Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Mini-Review Article

Medicinal Importance, Pharmacological Activities, and Analytical Aspects of Strictinin: A Mini-Review

Author(s): Dinesh Kumar Patel*

Volume 17, Issue 2, 2022

Published on: 10 August, 2022

Page: [86 - 94] Pages: 9

DOI: 10.2174/2772434417666220628153913

Price: $65

Abstract

Background: Plants and their derived products have been used in history as food and medicine. Plant materials are rich sources of fiber, minerals, vitamins, and bioactive phytochemicals, which are useful for human beings. Strictinin is an important phytoconstituent of green tea.

Methods: Present work mainly focuses on the biological importance, therapeutic potential, and pharmacological activities of strictinin in medicine. Numerous scientific data have been collected from various literature databases such as Google Scholar, Science Direct, PubMed, and Scopus database in order to realize the health beneficial potential of strictinin. Pharmacological data has been collected and analyzed in the present work to find the effectiveness of strictinin against human disorders and complications. Analytical data of strictinin has been also collected and analyzed in the present work.

Results: Scientific data analysis revealed the biological importance of strictinin in medicine. Scientific data analysis signified the therapeutic benefit of strictinin mainly due to its anticancer, antimicrobial, antibacterial, antiviral, and antioxidant activity. However, enzymatic activities, cytotoxicity, effectiveness on skin disorders, and osteogenic potential of strictinin have also been discussed. Analytical data revealed the importance of modern analytical techniques in medicine for the separation, identification, and isolation of strictinin.

Conclusion: Present work signified the biological importance and therapeutic benefits of strictinin in medicine and other allied health sectors.

Keywords: Tannin, strictinin, medicine, anticancer, antimicrobial, antiviral, antioxidant, human disorders.

« Previous
Graphical Abstract

[1]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O. Nutrient and bioactive compounds composition of the leaves and stems of Pandiaka heudelotii: A wild vegetable. Heliyon, 2019, 5(4), e01501.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01501] [PMID: 31025012]
[2]
Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr., 2012, 3(4), 506-516.
[http://dx.doi.org/10.3945/an.112.002154] [PMID: 22797986]
[3]
Chandrasekara, A.; Josheph Kumar, T. Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. Int. J. Food Sci., 2016, 2016, 3631647.
[http://dx.doi.org/10.1155/2016/3631647] [PMID: 27127779]
[4]
Orief, Y.I.; Farghaly, N.F.; Ibrahim, M.I.A. Use of herbal medicines among pregnant women attending family health centers in Alexandria. Middle East Fertil. Soc. J., 2014, 19, 42-50.
[http://dx.doi.org/10.1016/j.mefs.2012.02.007]
[5]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat Antiinfect Drug Discov, 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[6]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[7]
Firenzuoli, F.; Gori, L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Alternat. Med., 2007, 4(Suppl. 1), 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[8]
El Hajj, M.; Sitali, D.C.; Vwalika, B.; Holst, L. Herbal medicine use among pregnant women attending antenatal clinics in Lusaka Province, Zambia: A cross-sectional, multicentre study. Complement. Ther. Clin. Pract., 2020, 40, 101218.
[http://dx.doi.org/10.1016/j.ctcp.2020.101218] [PMID: 32891293]
[9]
Zuo, M.; Liu, Y.; Sun, Z. An integrated strategy toward comprehensive characterization and quantification of multiple components from herbal medicine: An application study in Gelsemium elegans. Chin. Herb. Med., 2021, 13, 17-32.
[http://dx.doi.org/10.1016/j.chmed.2020.06.002]
[10]
Razavy, S.; Lee, J.; Zaslawski, C. A pre-trial evaluation of blinding for a Chinese herbal medicine trial. Contemp. Clin. Trials Commun., 2020, 19, 100632.
[http://dx.doi.org/10.1016/j.conctc.2020.100632] [PMID: 32817905]
[11]
Thakkar, S.; Anklam, E.; Xu, A. Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regul. Toxicol. Pharmacol., 2020, 114, 104647.
[http://dx.doi.org/10.1016/j.yrtph.2020.104647] [PMID: 32305367]
[12]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[13]
Verma, S.; Singh, S. Current and future status of herbal medicines. Vet. World, 2008, 2, 347.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[14]
Nguyen, P.H.; De Tran, V.; Pham, D.T.; Dao, T.N.P.; Dewey, R.S. Use of and attitudes towards herbal medicine during the COVID-19 pandemic: A cross-sectional study in Vietnam. Eur. J. Integr. Med., 2021, 44, 101328.
[http://dx.doi.org/10.1016/j.eujim.2021.101328]
[15]
Park, H.L.; Lee, H.S.; Shin, B.C. Traditional medicine in China, Korea, and Japan: A brief introduction and comparison. Evid. Based Complement. Alternat. Med., 2012, 2012, 429103.
[http://dx.doi.org/10.1155/2012/429103] [PMID: 23133492]
[16]
Lee, B.; Choi, Y.; Kim, P.W.; Yang, C.; Lee, M.S. Regulation and status of herbal medicine clinical trials in Korea: A narrative review. Integr. Med. Res., 2021, 10(2), 100688.
[http://dx.doi.org/10.1016/j.imr.2020.100688] [PMID: 33717976]
[17]
Lee, J.W.; Hyun, M.K.; Kim, H.J.; Kim, D-I. Acupuncture and herbal medicine for female infertility: An overview of systematic reviews. Integr. Med. Res., 2021, 10(3), 100694.
[http://dx.doi.org/10.1016/j.imr.2020.100694] [PMID: 33665092]
[18]
Yao, J.; Liu, N.; Li, N.; Li, X.; Hua, X. Different metabolomic responses of grass carp (Ctenopharyngodon idellus) to dietary tannin and rapeseed meal. Aquac. Fish., 2022, 7, 40-51.
[http://dx.doi.org/10.1016/j.aaf.2020.06.002]
[19]
Rajasekaran, S.; Rajasekar, N.; Sivanantham, A. Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J. Nutr. Biochem., 2021, 94, 108632.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108632] [PMID: 33794331]
[20]
Caprarulo, V.; Giromini, C.; Rossi, L. Review: Chestnut and quebracho tannins in pig nutrition: The effects on performance and intestinal health. Animal, 2021, 15(1), 100064.
[http://dx.doi.org/10.1016/j.animal.2020.100064] [PMID: 33516022]
[21]
Hafiz, N.L.M.; Tahir, P.M.D.; Hua, L.S. Curing and thermal properties of co-polymerized tannin phenol–formaldehyde resin for bonding wood veneers. J. Mater. Res. Technol., 2020, 9, 6994-7001.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.029]
[22]
Liao, J.; Brosse, N.; Hoppe, S.; Du, G.; Zhou, X.; Pizzi, A. One-step compatibilization of poly(lactic acid) and tannin via reactive extrusion. Mater. Des., 2020, 191, 108603.
[http://dx.doi.org/10.1016/j.matdes.2020.108603]
[23]
Zhu, X.F.; Guo, H.; Li, G.L.; Zhu, C.H. Effects of dietary hydrolyzable tannins on growth performance, antioxidant capacity, intestinal microflora and resistance against Vibrio parahaemolyticus of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone, 1931). Aquacult. Rep., 2021, 19, 100601.
[http://dx.doi.org/10.1016/j.aqrep.2021.100601]
[24]
Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot., 2020, 135, 58-70.
[http://dx.doi.org/10.1016/j.sajb.2020.08.008]
[25]
Kim, J.; Gripenberg, S.; Karonen, M.; Salminen, J.P. Seed tannin composition of tropical plants. Phytochemistry, 2021, 187, 112750.
[http://dx.doi.org/10.1016/j.phytochem.2021.112750] [PMID: 33845405]
[26]
Ma, Y.; Shang, Y.; Liu, F.; Zhang, W.; Wang, C.; Zhu, D. Convenient isolation of strictinin-rich tea polyphenol from Chinese green tea extract by zirconium phosphate. J Food Drug Anal, 2018, 26(1), 100-106.
[http://dx.doi.org/10.1016/j.jfda.2016.11.013] [PMID: 29389544]
[27]
Hsieh, S.K.; Xu, J.R.; Lin, N.H. Antibacterial and laxative activities of strictinin isolated from Pu’er tea (Camellia sinensis). J Food Drug Anal, 2016, 24(4), 722-729.
[http://dx.doi.org/10.1016/j.jfda.2016.03.014] [PMID: 28911609]
[28]
Chen, G.H.; Lin, Y.L.; Hsu, W.L.; Hsieh, S.K.; Tzen, J.T.C. Significant elevation of antiviral activity of strictinin from Pu’er tea after thermal degradation to ellagic acid and gallic acid. J Food Drug Anal, 2015, 23(1), 116-123.
[http://dx.doi.org/10.1016/j.jfda.2014.07.007] [PMID: 28911434]
[29]
Prinsloo, G.; Marokane, C.K.; Street, R.A. Anti-HIV activity of southern African plants: Current developments, phytochemistry and future research. J. Ethnopharmacol., 2018, 210, 133-155.
[http://dx.doi.org/10.1016/j.jep.2017.08.005] [PMID: 28807850]
[30]
Fultang, N.; Illendula, A.; Chen, B. Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3ß activity. PLoS One, 2019, 14(5), e0217789.
[http://dx.doi.org/10.1371/journal.pone.0217789] [PMID: 31150511]
[31]
Yamashita, S.; Yamashita, T.; Yamada, K.; Tachibana, H. Flavones suppress type I IL-4 receptor signaling by down-regulating the expression of common gamma chain. FEBS Lett., 2010, 584(4), 775-779.
[http://dx.doi.org/10.1016/j.febslet.2009.12.044] [PMID: 20040389]
[32]
Kim, Y.H.; Yoshimoto, M.; Nakayama, K. Tannic acid, a higher galloylated pentagalloylglucose, suppresses antigen-specific IgE production by inhibiting ɛ germline transcription induced by STAT6 activation. FEBS Open Bio, 2013, 3, 341-345.
[http://dx.doi.org/10.1016/j.fob.2013.07.008] [PMID: 24251093]
[33]
Wang, M.M.C.; Yeh, Y.; Shih, Y.E.; Tzen, J.T.C. Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas. J Food Drug Anal, 2018, 26(2), 609-619.
[http://dx.doi.org/10.1016/j.jfda.2017.07.015] [PMID: 29567230]
[34]
Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed., 2012, 2(4), 320-330.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[35]
Michihata, N.; Kaneko, Y.; Kasai, Y. High-yield total synthesis of (-)-strictinin through intramolecular coupling of gallates. J. Org. Chem., 2013, 78(9), 4319-4328.
[http://dx.doi.org/10.1021/jo4003135] [PMID: 23565826]
[36]
Kashiwada, Y.; Nonaka, G.; Nishioka, I.; Chang, J.J.; Lee, K.H. Antitumor agents, 129. Tannins and related compounds as selective cytotoxic agents. J. Nat. Prod., 1992, 55(8), 1033-1043.
[http://dx.doi.org/10.1021/np50086a002] [PMID: 1431932]
[37]
Ma, Y.; Wang, Y.; Zhang, H. Antimicrobial mechanism of strictinin isomers extracted from the root of Rosa roxburghii Tratt (Ci Li Gen). J. Ethnopharmacol., 2020, 250, 112498.
[http://dx.doi.org/10.1016/j.jep.2019.112498] [PMID: 31877366]
[38]
Lin, P.R.; Kuo, P.C.; Li, Y.C.; Jhuo, C.F.; Hsu, W.L.; Tzen, J.T.C. Theacrine and strictinin, two major ingredients for the anti-influenza activity of Yunnan Kucha tea. J. Ethnopharmacol., 2020, 262, 113190.
[http://dx.doi.org/10.1016/j.jep.2020.113190] [PMID: 32730889]
[39]
Saha, R.K.; Takahashi, T.; Kurebayashi, Y. Antiviral effect of strictinin on influenza virus replication. Antiviral Res., 2010, 88(1), 10-18.
[http://dx.doi.org/10.1016/j.antiviral.2010.06.008] [PMID: 20615432]
[40]
Patel, D.K.; Patel, K. Biological potential and antiviral activity of strictinin in the medicine through literature data analysis. Int. J. Surg., 2022, 100, 106288.
[http://dx.doi.org/10.1016/j.ijsu.2022.106288]
[41]
Liao, M.H.; Wang, X.R.; Hsu, W.L.; Tzen, J.T.C. Pu’er tea rich in strictinin and catechins prevents biofilm formation of two cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. J. Dent. Sci., 2021, 16(4), 1331-1334.
[http://dx.doi.org/10.1016/j.jds.2021.05.011] [PMID: 34484613]
[42]
Patel, D.K. Biological potential and antimicrobial activity of strictinin in the medicine through scientific data analysis. Int. J. Surg., 2022, 100, 106291.
[http://dx.doi.org/10.1016/j.ijsu.2022.106291]
[43]
Zhou, B.; Yang, L.; Liu, Z.L. Strictinin as an efficient antioxidant in lipid peroxidation. Chem. Phys. Lipids, 2004, 131(1), 15-25.
[http://dx.doi.org/10.1016/j.chemphyslip.2004.03.007] [PMID: 15210361]
[44]
Patel, D.K.; Patel, K. Biological potential and antioxidant activity of strictinin in the medicine through literature data analysis. Metab, 2022, 128, 155054.
[http://dx.doi.org/10.1016/j.metabol.2021.155054]
[45]
Yang, C.; Li, F.; Zhang, X.; Wang, L.; Zhou, Z.; Wang, M. Phenolic antioxidants from Rosa soulieana flowers. Nat. Prod. Res., 2013, 27(21), 2055-2058.
[http://dx.doi.org/10.1080/14786419.2013.811660] [PMID: 23805936]
[46]
Lee, C.J.; Chen, L.G.; Liang, W.L.; Wang, C.C. Multiple Activities of Punica granatum Linne against Acne vulgaris. Int. J. Mol. Sci., 2017, 18(1), 141.
[http://dx.doi.org/10.3390/ijms18010141] [PMID: 28085116]
[47]
Li, F.; Ohnishi-Kameyama, M.; Takahashi, Y.; Yamaki, K. Tea polyphenols as novel and potent inhibitory substances against renin activity. J. Agric. Food Chem., 2013, 61(40), 9697-9704.
[http://dx.doi.org/10.1021/jf403710b] [PMID: 24028635]
[48]
Toshima, A.; Matsui, T.; Noguchi, M. Identification of α-glucosidase inhibitors from a new fermented tea obtained by tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves. J. Sci. Food Agric., 2010, 90(9), 1545-1550.
[http://dx.doi.org/10.1002/jsfa.3983] [PMID: 20549810]
[49]
Takayama, S.; Kawanishi, M.; Yamauchi, K. Ellagitannins from Rosa roxburghii suppress poly(I:C)-induced IL-8 production in human keratinocytes. J. Nat. Med., 2021, 75(3), 623-632.
[http://dx.doi.org/10.1007/s11418-021-01509-x] [PMID: 33830449]
[50]
Imtiyaz, Z.; Wang, Y.F.; Lin, Y.T.; Liu, H.K.; Lee, M.H. Isolated compounds from Turpinia formosana nakai induce ossification. Int. J. Mol. Sci., 2019, 20(13), 3119.
[http://dx.doi.org/10.3390/ijms20133119] [PMID: 31247918]
[51]
Kim, Y.H.; Ninomiya, Y.; Yamashita, S. IL-4 receptor α in non-lipid rafts is the target molecule of strictinin in inhibiting STAT6 activation. Biochem. Biophys. Res. Commun., 2014, 450(1), 824-830.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.069] [PMID: 24960198]
[52]
Tachibana, H.; Kubo, T.; Miyase, T. Identification of an inhibitor for interleukin 4-induced ε germline transcription and antigen-specific IgE production in vivo. Biochem. Biophys. Res. Commun., 2001, 280(1), 53-60.
[http://dx.doi.org/10.1006/bbrc.2000.4069] [PMID: 11162477]
[53]
Monobe, M.; Ema, K.; Tokuda, Y.; Maeda-Yamamoto, M. Enhancement of phagocytic activity of macrophage-like cells by pyrogallol-type green tea polyphenols through caspase signaling pathways. Cytotechnology, 2010, 62(3), 201-203.
[http://dx.doi.org/10.1007/s10616-010-9280-2] [PMID: 20502963]
[54]
Kim, Y.H.; Fujimura, Y.; Sasaki, M. In situ label-free visualization of orally dosed strictinin within mouse kidney by MALDI-MS imaging. J. Agric. Food Chem., 2014, 62(38), 9279-9285.
[http://dx.doi.org/10.1021/jf503143g] [PMID: 25195619]
[55]
Yagi, K.; Goto, K.; Nanjo, F. Identification of a major polyphenol and polyphenolic composition in leaves of Camellia irrawadiensis. Chem. Pharm. Bull., 2009, 57(11), 1284-1288.
[http://dx.doi.org/10.1248/cpb.57.1284] [PMID: 19881283]
[56]
Mizukami, Y.; Sawai, Y.; Yamaguchi, Y. Simultaneous analysis of catechins, gallic acid, strictinin, and purine alkaloids in green tea by using catechol as an internal standard. J. Agric. Food Chem., 2007, 55(13), 4957-4964.
[http://dx.doi.org/10.1021/jf070323f] [PMID: 17530772]
[57]
Niino, H.; Sakane, I.; Okanoya, K.; Kuribayashi, S.; Kinugasa, H. Determination of mechanism of flock sediment formation in tea beverages. J. Agric. Food Chem., 2005, 53(10), 3995-3999.
[http://dx.doi.org/10.1021/jf047904e] [PMID: 15884829]
[58]
Yang, X.; Tomás-Barberán, F.A. Tea is a significant dietary source of ellagitannins and ellagic acid. J. Agric. Food Chem., 2019, 67(19), 5394-5404.
[http://dx.doi.org/10.1021/acs.jafc.8b05010] [PMID: 30339026]
[59]
Moharram, F.A.; Al-Gendy, A.A.; El-Shenawy, S.M.; Ibrahim, B.M.; Zarka, M.A. Phenolic profile, anti-inflammatory, antinociceptive, anti-ulcerogenic and hepatoprotective activities of Pimenta racemosa leaves. BMC Complement. Altern. Med., 2018, 18(1), 208.
[http://dx.doi.org/10.1186/s12906-018-2260-3] [PMID: 29976187]
[60]
Ku, K.M.O.; Choi, J.N.; Kim, J. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem., 2010, 58(1), 418-426.
[http://dx.doi.org/10.1021/jf902929h] [PMID: 19994861]
[61]
Li, J.H.; Nesumi, A.; Shimizu, K. Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers. Phytochemistry, 2010, 71(11-12), 1342-1349.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.002] [PMID: 20553697]
[62]
Sun, J.; Chen, P.; Lin, L.Z.; Harnly, J.M. A non-targeted approach to chemical discrimination between green tea dietary supplements and green tea leaves by HPLC/MS. J. AOAC Int., 2011, 94(2), 487-497.
[http://dx.doi.org/10.1093/jaoac/94.2.487] [PMID: 21563682]
[63]
Monobe, M.; Ema, K.; Kato, F.; Maeda-Yamamoto, M. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. J. Agric. Food Chem., 2008, 56(4), 1423-1427.
[http://dx.doi.org/10.1021/jf073127h] [PMID: 18232634]
[64]
Ling, S.K.; Tanaka, T.; Kouno, I. New cyanogenic and alkyl glycoside constituents from Phyllagathis rotundifolia. J. Nat. Prod., 2002, 65(2), 131-135.
[http://dx.doi.org/10.1021/np010393v] [PMID: 11858743]
[65]
Teixeira Lde, L.; Bertoldi, F.C.; Lajolo, F.M.; Hassimotto, N.M.A. Identification of ellagitannins and flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. J. Agric. Food Chem., 2015, 63(22), 5417-5427.
[http://dx.doi.org/10.1021/acs.jafc.5b01195] [PMID: 25990484]
[66]
Yoshida, T.; Ito, H.; Hatano, T. New hydrolyzable tannins, shephagenins A and B, from Shepherdia argentea as HIV-1 reverse transcriptase inhibitors. Chem. Pharm. Bull., 1996, 44(8), 1436-1439.
[http://dx.doi.org/10.1248/cpb.44.1436] [PMID: 8795264]
[67]
Degenhardt, A.; Engelhardt, U.H.; Lakenbrink, C.; Winterhalter, P. Preparative separation of polyphenols from tea by high-speed countercurrent chromatography. J. Agric. Food Chem., 2000, 48(8), 3425-3430.
[http://dx.doi.org/10.1021/jf0000833] [PMID: 10956128]
[68]
Tang, C.; Guo, T.; Zhang, Z.; Yang, P.; Song, H. Rapid visualized characterization of phenolic taste compounds in tea extract by high-performance thin-layer chromatography coupled to desorption electrospray ionization mass spectrometry. Food Chem., 2021, 355, 129555.
[http://dx.doi.org/10.1016/j.foodchem.2021.129555] [PMID: 33831729]
[69]
Enomoto, H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr Res Food Sci, 2021, 4, 821-828.
[http://dx.doi.org/10.1016/j.crfs.2021.11.006] [PMID: 34841268]
[70]
Mady, M.S.; Elsayed, H.E.; El-Sayed, E.K.; Hussein, A.A.; Ebrahim, H.Y.; Moharram, F.A. Polyphenolic profile and ethno pharmacological activities of Callistemonsubulatus (Cheel) craven leaves cultivated in Egypt. J. Ethnopharmacol., 2022, 284, 114698.
[http://dx.doi.org/10.1016/j.jep.2021.114698] [PMID: 34600075]
[71]
Takayoshi, J.; Huang, Y.L.; Matsuo, Y.; Saito, Y.; Li, D.P.; Tanaka, T. Ellagitannin digestion in moth larvae and a new dimeric ellagitannin from the leaves of Platycarya strobilacea. Molecules, 2021, 26(14), 4134.
[http://dx.doi.org/10.3390/molecules26144134] [PMID: 34299409]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy