabral, A.C.V.; Simões e Silva, A.C.; Oliveira, E.A. Clinical course of 822 children with prenatally detected nephrouropathies. Clin. J. Am. Soc. Nephrol., 2012, 7(3), 444-451.
[http://dx.doi.org/10.2215/CJN.03400411] [PMID: 22266574]
[2]
Poggiali, I.V.; Simões E Silva, A.C.; Vasconcelos, M.A.; Dias, C.S.; Gomes, I.R.; Carvalho, R.A.; Oliveira, M.C.L.; Pinheiro, S.V.; Mak, R.H.; Oliveira, E.A. A clinical predictive model of renal injury in children with congenital solitary functioning kidney. Pediatr. Nephrol., 2019, 34(3), 465-474.
[http://dx.doi.org/10.1007/s00467-018-4111-3] [PMID: 30324507]
[3]
Corbani, V.; Ghiggeri, G.M.; Sanna-Cherchi, S. Congenital solitary functioning kidneys: Which ones warrant follow-up into adult life?. Nephrol. Dial. Transplant., 2011, 26(5), 1458-1460.
[http://dx.doi.org/10.1093/ndt/gfr145] [PMID: 21467130]
[4]
Kerecuk, L.; Schreuder, M.F.; Woolf, A.S. Renal tract malformations: Perspectives for nephrologists. Nat. Clin. Pract. Nephrol., 2008, 4(6), 312-325.
[http://dx.doi.org/10.1038/ncpneph0807] [PMID: 18446149]
[5]
Nicolaou, N.; Renkema, K.Y.; Bongers, E.M.H.F.; Giles, R.H.; Knoers, N.V.A.M. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol., 2015, 11(12), 720-731.
[http://dx.doi.org/10.1038/nrneph.2015.140] [PMID: 26281895]
[6]
Westland, R.; Schreuder, M.F.; Bökenkamp, A.; Spreeuwenberg, M.D.; van Wijk, J.A.E. Renal injury in children with a solitary functioning kidney-the KIMONO study. Nephrol. Dial. Transplant., 2011, 26(5), 1533-1541.
[http://dx.doi.org/10.1093/ndt/gfq844] [PMID: 21427076]
[7]
Westland, R.; Schreuder, M.F.; Ket, J.C.F.; van Wijk, J.A.E. Unilateral renal agenesis: A systematic review on associated anomalies and renal injury. Nephrol. Dial. Transplant., 2013, 28(7), 1844-1855.
[http://dx.doi.org/10.1093/ndt/gft012] [PMID: 23449343]
[8]
Wühl, E.; van Stralen, K.J.; Verrina, E.; Bjerre, A.; Wanner, C.; Heaf, J.G.; Zurriaga, O.; Hoitsma, A.; Niaudet, P.; Palsson, R.; Ravani, P.; Jager, K.J.; Schaefer, F. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin. J. Am. Soc. Nephrol., 2013, 8(1), 67-74.
[http://dx.doi.org/10.2215/CJN.03310412] [PMID: 23085722]
[9]
Schreuder, M.F.; Bueters, R.R.; Huigen, M.C.; Russel, F.G.M.; Masereeuw, R.; van den Heuvel, L.P. Effect of drugs on renal development. Clin. J. Am. Soc. Nephrol., 2011, 6(1), 212-217.
[http://dx.doi.org/10.2215/CJN.04740510] [PMID: 21071516]
[10]
Tran, S.; Chen, Y-W.; Chenier, I.; Chan, J.S.D.; Quaggin, S.; Hébert, M-J.; Ingelfinger, J.R.; Zhang, S-L. Maternal diabetes modulates renal morphogenesis in offspring. J. Am. Soc. Nephrol., 2008, 19(5), 943-952.
[http://dx.doi.org/10.1681/ASN.2007080864] [PMID: 18305124]
[11]
Westland, R.; Schreuder, M.F.; van Goudoever, J.B.; Sanna-Cherchi, S.; van Wijk, J.A.E. Clinical implications of the solitary functioning kidney. Clin. J. Am. Soc. Nephrol., 2014, 9(5), 978-986.
[http://dx.doi.org/10.2215/CJN.08900813] [PMID: 24370773]
[12]
Barakat, A.J.; Drougas, J.G. Occurrence of congenital abnormalities of kidney and urinary tract in 13,775 autopsies. Urology, 1991, 38(4), 347-350.
[http://dx.doi.org/10.1016/0090-4295(91)80150-6] [PMID: 1755145]
[13]
Chi, L.H.; Stone, D.H.; Gilmour, W.H. Impact of prenatal screening and diagnosis on the epidemiology of structural congenital anomalies. J. Med. Screen., 1995, 2(2), 67-70.
[http://dx.doi.org/10.1177/096914139500200203] [PMID: 7497158]
[14]
Schreuder, M.F. Life with one kidney. Pediatr. Nephrol., 2018, 33(4), 595-604.
[http://dx.doi.org/10.1007/s00467-017-3686-4] [PMID: 28555299]
[15]
Grapin, M.; Gaillard, F.; Biebuyck, N.; Ould-Rabah, M.; Hennequin, C.; Berthaud, R.; Dorval, G.; Blanc, T.; Hourmant, M.; Kamar, N.; Rostaing, L.; Couzi, L.; Garcelon, N.; Prié, D.; Boyer, O.; Bienaimé, F. The spectrum of kidney function alterations in adolescents with a solitary functioning kidney. Pediatr. Nephrol., 2021, 36(10), 3159-3168.
[http://dx.doi.org/10.1007/s00467-021-05074-z] [PMID: 33895898]
[16]
Hutchinson, K.A.; Halili, L.; Guerra, A.; Geier, P.; Keays, M.; Guerra, L. Renal function in children with a congenital solitary functioning kidney: A systematic review. J. Pediatr. Urol., 2021, 17(4), 556-565.
[http://dx.doi.org/10.1016/j.jpurol.2021.03.001] [PMID: 33752977]
[17]
La Scola, C.; Ammenti, A.; Puccio, G.; Lega, M.V.; De Mutiis, C.; Guiducci, C.; De Petris, L.; Perretta, R.; Venturoli, V.; Vergine, G.; Zucchini, A.; Montini, G. Congenital solitary kidney in children: Size matters. J. Urol., 2016, 196(4), 1250-1256.
[http://dx.doi.org/10.1016/j.juro.2016.03.173] [PMID: 27060778]
[18]
Radhakrishna, V.; Govindarajan, K.K.; Sambandan, K.; Jindal, B.; Naredi, B. Solitary functioning kidney in children: Clinical implications. J. Bras. Nefrol., 2018, 40(3), 261-265.
[http://dx.doi.org/10.1590/1678-4685-jbn-3942] [PMID: 29944157]
[19]
Argueso, L.R.; Ritchey, M.L.; Boyle, E.T., Jr.; Milliner, D.S.; Bergstralh, E.J.; Kramer, S.A. Prognosis of patients with unilateral renal agenesis. Pediatr. Nephrol., 1992, 6(5), 412-416.
[http://dx.doi.org/10.1007/BF00873996] [PMID: 1457321]
[20]
Sanna-Cherchi, S.; Ravani, P.; Corbani, V.; Parodi, S.; Haupt, R.; Piaggio, G.; Innocenti, M.L.D.; Somenzi, D.; Trivelli, A.; Caridi, G.; Izzi, C.; Scolari, F.; Mattioli, G.; Allegri, L.; Ghiggeri, G.M. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int., 2009, 76(5), 528-533.
[http://dx.doi.org/10.1038/ki.2009.220] [PMID: 19536081]
[21]
Abou Jaoudé, P.; Dubourg, L.; Bacchetta, J.; Berthiller, J.; Ranchin, B.; Cochat, P. Congenital versus acquired solitary kidney: Is the difference relevant? Nephrol. Dial. Transplant., 2011, 26(7), 2188-2194.
[http://dx.doi.org/10.1093/ndt/gfq659] [PMID: 21045075]
[22]
Marzuillo, P.; Guarino, S.; Di Sessa, A.; Rambaldi, P.F.; Reginelli, A.; Vacca, G.; Cappabianca, S.; Capalbo, D.; Esposito, T.; De Luca Picione, C.; Arienzo, M.R.; Cirillo, G.; La Manna, A.; Miraglia Del Giudice, E.; Polito, C. Congenital solitary kidney from birth to adulthood. J. Urol., 2021, 205(5), 1466-1475.
[http://dx.doi.org/10.1097/JU.0000000000001524] [PMID: 33350324]
[23]
Westland, R.; Kurvers, R.A.J.; van Wijk, J.A.E.; Schreuder, M.F. Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics, 2013, 131(2), e478-e485.
[http://dx.doi.org/10.1542/peds.2012-2088] [PMID: 23319536]
[24]
Ardissino, G.; Testa, S.; Daccò, V.; Paglialonga, F.; Viganò, S.; Felice-Civitillo, C.; Battaglino, F.; Bettinelli, A.; Bordugo, A.; Cecchetti, V.; De Pascale, S.; La Manna, A.; Li Volti, S.; Maringhini, S.; Montini, G.; Pennesi, M.; Peratoner, L. Puberty is associated with increased deterioration of renal function in patients with CKD: Data from the ItalKid Project. Arch. Dis. Child., 2012, 97(10), 885-888.
[http://dx.doi.org/10.1136/archdischild-2011-300685] [PMID: 22833407]
[25]
Westland, R.; Abraham, Y.; Bökenkamp, A.; Stoffel-Wagner, B.; Schreuder, M.F.; van Wijk, J.A.E. Precision of estimating equations for GFR in children with a solitary functioning kidney: The KIMONO study. Clin. J. Am. Soc. Nephrol., 2013, 8(5), 764-772.
[http://dx.doi.org/10.2215/CJN.07870812] [PMID: 23371960]
[26]
McArdle, Z.; Schreuder, M.F.; Moritz, K.M.; Denton, K.M.; Singh, R.R. Physiology and pathophysiology of compensatory adaptations of a solitary functioning kidney. Front. Physiol., 2020, 11, 725.
[http://dx.doi.org/10.3389/fphys.2020.00725] [PMID: 32670095]
[27]
Srivastava, T.; Ju, W.; Milne, G.L.; Rezaiekhaligh, M.H.; Staggs, V.S.; Alon, U.S.; Sharma, R.; Zhou, J.; El-Meanawy, A.; McCarthy, E.T.; Savin, V.J.; Sharma, M. Urinary prostaglandin E2 is a biomarker of early adaptive hyperfiltration in solitary functioning kidney. Prostaglandins Lipid Mediat., 2020, 146, 106403.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106403] [PMID: 31838197]
[28]
Bartoli, F.; Pastore, V.; Calè, I.; Aceto, G.; Campanella, V.; Lasalandra, C.; Magaldi, S.; Niglio, F.; Basile, A.; Cocomazzi, R. Prospective study on several urinary biomarkers as indicators of renal damage in children with CAKUT. Eur. J. Pediatr. Surg. Off. J. Austrian Assoc. Pediatr. Surg. Al Z. Kinderchir., 2019, 29(2), 215-222.
[http://dx.doi.org/10.1055/s-0038-1646960] [PMID: 29727865]
[29]
Akl, K. The anomalies associated with congenital solitary functioning kidney in children. Saudi J. Kidney Dis. Transpl., 2011, 22(1), 67-71.
[PMID: 21196615]
[30]
Woolf, A.S.; Davies, J.A. Cell biology of ureter development. J. Am. Soc. Nephrol., 2013, 24(1), 19-25.
[http://dx.doi.org/10.1681/ASN.2012020127] [PMID: 23123402]
[31]
Vainio, S.; Lin, Y. Coordinating early kidney development: Lessons from gene targeting. Nat. Rev. Genet., 2002, 3(7), 533-543.
[http://dx.doi.org/10.1038/nrg842] [PMID: 12094231]
[32]
dos Santos Junior, A.C.; de Miranda, D.M.; Simões e Silva, A.C. Congenital anomalies of the kidney and urinary tract: An embryogenetic review. Birth Defects Res. C Embryo Today, 2014, 102(4), 374-381.
[http://dx.doi.org/10.1002/bdrc.21084] [PMID: 25420794]
[33]
Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet., 2007, 8(10), 791-802.
[http://dx.doi.org/10.1038/nrg2205] [PMID: 17878895]
[34]
Dias, T.; Sairam, S.; Kumarasiri, S. Ultrasound diagnosis of fetal renal abnormalities. Best Pract. Res. Clin. Obstet. Gynaecol., 2014, 28(3), 403-415.
[http://dx.doi.org/10.1016/j.bpobgyn.2014.01.009] [PMID: 24524801]
[35]
Carlson, B.M. Development of the Urinary System. In: Reference Module in Biomedical Sciences; Elsevier, 2015.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.05456-8]
[36]
Schreuder, M.F. Safety in glomerular numbers. Pediatr. Nephrol., 2012, 27(10), 1881-1887.
[http://dx.doi.org/10.1007/s00467-012-2169-x] [PMID: 22532329]
[37]
Hegde, S.; Coulthard, M.G. Renal agenesis and unilateral nephrectomy: What are the risks of living with a single kidney? Pediatr. Nephrol., 2009, 24(3), 439-446.
[http://dx.doi.org/10.1007/s00467-008-0924-9] [PMID: 18612657]
[38]
Davidovits, M.; Cleper, R.; Eizenberg, N.; Hocherman, O.; Mashiach, R. Outcomes of prenatally diagnosed solitary functioning kidney during early life. J. Perinatol., 2017, 37(12), 1325-1329.
[http://dx.doi.org/10.1038/jp.2017.143] [PMID: 29072675]
[39]
Groen In ’t Woud, S.; Westland, R.; Feitz, W.F.J.; Roeleveld, N.; van Wijk, J.A.E.; van der Zanden, L.F.M.; Schreuder, M.F. Clinical management of children with a congenital solitary functioning kidney: Overview and recommendations. Eur. Urol. Open Sci., 2021, 25, 11-20.
[http://dx.doi.org/10.1016/j.euros.2021.01.003] [PMID: 34337499]
[40]
Schreuder, M.F.; Westland, R.; van Wijk, J.A.E. Unilateral multicystic dysplastic kidney: A meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol. Dial. Transplant., 2009, 24(6), 1810-1818.
[http://dx.doi.org/10.1093/ndt/gfn777] [PMID: 19171687]
[41]
Laurichesse Delmas, H.; Kohler, M.; Doray, B.; Lémery, D.; Francannet, C.; Quistrebert, J.; Marie, C.; Perthus, I. Congenital unilateral renal agenesis: Prevalence, prenatal diagnosis, associated anomalies. Data from two birth-defect registries. Birth Defects Res., 2017, 109(15), 1204-1211.
[http://dx.doi.org/10.1002/bdr2.1065] [PMID: 28722320]
[42]
Westland, R.; Schreuder, M.F. Gender differences in solitary functioning kidney: Do they affect renal outcome? Pediatr. Nephrol., 2014, 29(11), 2243-2244.
[http://dx.doi.org/10.1007/s00467-013-2473-0] [PMID: 23576193]
[43]
Hiraoka, M.; Tsukahara, H.; Ohshima, Y.; Kasuga, K.; Ishihara, Y.; Mayumi, M. Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int., 2002, 61(5), 1840-1844.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00322.x] [PMID: 11967035]
[44]
Hostetter, T.H.; Olson, J.L.; Rennke, H.G.; Venkatachalam, M.A.; Brenner, B.M. Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am. J. Physiol., 1981, 241(1), F85-F93.
[http://dx.doi.org/10.1152/ajprenal.1981.241.1.F85] [PMID: 7246778]
[45]
Brenner, B.M.; Lawler, E.V.; Mackenzie, H.S. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int., 1996, 49(6), 1774-1777.
[http://dx.doi.org/10.1038/ki.1996.265] [PMID: 8743495]
[46]
Balkı, H.G.; Turhan, P.; Candan, C. Evaluation of renal injury in children with a solitary functioning kidney. Turk. Pediatri Ars., 2021, 56(3), 219-223.
[http://dx.doi.org/10.5152/TurkArchPediatr.2021.20095] [PMID: 34104912]
[47]
Gadalean, F.; Kaycsa, A.; Gluhovschi, G.; Velciov, S.; Gluhovschi, C.; Bob, F.; Bozdog, G.; Petrica, L. Is the urinary biomarkers assessment a non-invasive approach to tubular lesions of the solitary kidney? Ren. Fail., 2013, 35(10), 1358-1364.
[http://dx.doi.org/10.3109/0886022X.2013.828367] [PMID: 23992109]
[48]
Gluhovschi, G.; Gadalean, F.; Gluhovschi, C.; Velciov, S.; Petrica, L.; Bob, F.; Bozdog, G.; Kaycsa, A. Urinary biomarkers in assessing the nephrotoxic potential of gentamicin in solitary kidney patients after 7 days of therapy. Ren. Fail., 2014, 36(4), 534-540.
[http://dx.doi.org/10.3109/0886022X.2013.876349] [PMID: 24456153]
[49]
Taranta-Janusz, K.; Zalewska-Szajda, B.; Gościk, E.; Chojnowska, S.; Dmochowska, M.; Pszczółkowska, M.; Wasilewska, A. New tubular injury markers in children with a solitary functioning kidney. Pediatr. Nephrol., 2014, 29(9), 1599-1605.
[http://dx.doi.org/10.1007/s00467-014-2802-y] [PMID: 24651943]
[50]
Douglas-Denton, R.; Moritz, K.M.; Bertram, J.F.; Wintour, E.M. Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J. Am. Soc. Nephrol., 2002, 13(2), 406-410.
[http://dx.doi.org/10.1681/ASN.V132406] [PMID: 11805169]
[51]
Kolvek, G.; Podracka, L.; Rosenberger, J.; Stewart, R.E.; van Dijk, J.P.; Reijneveld, S.A. Solitary functioning kidney in children - A follow-up study. Kidney Blood Press. Res., 2014, 39(4), 272-278.
[http://dx.doi.org/10.1159/000355804] [PMID: 25171427]
[52]
Shirzai, A.; Yildiz, N.; Biyikli, N.; Ustunsoy, S.; Benzer, M.; Alpay, H. Is microalbuminuria a risk factor for hypertension in children with solitary kidney? Pediatr. Nephrol., 2014, 29(2), 283-288.
[http://dx.doi.org/10.1007/s00467-013-2641-2] [PMID: 24217782]
[53]
Wang, M.K.; Gaither, T.; Phelps, A.; Cohen, R.; Baskin, L. The incidence and durability of compensatory hypertrophy in pediatric patients with solitary kidneys. Urology, 2019, 129, 188-193.
[http://dx.doi.org/10.1016/j.urology.2019.04.003] [PMID: 30986483]
[54]
Grabnar, J.; Rus, R.R. Is renal scintigraphy really a necessity in the routine diagnosis of congenital solitary kidney? Pediatr. Surg. Int., 2019, 35(6), 729-735.
[http://dx.doi.org/10.1007/s00383-019-04478-1] [PMID: 30963250]
[55]
Krill, A.; Cubillos, J.; Gitlin, J.; Palmer, L.S. Abdominopelvic ultrasound: A cost-effective way to diagnose solitary kidney. J. Urol., 2012, 187(6), 2201-2204.
[http://dx.doi.org/10.1016/j.juro.2012.01.129] [PMID: 22503007]
[56]
Carazo-Palacios, M.E.; Couselo-Jerez, M.; Serrano-Durbá, A.; Pemartín-Comella, B.; Sangüesa-Nebot, C.; Estornell- Moragues, F.; Domínguez-Hinarejos, C. Multicystic renal dysplasia: Evaluation of the need for renal scintigraphy and the safety of conservative treatment. Actas Urol. Esp., 2017, 41(1), 62-67.
[http://dx.doi.org/10.1016/j.acuro.2016.05.004] [PMID: 27666954]
[57]
Groen In’t Woud, S.; van der Zanden, L.F.M.; Schreuder, M.F. Risk stratification for children with a solitary functioning kidney. Pediatr. Nephrol., 2021, 36(11), 3499-3503.
[http://dx.doi.org/10.1007/s00467-021-05168-8] [PMID: 34137930]
[58]
Westland, R.; Schreuder, M.F.; van der Lof, D.F.; Vermeulen, A.; Dekker-van der Meer, I.M.J.; Bökenkamp, A.; van Wijk, J.A.E. Ambulatory blood pressure monitoring is recommended in the clinical management of children with a solitary functioning kidney. Pediatr. Nephrol., 2014, 29(11), 2205-2211.
[http://dx.doi.org/10.1007/s00467-014-2853-0] [PMID: 24908323]
[59]
Schreuder, M.F.; Langemeijer, M.E.; Bökenkamp, A.; Delemarre-Van de Waal, H.A.; Van Wijk, J.A. Hypertension and microalbuminuria in children with congenital solitary kidneys. J. Paediatr. Child Health, 2008, 44(6), 363-368.
[http://dx.doi.org/10.1111/j.1440-1754.2008.01315.x] [PMID: 18476930]
[60]
La Scola, C.; Marra, G.; Ammenti, A.; Pasini, A.; Taroni, F.; Bertulli, C.; Morello, W.; Ceccoli, M.; Mencarelli, F.; Guarino, S.; Puccio, G.; Montini, G. Born with a solitary kidney: At risk of hypertension. Pediatr. Nephrol., 2020, 35(8), 1483-1490.
[http://dx.doi.org/10.1007/s00467-020-04535-1] [PMID: 32211991]
[61]
Stefanowicz, J.; Owczuk, R.; Kałużyńska, B.; Aleksandrowicz, E.; Owczarzak, A.; Adamkiewicz-Drożyńska, E.; Balcerska, A. Renal function and solitary kidney disease: Wilms tumour survivors versus patients with unilateral renal agenesis. Kidney Blood Press. Res., 2012, 35(3), 174-181.
[http://dx.doi.org/10.1159/000332083] [PMID: 22116374]
[62]
Zambaiti, E.; Sergio, M.; Baldanza, F.; Corrado, C.; Di Pace, M.R.; Cimador, M. Correlation between hypertrophy and risk of hypertension in congenital solitary functioning kidney. Pediatr. Surg. Int., 2019, 35(1), 167-174.
[http://dx.doi.org/10.1007/s00383-018-4389-z] [PMID: 30374633]
[63]
Marzuillo, P.; Guarino, S.; Grandone, A.; Di Somma, A.; Della Vecchia, N.; Esposito, T.; Macchini, G.; Marotta, R.; Apicella, A.; Diplomatico, M.; Rambaldi, P.F.; Perrone, L.; Miraglia Del Giudice, E.; La Manna, A.; Polito, C. Outcomes of a cohort of prenatally diagnosed and early enrolled patients with congenital solitary functioning kidney. J. Urol., 2017, 198(5), 1153-1158.
[http://dx.doi.org/10.1016/j.juro.2017.05.076] [PMID: 28554812]
[64]
Matsell, D.G.; Bao, C.; Po White, T.; Chan, E.; Matsell, E.; Cojocaru, D.; Catapang, M. Outcomes of solitary functioning kidneys-renal agenesis is different than multicystic dysplastic kidney disease. Pediatr. Nephrol., 2021, 36(11), 3673-3680.
[http://dx.doi.org/10.1007/s00467-021-05064-1] [PMID: 33954810]
[65]
Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[66]
McMahon, G.M.; Waikar, S.S. Biomarkers in nephrology: Core curriculum 2013. Am. J. Kidney Dis., 2013, 62(1), 165-178.
[http://dx.doi.org/10.1053/j.ajkd.2012.12.022] [PMID: 23455173]
[67]
Bonventre, J.V.; Vaidya, V.S.; Schmouder, R.; Feig, P.; Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol., 2010, 28(5), 436-440.
[http://dx.doi.org/10.1038/nbt0510-436] [PMID: 20458311]
[68]
Nakhjavan-Shahraki, B.; Yousefifard, M.; Ataei, N.; Baikpour, M.; Ataei, F.; Bazargani, B.; Abbasi, A.; Ghelichkhani, P.; Javidilarijani, F.; Hosseini, M. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: Which one works better? A systematic review and meta-analysis. BMC Nephrol., 2017, 18(1), 120.
[http://dx.doi.org/10.1186/s12882-017-0539-0] [PMID: 28372557]
[69]
van Donge, T.; Welzel, T.; Atkinson, A.; van den Anker, J.; Pfister, M. Age-dependent changes of kidney injury biomarkers in pediatrics. J. Clin. Pharmacol., 2019, 59(S1), S21-S32.
[http://dx.doi.org/10.1002/jcph.1487] [PMID: 31502686]
[70]
Wasilewska, A.; Zoch-Zwierz, W.; Jadeszko, I.; Porowski, T.; Biernacka, A.; Niewiarowska, A.; Korzeniecka-Kozerska, A. Assessment of serum cystatin C in children with congenital solitary kidney. Pediatr. Nephrol., 2006, 21(5), 688-693.
[http://dx.doi.org/10.1007/s00467-006-0065-y] [PMID: 16572341]
[71]
Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int., 2002, 62(1), 237-244.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00433.x] [PMID: 12081583]
[72]
Herget-Rosenthal, S.; van Wijk, J.A.E.; Bröcker-Preuss, M.; Bökenkamp, A. Increased urinary cystatin C reflects structural and functional renal tubular impairment independent of glomerular filtration rate. Clin. Biochem., 2007, 40(13-14), 946-951.
[http://dx.doi.org/10.1016/j.clinbiochem.2007.04.013] [PMID: 17537416]
[73]
Woodson, B.W.; Wang, L.; Mandava, S.; Lee, B.R. Urinary cystatin C and NGAL as early biomarkers for assessment of renal ischemia-reperfusion injury: A serum marker to replace creatinine? J. Endourol., 2013, 27(12), 1510-1515.
[http://dx.doi.org/10.1089/end.2013.0198] [PMID: 24266750]
[74]
Di Nardo, M.; Ficarella, A.; Ricci, Z.; Luciano, R.; Stoppa, F.; Picardo, S.; Picca, S.; Muraca, M.; Cogo, P. Impact of severe sepsis on serum and urinary biomarkers of acute kidney injury in critically ill children: An observational study. Blood Purif., 2013, 35(1-3), 172-176.
[http://dx.doi.org/10.1159/000346629] [PMID: 23428967]
[75]
Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med., 2017, 55(8), 1074-1089.
[http://dx.doi.org/10.1515/cclm-2016-0973] [PMID: 28076311]
[76]
Schwartz, G.J.; Haycock, G.B.; Edelmann, C.M., Jr.; Spitzer, A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics, 1976, 58(2), 259-263.
[http://dx.doi.org/10.1542/peds.58.2.259] [PMID: 951142]
[77]
Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol., 2009, 20(3), 629-637.
[http://dx.doi.org/10.1681/ASN.2008030287] [PMID: 19158356]
[78]
Assadi, F.; Sharbaf, F.G. Urine KIM-1 as a potential biomarker of acute renal injury after circulatory collapse in children. Pediatr. Emerg. Care, 2019, 35(2), 104-107.
[http://dx.doi.org/10.1097/PEC.0000000000000886] [PMID: 27741065]
[79]
Schwartz, G.J.; Schneider, M.F.; Maier, P.S.; Moxey-Mims, M.; Dharnidharka, V.R.; Warady, B.A.; Furth, S.L.; Muñoz, A. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int., 2012, 82(4), 445-453.
[http://dx.doi.org/10.1038/ki.2012.169] [PMID: 22622496]
[80]
Madsen, M.G.; Nørregaard, R.; Palmfeldt, J.; Olsen, L.H.; Frøkiær, J.; Jørgensen, T.M. Urinary NGAL, cystatin C, β2-microglobulin, and osteopontin significance in hydronephrotic children. Pediatr. Nephrol., 2012, 27(11), 2099-2106.
[http://dx.doi.org/10.1007/s00467-012-2217-6] [PMID: 22710694]
[81]
Beker, B.M.; Corleto, M.G.; Fieiras, C.; Musso, C.G. Novel acute kidney injury biomarkers: Their characteristics, utility and concerns. Int. Urol. Nephrol., 2018, 50(4), 705-713.
[http://dx.doi.org/10.1007/s11255-017-1781-x] [PMID: 29307055]
[82]
Karakus, S.; Oktar, T.; Kucukgergin, C.; Kalelioglu, I.; Seckin, S.; Atar, A.; Ander, H.; Ziylan, O. Urinary IP-10, MCP-1, NGAL, Cystatin-C, and KIM-1 levels in prenatally diagnosed unilateral hydronephrosis: The search for an ideal biomarker. Urology, 2016, 87, 185-192.
[http://dx.doi.org/10.1016/j.urology.2015.09.007] [PMID: 26505835]
[83]
Nejat, M.; Hill, J.V.; Pickering, J.W.; Edelstein, C.L.; Devarajan, P.; Endre, Z.H. Albuminuria increases cystatin C excretion: Implications for urinary biomarkers. Nephrol. Dial. Transplant., 2012, 27(Suppl. 3), iii96-iii103.
[http://dx.doi.org/10.1093/ndt/gfr222] [PMID: 21551085]
[84]
Lagos-Arevalo, P.; Palijan, A.; Vertullo, L.; Devarajan, P.; Bennett, M.R.; Sabbisetti, V.; Bonventre, J.V.; Ma, Q.; Gottesman, R.D.; Zappitelli, M. Cystatin C in acute kidney injury diagnosis: Early biomarker or alternative to serum creatinine? Pediatr. Nephrol., 2015, 30(4), 665-676.
[http://dx.doi.org/10.1007/s00467-014-2987-0] [PMID: 25475610]
[85]
Hellerstein, S.; Berenbom, M.; Erwin, P.; Wilson, N.; DiMaggio, S. The ratio of urinary cystatin C to urinary creatinine for detecting decreased GFR. Pediatr. Nephrol., 2004, 19(5), 521-525.
[http://dx.doi.org/10.1007/s00467-003-1373-0] [PMID: 15015062]
[86]
Wu, C-Y.; Yang, H-Y.; Chien, H-P.; Tseng, M-H.; Huang, J-L. Urinary clusterin-a novel urinary biomarker associated with pediatric lupus renal histopathologic features and renal survival. Pediatr. Nephrol., 2018, 33(7), 1189-1198.
[http://dx.doi.org/10.1007/s00467-018-3924-4] [PMID: 29511890]
[87]
Bieniaś, B.; Zajączkowska, M.; Borzęcka, H.; Sikora, P.; Wieczorkiewicz-Płaza, A.; Wilczyńska, B. Early markers of tubulointerstitial fibrosis in children with idiopathic nephrotic syndrome: Preliminary report. Medicine (Baltimore), 2015, 94(42), e1746.
[http://dx.doi.org/10.1097/MD.0000000000001746] [PMID: 26496290]
[88]
Bieniaś, B.; Sikora, P. Potential novel biomarkers of obstructive nephropathy in children with hydronephrosis. Dis. Markers, 2018, 2018, 1015726.
[http://dx.doi.org/10.1155/2018/1015726] [PMID: 30327688]
[89]
Cachat, F.; Combescure, C.; Chehade, H.; Zeier, G.; Mosig, D.; Meyrat, B.; Frey, P.; Girardin, E. Microalbuminuria and hyperfiltration in subjects with nephro-urological disorders. Nephrol. Dial. Transplant., 2013, 28(2), 386-391.
[http://dx.doi.org/10.1093/ndt/gfs494] [PMID: 23223226]
[90]
Lin, C-Y.; Huang, S-M. Childhood albuminuria and chronic kidney disease is associated with mortality and end-stage renal disease. Pediatr. Neonatol., 2016, 57(4), 280-287.
[http://dx.doi.org/10.1016/j.pedneo.2015.09.013] [PMID: 26993562]
[91]
Fanos, V.; Pizzini, C.; Mussap, M.; Benini, D.; Pleban, M. Urinary epidermal growth factor in different renal conditions in children. Ren. Fail., 2001, 23(3-4), 605-610.
[http://dx.doi.org/10.1081/JDI-100104742] [PMID: 11499574]
[92]
Madsen, M.G.; Nørregaard, R.; Palmfeldt, J.; Olsen, L.H.; Frøkiær, J.; Jørgensen, T.M. Epidermal growth factor and monocyte chemotactic peptide-1: Potential biomarkers of urinary tract obstruction in children with hydronephrosis. J. Pediatr. Urol., 2013, 9(6)(6 Pt A), 838-845.
[http://dx.doi.org/10.1016/j.jpurol.2012.11.011] [PMID: 23228281]
[93]
Bartoli, F.; Penza, R.; Aceto, G.; Niglio, F.; D’Addato, O.; Pastore, V.; Campanella, V.; Magaldi, S.; Lasalandra, C.; Di Bitonto, G.; Gesualdo, L. Urinary epidermal growth factor, monocyte chemotactic protein-1, and β2-microglobulin in children with ureteropelvic junction obstruction. J. Pediatr. Surg., 2011, 46(3), 530-536.
[http://dx.doi.org/10.1016/j.jpedsurg.2010.07.057] [PMID: 21376205]
[94]
Azukaitis, K.; Ju, W.; Kirchner, M.; Nair, V.; Smith, M.; Fang, Z.; Thurn-Valsassina, D.; Bayazit, A.; Niemirska, A.; Canpolat, N.; Bulut, I.K.; Yalcinkaya, F.; Paripovic, D.; Harambat, J.; Cakar, N.; Alpay, H.; Lugani, F.; Mencarelli, F.; Civilibal, M.; Erdogan, H.; Gellermann, J.; Vidal, E.; Tabel, Y.; Gimpel, C.; Ertan, P.; Yavascan, O.; Melk, A.; Querfeld, U.; Wühl, E.; Kretzler, M.; Schaefer, F.; Arbeiter, K.; Rosales, A.; Dusek, J.; Zaloszyc, A.; Querfeld, U.; Gellermann, J.; Liebau, M.; Weber, L.; Muschiol, E.; Büscher, R.; Oh, J.; Melk, A.; Thurn-Valassina, D.; Haffner, D.; Schaefer, F.; Gimpel, C.; John, U.; Wygoda, S.; Jeck, N.; Wigger, M.; Testa, S.; Murer, L.; Matteucci, C.; Jankauskiene, A.; Azukaitis, K.; Drozdz, D.; Lugani, F.; Zurowska, A.; Zaniew, M.; Litwin, M.; Nimierska, A.; Teixeira, A.; Peco-Antic, A.; Paripovic, D.; Laube, G.; Anarat, A.; Bayazit, A.; Duzova, A.; Bilginer, Y.; Caliskan, S.; Canpolat, N.; Civilibal, M.; Mir, S.; Sözeri, B.; Kranz, B.; Mencarelli, F.; Dorn, B.; Yalcinkaya, F.; Baskin, E.; Cakar, N.; Soylemezoglu, O.; Emre, S.; Candan, C.; Kiyak, A.; Ozcelik, G.; Alpay, H.; Shroff, R.; Rachin, B.; Harambat, J.; Szczepanska, M.; Erdogan, H.; Donmez, O.; Balat, A.; Aksu, N.; Tabel, Y.; Ertan, P.; Yilmaz, E.; Anarat, A.; Bakkaloglu, A.; Ozaltin, F.; Peco-Antic, A.; Querfeld, U.; Gellermann, J.; Sallay, P.; Drożdż, D.; Bonzel, K-E.; Wingen, A-M.; Żurowska, A.; Balasz, I.; Trivelli, A.; Perfumo, F.; Müller-Wiefel, D-E.; Möller, K.; Offner, G.; Enke, B.; Wühl, E.; Hadtstein, C.; Mehls, O.; Schaefer, F.; Emre, S.; Caliskan, S.; Mir, S.; Wygoda, S.; Hohbach-Hohenfellner, K.; Jeck, N.; Klaus, G.; Ardissino, G.; Testa, S.; Montini, G.; Charbit, M.; Niaudet, P.; Afonso, A.C.; Fernandes-Teixeira, A.; Dušek, J.; Matteucci, C.; Picca, S.; Wigger, M.; Berg, U.B.; Celsi, G.; Fischbach, M.; Terzic, J.; Fydryk, J.; Urasinski, T.; Coppo, R.; Peruzzi, L.; Arbeiter, K.; Jankauskiene, A.; Grenda, R.; Litwin, M.; Neuhaus, T.J. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int., 2019, 96(1), 214-221.
[http://dx.doi.org/10.1016/j.kint.2019.01.035] [PMID: 31005273]
[95]
Wasilewska, A.; Taranta-Janusz, K.; Dębek, W.; Zoch-Zwierz, W.; Kuroczycka-Saniutycz, E. KIM-1 and NGAL: New markers of obstructive nephropathy. Pediatr. Nephrol., 2011, 26(4), 579-586.
[http://dx.doi.org/10.1007/s00467-011-1773-5] [PMID: 21279810]
[96]
Polidori, N.; Giannini, C.; Salvatore, R.; Pelliccia, P.; Parisi, A.; Chiarelli, F.; Mohn, A. Role of urinary NGAL and KIM-1 as biomarkers of early kidney injury in obese prepubertal children. J. Pediatr. Endocrinol. Metab. JPEM, 2020, 33(9), 1183-1189.
[http://dx.doi.org/10.1515/jpem-2020-0138] [PMID: 32845866]
[97]
Wasilewska, A.M.; Zoch-Zwierz, W.M. Urinary levels of matrix metalloproteinases and their tissue inhibitors in nephrotic children. Pediatr. Nephrol., 2008, 23(10), 1795-1802.
[http://dx.doi.org/10.1007/s00467-008-0881-3] [PMID: 18594870]
[98]
Chromek, M.; Tullus, K.; Hertting, O.; Jaremko, G.; Khalil, A.; Li, Y-H.; Brauner, A. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in acute pyelonephritis and renal scarring. Pediatr. Res., 2003, 53(4), 698-705.
[http://dx.doi.org/10.1203/01.PDR.0000057575.86337.CB] [PMID: 12612199]
[99]
Czech, K.A.; Bennett, M.; Devarajan, P. Distinct metalloproteinase excretion patterns in focal segmental glomerulosclerosis. Pediatr. Nephrol., 2011, 26(12), 2179-2184.
[http://dx.doi.org/10.1007/s00467-011-1897-7] [PMID: 21720805]
[100]
Bieniaś, B.; Sikora, P. Urinary metalloproteinases and tissue inhibitors of metalloproteinases as potential early biomarkers for renal fibrosis in children with nephrotic syndrome. Medicine (Baltimore), 2018, 97(8), e9964.
[http://dx.doi.org/10.1097/MD.0000000000009964] [PMID: 29465592]
[101]
Tian, F.; Gu, C.; Zhao, Z.; Li, L.; Lu, S.; Li, Z. Urinary Emmprin, matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 as potential biomarkers in children with ureteropelvic junction narrowing on conservative treatment. Nephrology (Carlton), 2015, 20(3), 194-200.
[http://dx.doi.org/10.1111/nep.12371] [PMID: 25470073]
[102]
Bieniaś, B.; Sikora, P. Selected metal matrix metalloproteinases and tissue inhibitors of metalloproteinases as potential biomarkers for tubulointerstitial fibrosis in children with unilateral hydronephrosis. Dis. Markers, 2020, 2020, 9520309.
[http://dx.doi.org/10.1155/2020/9520309] [PMID: 32670438]
[103]
Saif, A.; Soliman, N. Urinary α1 -microglobulin and albumin excretion in children and adolescents with type 1 diabetes. J. Diabetes, 2017, 9(1), 61-64.
[http://dx.doi.org/10.1111/1753-0407.12383] [PMID: 26847470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy