Abstract
Background: We have studied the Coulomb drag phenomena for hole-hole static potentials theoretically and measured numerically using the random phase approximation (RPA) method.
Objective: The drag resistivity is evaluated at low temperature, large interlayer separation limit and weakly screening regime, with the geometry of two atomically thin materials, such as BLG/GaAsbased multilayer system, which is a promising system in nanomaterials and technology.
Methods: Static local field corrections (LFC) are considered to take into account the Exchangecorrelations (XC) and mutual interaction effects with varying concentrations of the active and passive layer.
Results: It has been found that the drag resistivity gets enhanced on using the LFC effects and increases on increasing the effective mass. In Fermi-Liquid regime, drag resistivity is directly proportional to T2, n-3, d-4 and ε2 with respect to temperature (T), density (n), interlayer separation (d~nm) and dielectric constant (ε2), respectively.
Conclusion: Dependency of drag resistivity is measured and compared to 2D e-e and e-h coupledlayer systems with and without the effect of non-homogeneous dielectric medium.
Keywords: Drag resistivity, weak interaction, low temperature, hole-hole, static interactions, LFC.
Graphical Abstract
[http://dx.doi.org/10.1103/PhysRevB.47.4420] [PMID: 10006589]
[http://dx.doi.org/10.1103/PhysRevB.52.7516] [PMID: 9979698]
[http://dx.doi.org/10.5185/amlett.2020.071539]
[http://dx.doi.org/10.1016/j.physe.2020.114350]
[http://dx.doi.org/10.1016/j.physb.2021.412982]
[http://dx.doi.org/10.1007/s00339-021-04422-y]
[http://dx.doi.org/10.1016/j.physe.2020.114484]
[http://dx.doi.org/10.1140/epjp/s13360-021-01377-0]
[http://dx.doi.org/10.1103/PhysRevLett.89.016805] [PMID: 12097063]
[http://dx.doi.org/10.1103/PhysRevLett.63.2508] [PMID: 10040906]
[http://dx.doi.org/10.1103/PhysRevB.86.115425]
[http://dx.doi.org/10.1103/PhysRevLett.56.2736] [PMID: 10033077]
[http://dx.doi.org/10.1016/0038-1101(88)90359-0]
[http://dx.doi.org/10.1016/0749-6036(91)90154-J]
[http://dx.doi.org/10.1103/PhysRevLett.66.1216] [PMID: 10044025]
[http://dx.doi.org/10.1016/0039-6028(92)90386-K]
[http://dx.doi.org/10.1016/0921-4526(94)90243-7]
[http://dx.doi.org/10.1016/0749-6036(92)90231-S]
[http://dx.doi.org/10.1103/PhysRevLett.90.226801] [PMID: 12857330]
[http://dx.doi.org/10.1038/ncomms6824] [PMID: 25524426]
[http://dx.doi.org/10.1063/1.4941760]
[http://dx.doi.org/10.1088/1367-2630/aa887e]
[http://dx.doi.org/10.1038/s42005-018-0039-y]
[http://dx.doi.org/10.1103/PhysRevLett.88.126804] [PMID: 11909491]
[http://dx.doi.org/10.1016/S0038-1098(02)00426-X]
[http://dx.doi.org/10.1103/PhysRevLett.101.246801] [PMID: 19113643]
[http://dx.doi.org/10.1103/PhysRevB.79.041305]
[http://dx.doi.org/10.1103/PhysRevLett.102.026804] [PMID: 19257304]
[http://dx.doi.org/10.1103/PhysRevB.46.5012] [PMID: 10004272]
[http://dx.doi.org/10.1103/PhysRevB.71.115307]
[http://dx.doi.org/10.1103/PhysRevLett.70.2146] [PMID: 10053482]
[http://dx.doi.org/10.1016/0039-6028(94)90925-3]
[http://dx.doi.org/10.1103/PhysRevB.83.161401]
[http://dx.doi.org/10.1088/0953-8984/24/33/335602] [PMID: 22836243]
[http://dx.doi.org/10.1088/0031-8949/81/02/025701]
[http://dx.doi.org/10.1016/j.physb.2011.02.047]
[http://dx.doi.org/10.1103/PhysRevLett.90.086801] [PMID: 12633449]
[http://dx.doi.org/10.1103/PhysRevB.84.085408]
[http://dx.doi.org/10.1063/5.0002594]
[http://dx.doi.org/10.1063/5.0002593]