Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

The Synergistic Effect of Ruthenium Complex Δ-Ru1 and Doxorubicin in a Mouse Breast Cancer Model

Author(s): Xing-Guo Tang, Ke Lin, Shun-Wen Guo, Yi Rong, Dan Chen, Zhe-Sheng Chen, Feng-Feng Ping* and Jin-Quan Wang*

Volume 18, Issue 2, 2023

Published on: 05 September, 2022

Page: [174 - 186] Pages: 13

DOI: 10.2174/1574892817666220629105543

Price: $65

Abstract

Background: Doxorubicin is a significant drug for the treatment of breast cancer, but its cardiotoxicity is an obvious obstacle. Previously, we confirmed that ruthenium complex (Δ-Ru1) and doxorubicin (Δ-Ru1/Dox) combination had a synergistic effect in MCF-7 cells, but its biological effect in vivo is unknown.

Purposes: To find a way to overcome the toxicity of doxorubicin and build MCF-7 xenograft tumor mouse model to test whether this potential combination has better efficacy and less toxicity.

Methods: The tumor model of nude mice was established to verify the synergistic antitumor effect of the drug combination in vivo. H&E staining was used to detect the toxicity of major organs in mice. Sirius red staining and transmission electron microscopy were used to detect cardiotoxicity. Prussian blue was used to measure iron accumulation in heart tissue. TUNEL staining was used to detect the antitumor effect in vivo. Immunohistochemical staining was used to detect the expression of iron death-related pathway proteins. High-throughput sequencing techniques were used to determine the molecular mechanism of ferroptosis.

Results: Histopathological analysis of tumor tissues indicated that the Δ-Ru1/Dox combination significantly promoted tumor cell apoptosis. Doxorubicin damaged cardiac tissue by inducing fibrosis and iron accumulation, but it was reversed by the Δ-Ru1/Dox combination treatment. Further exploration found that doxorubicin could regulate iron accumulation in the ferroptosis pathway and the expression of lipid peroxidation-related proteins, including upregulation of Tf, DMT1, and HO-1, and downregulation of Nrf2, SLC7A11, and GPX4.

Conclusion: Δ-Ru1/Dox combination synergistically inhibits tumor growth, and it can significantly reduce and alleviate the toxic side effects of doxorubicin, especially cardiac injury.

Keywords: Ruthenium complex, doxorubicin, synergistic effect, breast cancer, cell apoptosis, ferroptosis.

[1]
Kurzrock R, Kantarjian HM, Kesselheim AS, Sigal EV. New drug approvals in oncology. Nat Rev Clin Oncol 2020; 17(3): 140-6.
[http://dx.doi.org/10.1038/s41571-019-0313-2] [PMID: 32020042]
[2]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[3]
Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov 2019; 9(2): 176-98.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[4]
Leon-Ferre RA, Hieken TJ, Boughey JC. The landmark series: Neoadjuvant chemotherapy for triple-negative and HER2-positive breast cancer. Ann Surg Oncol 2021; 28(4): 2111-9.
[http://dx.doi.org/10.1245/s10434-020-09480-9] [PMID: 33486641]
[5]
Sebti SM, Lawrence NJ, Turkson J. Platinum compounds that inhibit constitutive STAT3 signaling and induce cell cycle arrest and apoptosis of malignant cells. US Patent 10813927, 2020.
[6]
Clozel M, Regenass U. Combination comprising macitentan and paclitaxel for treating multi-drug resistant ovarian cancer. US Patent 8541433, 2013.
[7]
Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 2019; 39(1): 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[8]
Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007; 33(1): 9-23.
[http://dx.doi.org/10.1016/j.ctrv.2006.09.006] [PMID: 17084534]
[9]
Kenny RG, Marmion CJ. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem Rev 2019; 119(2): 1058-137.
[http://dx.doi.org/10.1021/acs.chemrev.8b00271] [PMID: 30640441]
[10]
Mohamed Subarkhan MK, Ren L, Xie B, Chen C, Wang Y, Wang H. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem 2019; 179: 246-56.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.061] [PMID: 31255925]
[11]
Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans 2018; 47(19): 6645-53.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[12]
Lainé AL, Passirani C. Novel metal-based anticancer drugs: A new challenge in drug delivery. Curr Opin Pharmacol 2012; 12(4): 420-6.
[http://dx.doi.org/10.1016/j.coph.2012.04.006] [PMID: 22609113]
[13]
Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer 2021; 21(1): 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y] [PMID: 33128031]
[14]
Komeda S, Casini A. Next-generation anticancer metallodrugs. Curr Top Med Chem 2012; 12(3): 219-35.
[http://dx.doi.org/10.2174/156802612799078964] [PMID: 22236158]
[15]
Ferraro MG, Piccolo M, Misso G, et al. Breast cancer chemotherapeutic options: A general overview on the preclinical validation of a multi-target ruthenium(III) complex lodged in nucleolipid nanosystems. Cells 2020; 9(6): E1412.
[http://dx.doi.org/10.3390/cells9061412] [PMID: 32517101]
[16]
Bergamo A, Sava G. Ruthenium anticancer compounds: Myths and realities of the emerging metal-based drugs. Dalton Trans 2011; 40(31): 7817-23.
[http://dx.doi.org/10.1039/c0dt01816c] [PMID: 21629963]
[17]
Sun Q, Li Y, Shi H, Wang Y, Zhang J, Zhang Q. Ruthenium complexes as promising candidates against lung cancer. Molecules 2021; 26(15): 4389.
[http://dx.doi.org/10.3390/molecules26154389] [PMID: 34361543]
[18]
Wei J, Renfrew AK. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent. J Inorg Biochem 2018; 179: 146-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.018] [PMID: 29180165]
[19]
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium complexes: An alternative to platinum drugs in colorectal cancer treatment. Pharmaceutics 2021; 13(8): 1295.
[http://dx.doi.org/10.3390/pharmaceutics13081295] [PMID: 34452256]
[20]
Lee SY, Kim CY, Nam TG. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des Devel Ther 2020; 14: 5375-92.
[http://dx.doi.org/10.2147/DDDT.S275007] [PMID: 33299303]
[21]
Alessio E, Messori L. NAMI-A and KP1019/1339, Two iconic ruthenium anticancer drug candidates face-to-face: A case story in medicinal inorganic chemistry. Molecules 2019; 24(10): E1995.
[http://dx.doi.org/10.3390/molecules24101995] [PMID: 31137659]
[22]
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5(3): 219-34.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[23]
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240: 489-503.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.012] [PMID: 27287891]
[24]
Gao P, Chen Y, Pan W, Li N, Liu Z, Tang B. Antitumor agents based on metal-organic frameworks. Angew Chem Int Ed Engl 2021; 60(31): 16763-76.
[http://dx.doi.org/10.1002/anie.202102574] [PMID: 33686725]
[25]
Yang L, Zheng L, Chng WJ, Ding JL. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies. Trends Pharmacol Sci 2019; 40(11): 897-910.
[http://dx.doi.org/10.1016/j.tips.2019.09.005] [PMID: 31662208]
[26]
Bergamo A, Sava G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem Soc Rev 2015; 44(24): 8818-35.
[http://dx.doi.org/10.1039/C5CS00134J] [PMID: 25812154]
[27]
Su W, Li Y, Li P. Design of ru-arene complexes for antitumor drugs. Mini Rev Med Chem 2018; 18(2): 184-93.
[http://dx.doi.org/10.2174/1389557517666170510113453] [PMID: 28494728]
[28]
Bergamo A, Riedel T, Dyson PJ, Sava G. Preclinical combination therapy of the investigational drug NAMI-A(+) with doxorubicin for mammary cancer. Invest New Drugs 2015; 33(1): 53-63.
[http://dx.doi.org/10.1007/s10637-014-0175-5] [PMID: 25338748]
[29]
Vanacker H, Harter P, Labidi-Galy SI, et al. PARP-inhibitors in epithelial ovarian cancer: Actual positioning and future expectations. Cancer Treat Rev 2021; 99: 102255.
[http://dx.doi.org/10.1016/j.ctrv.2021.102255] [PMID: 34332292]
[30]
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F. Differences in PARP inhibitors for the treatment of ovarian cancer: Mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci 2021; 22(8): 4203.
[http://dx.doi.org/10.3390/ijms22084203] [PMID: 33921561]
[31]
Chao S, Dunyou Q, Wang K, Zhao D, Zou D. Olaparib pharmaceutical composition, preparation thereof, preparation method therefor and use thereof. WO Patent 2021164755, 2021.
[32]
Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev 2020; 34(5-6): 360-94.
[http://dx.doi.org/10.1101/gad.334516.119] [PMID: 32029455]
[33]
Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017; 376(7): 629-40.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]
[34]
Gou Y, Zhang Z, Li D, et al. HSA-based multi-target combination therapy: Regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv 2018; 25(1): 321-9.
[http://dx.doi.org/10.1080/10717544.2018.1428245] [PMID: 29350051]
[35]
Yusoh NA, Leong SW, Chia SL, et al. Metallointercalator [Ru(dppz)2(PIP)]2+ Renders BRCA wild-type triple-negative breast cancer cells hypersensitive to PARP Inhibition. ACS Chem Biol 2020; 15(2): 378-87.
[http://dx.doi.org/10.1021/acschembio.9b00843] [PMID: 31898884]
[36]
Gu G, Dustin D, Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol 2016; 31: 97-103.
[http://dx.doi.org/10.1016/j.coph.2016.11.005] [PMID: 27883943]
[37]
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58(3): 621-81.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[38]
Meredith AM, Dass CR. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol 2016; 68(6): 729-41.
[http://dx.doi.org/10.1111/jphp.12539] [PMID: 26989862]
[39]
Molinaro R, Martinez JO, Zinger A, et al. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomater Sci 2020; 8(1): 333-41.
[http://dx.doi.org/10.1039/C9BM01766F] [PMID: 31714542]
[40]
Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 2016; 29: 90-106.
[http://dx.doi.org/10.1016/j.drup.2016.10.003] [PMID: 27912846]
[41]
Speth PA, van Hoesel QG, Haanen C. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 1988; 15(1): 15-31.
[http://dx.doi.org/10.2165/00003088-198815010-00002] [PMID: 3042244]
[42]
Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR. Synthesis and optimization of mesoporous silica nanoparticles for ruthenium polypyridyl drug delivery. Pharmaceutics 2021; 13(2): 150.
[http://dx.doi.org/10.3390/pharmaceutics13020150] [PMID: 33498795]
[43]
Al-Malky HS, Al Harthi SE, Osman AM. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. J Oncol Pharm Pract 2020; 26(2): 434-44.
[http://dx.doi.org/10.1177/1078155219877931] [PMID: 31594518]
[44]
Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 2019; 116(7): 2672-80.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[45]
Tian C, Yang Y, Bai B, et al. Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity. Int J Biol Sci 2021; 17(5): 1328-38.
[http://dx.doi.org/10.7150/ijbs.58786] [PMID: 33867849]
[46]
Boussios S, Karihtala P, Moschetta M, et al. Combined strategies with poly (ADP-Ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer: A literature review. Diagnostics (Basel) 2019; 9(3): E87.
[http://dx.doi.org/10.3390/diagnostics9030087] [PMID: 31374917]
[47]
Hu Y, Wu C, Zhu C, et al. Enhanced uptake and improved anti-tumor efficacy of doxorubicin loaded fibrin gel with liposomal apatinib in colorectal cancer. Int J Pharm 2018; 552(1-2): 319-27.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.013] [PMID: 30308269]
[48]
Varela-López A, Battino M, Navarro-Hortal MD, et al. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 2019; 134: 110834.
[http://dx.doi.org/10.1016/j.fct.2019.110834] [PMID: 31577924]
[49]
McGinn AN, Kim B, Kim SC, Park CH. A combination therapy with apatinib for the treatment of cancer. WO Patent 2019094832, 2019.
[50]
Judson I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial. Lancet Oncol 2014; 15(4): 415-23.
[http://dx.doi.org/10.1016/S1470-2045(14)70063-4] [PMID: 24618336]
[51]
Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 2020; 14(4): 4816-28.
[http://dx.doi.org/10.1021/acsnano.0c00708] [PMID: 32188241]
[52]
Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 1989; 16(4): 215-37.
[http://dx.doi.org/10.2165/00003088-198916040-00002] [PMID: 2656050]
[53]
Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[54]
Lin K, Rong Y, Chen D, et al. Combination of ruthenium complex and doxorubicin synergistically inhibits cancer cell growth by down-regulating PI3K/AKT signaling pathway. Front Oncol 2020; 10: 141.
[http://dx.doi.org/10.3389/fonc.2020.00141] [PMID: 32133289]
[55]
Wang JQ, Zhang PY, Qian C, Hou XJ, Ji LN, Chao H. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. Eur J Biochem 2014; 19(3): 335-48.
[http://dx.doi.org/10.1007/s00775-013-1069-2] [PMID: 24287874]
[56]
Huang Y, de Boer WB, Adams LA, et al. Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int 2013; 33(8): 1249-56.
[http://dx.doi.org/10.1111/liv.12184] [PMID: 23617278]
[57]
Yang N, Huang Y, Ding G, Fan A. In situ generation of Prussian blue with potassium ferrocyanide to improve the sensitivity of chemiluminescence immunoassay using magnetic nanoparticles as label. Anal Chem 2019; 91(7): 4906-12.
[http://dx.doi.org/10.1021/acs.analchem.9b01091] [PMID: 30862157]
[58]
Zhao Z, Wu J, Liu X, et al. Insufficient radiofrequency ablation promotes proliferation of residual hepatocellular carcinoma via autophagy. Cancer Lett 2018; 421: 73-81.
[http://dx.doi.org/10.1016/j.canlet.2018.02.024] [PMID: 29458142]
[59]
Fang X, Cai Z, Wang H, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 2020; 127(4): 486-501.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316509] [PMID: 32349646]
[60]
Gao Y, Yang H, Fan Y, Li L, Fang J, Yang W. Hydrogen-rich saline attenuates cardiac and hepatic injury in doxorubicin rat model by inhibiting inflammation and apoptosis. Mediators Inflamm 2016; 2016: 1320365.
[http://dx.doi.org/10.1155/2016/1320365] [PMID: 28104928]
[61]
Jonsson B, Liminga G, Csoka K, et al. Cytotoxic activity of calcein acetoxymethyl ester (Calcein/AM) on primary cultures of human haematological and solid tumours. Eur J Cancer 1996; 32A(5): 883-7.
[http://dx.doi.org/10.1016/0959-8049(96)00015-9] [PMID: 9081371]
[62]
Shimada K, Yamaguchi M, Atsuta Y, et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL): A multicentre, single-arm, phase 2 trial. Lancet Oncol 2020; 21(4): 593-602.
[http://dx.doi.org/10.1016/S1470-2045(20)30059-0] [PMID: 32171071]
[63]
Wijarnpreecha K, Kumfu S, Chattipakorn SC, Chattipakorn N. Cardiomyopathy associated with iron overload: How does iron enter myocytes and what are the implications for pharmacological therapy? Hemoglobin 2015; 39(1): 9-17.
[http://dx.doi.org/10.3109/03630269.2014.987869] [PMID: 25572185]
[64]
Jost PJ, Grabow S, Gray D, et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 2009; 460(7258): 1035-9.
[http://dx.doi.org/10.1038/nature08229] [PMID: 19626005]
[65]
Hu X, Liu H, Wang Z, Hu Z, Li L. miR-200a attenuated doxorubicin-induced cardiotoxicity through upregulation of Nrf2 in mice. Oxid Med Cell Longev 2019; 2019: 1512326.
[http://dx.doi.org/10.1155/2019/1512326] [PMID: 31781322]
[66]
Ganz T. Molecular control of iron transport. J Am Soc Nephrol 2007; 18(2): 394-400.
[http://dx.doi.org/10.1681/ASN.2006070802] [PMID: 17229910]
[67]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273-85.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[68]
Ma S, Sun L, Wu W, Wu J, Sun Z, Ren J. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol 2020; 11: 551318.
[http://dx.doi.org/10.3389/fphys.2020.551318] [PMID: 33192549]
[69]
Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 2018; 129: 454-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.426] [PMID: 30339884]
[70]
Li S, Wang W, Niu T, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev 2014; 2014: 748524.
[http://dx.doi.org/10.1155/2014/748524] [PMID: 24895528]
[71]
Zhao L, Qi Y, Xu L, et al. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 2018; 15: 284-96.
[http://dx.doi.org/10.1016/j.redox.2017.12.013] [PMID: 29304479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy