Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Current Frontiers

Heavy Metal Pollution and Male Fertility: An Overview on Adverse Biological Effects and Socio-Economic Implications

Author(s): Felice Crocetto, Rossella Risolo, Rita Colapietro, Rosa Bellavita, Biagio Barone, Andrea Ballini*, Roberto Arrigoni*, Vincenzo Francesco Caputo, Giovanni Luca, Paolo Grieco, Giunio Santini and Stefano Brancorsini

Volume 23, Issue 2, 2023

Published on: 10 August, 2022

Page: [129 - 146] Pages: 18

DOI: 10.2174/1871530322666220627141651

Price: $65

Abstract

Trace metals can be divided into two subgroups considering their pathophysiological effects: the first consists of microelements essential for life (arsenic, cobalt, chromium, copper, fluorine, iron, iodine, manganese, molybdenum, nickel, selenium, silicon, tin, vanadium and zinc), implicated in important metabolic processes; the second includes toxic microelements, such as cadmium (Cd), mercury (Hg), chromium (Cr), and lead (Pb) for living organisms, even at low concentrations. These metals contribute to serious consequences for human health, including male infertility. Studies performed in several in vitro and in vivo models revealed that environmental exposure to toxic pollutants, as heavy metals, negatively affects human male fertility. Stem cells, due to their ability to self-renew and differentiate in several cell types, have been proposed as a useful tool in assisted reproductive technology, permitting the spermatogenesis recovery in patients with irreversible infertility. Considering the effects of heavy metals on male fertility and, from a demographic point of view, the decreased fertility ratio, further strategies are required to maintain a sustainable turn-over of 2 children for woman. We discuss here the findings on the biological effects of heavy metal pollution in the male fertility and underline the related socioeconomic impact on population demography.

Keywords: Heavy metal pollution, male infertility, stem cells, clinical biochemistry and molecular clinical biology, demographic transition, green economy, gross domestic product (GDP).

Graphical Abstract

[1]
World health organization & convention task force on the health aspects of air pollution. WHO health risks of heavy metals from longrange transboundary air pollution. 2007, 1-3.
[2]
Pedata, P.; Boccellino, M.; La Porta, R.; Napolitano, M.; Minutolo, P.; Sgro, L.A.; Zei, F.; Sannolo, N.; Quagliuolo, L. Interaction between combustion-generated organic nanoparticles and biological systems: In vitro study of cell toxicity and apoptosis in human keratinocytes. Nanotoxicology, 2012, 6(4), 338-352.
[http://dx.doi.org/10.3109/17435390.2011.579630] [PMID: 21574799]
[3]
Pieri, M.; Quagliuolo, L.; La Porta, R.; Silvestre, A.; Miraglia, N.; Pedata, P.; Acampora, A.; Castiglia, L.; Sannolo, N.; Boccellino, M. Epirubicin permeation of personal protective equipment can induce apoptosis in keratinocytes. J. Expo. Sci. Environ. Epidemiol., 2013, 23(4), 428-434.
[http://dx.doi.org/10.1038/jes.2012.38] [PMID: 22569206]
[4]
Boeri, L.; Bebi, C.; Dente, D.; Greco, E.; Turetti, M.; Capece, M.; Cocci, A.; Cito, G.; Preto, M.; Pescatori, E.; Ciampaglia, W.; Scroppo, F.I.; Falcone, M.; Ceruti, C.; Gadda, F.; Franco, G.; Dehò, F.; Palmieri, A.; Rolle, L.; Gontero, P.; Montorsi, F.; Montanari, E.; Salonia, A. Outcomes and predictive factors of successful salvage microdissection testicular sperm extraction (mTESE) after failed classic TESE: Results from a multicenter cross-sectional study. Int. J. Impot. Res., 2019, 31(2), 65-70.
[PMID: 30837718]
[5]
Crocetto, F.; Arcaniolo, D.; Napolitano, L.; Barone, B.; La Rocca, R.; Capece, M.; Caputo, V.F.; Imbimbo, C.; De Sio, M.; Calace, F.P.; Manfredi, C. Impact of sexual activity on the risk of male genital tumors: A systematic review of the literature. Int. J. Environ. Res. Public Health, 2021, 18(16), 8500.
[http://dx.doi.org/10.3390/ijerph18168500] [PMID: 34444249]
[6]
Napolitano, L.; Barone, B.; Crocetto, F.; Capece, M.; La Rocca, R. The covid-19 pandemic: Is it a wolf consuming fertility? Int. J. Fertil. Steril., 2020, 14(2), 159-160.
[PMID: 32681630]
[7]
Colborn, T.; vom Saal, F.S.; Soto, A.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect., 1993, 101(5), 378-384.
[http://dx.doi.org/10.1289/ehp.93101378] [PMID: 8080506]
[8]
Choi, S.M.; Yoo, S.D.; Lee, B.M. Toxicological characteristics of endocrine-disrupting chemicals: Developmental toxicity, carcinogenicity, and mutagenicity. J. Toxicol. Environ. Health B Crit. Rev., 2004, 7(1), 1-24.
[http://dx.doi.org/10.1080/10937400490253229] [PMID: 14681080]
[9]
Auricchio, F.; Migliaccio, A.; Castoria, G.; Rotondi, A.; Di Domenico, M.; Pagano, M. Activation-inactivation of hormone binding sites of the oestradiol-17 β receptor is a multiregulated process. J. Steroid Biochem., 1986, 24(1), 39-43.
[http://dx.doi.org/10.1016/0022-4731(86)90029-4] [PMID: 3009987]
[10]
Bhardwaj, J.K.; Paliwal, A.; Saraf, P. Effects of heavy metals on reproduction owing to infertility. J. Biochem. Mol. Toxicol., 2021, 35(8), e22823.
[http://dx.doi.org/10.1002/jbt.22823] [PMID: 34051019]
[11]
Benoff, S.; Auborn, K.; Marmar, J.L.; Hurley, I.R. Link between low-dose environmentally relevant cadmium exposures and asthenozoospermia in a rat model. Fertil. Steril., 2008, 89(2)(Suppl.), e73-e79.
[http://dx.doi.org/10.1016/j.fertnstert.2007.12.035] [PMID: 18308070]
[12]
Jarow, J.P.; Espeland, M.A.; Lipshultz, L.I. Evaluation of the azoospermic patient. J. Urol., 1989, 142(1), 62-65.
[http://dx.doi.org/10.1016/S0022-5347(17)38662-7] [PMID: 2499695]
[13]
Durairajanayagam, D.; Agarwal, A.; Ong, C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod. Biomed. Online, 2015, 30(1), 14-27.
[http://dx.doi.org/10.1016/j.rbmo.2014.09.018] [PMID: 25456164]
[14]
Azizollahi, S.; Aflatoonian, R.; Sedigi-Gilani, M.A.; Jafarabadi, M.A.; Behnam, B.; Azizollahi, G.; Koruji, M. Recruiting testicular torsion introduces an azoospermic mouse model for spermatogonial stem cell transplantation. Urol. J., 2014, 11(3), 1648-1655.
[PMID: 25015612]
[15]
Absalan, F.; Movahedin, M.; Mowla, S.J. Evaluation of apoptotic genes expression and its protein after treatment of cryptorchid mice. Iran. Biomed. J., 2012, 16(2), 77-83.
[PMID: 22801280]
[16]
Sakib, S.; Uchida, A.; Valenzuela-Leon, P.; Yu, Y.; Valli-Pulaski, H.; Orwig, K.; Ungrin, M.; Dobrinski, I. Formation of organotypic testicular organoids in microwell culture. Biol. Reprod., 2019, 100(6), 1648-1660.
[http://dx.doi.org/10.1093/biolre/ioz053] [PMID: 30927418]
[17]
Boccellino, M.; Vanacore, D.; Zappavigna, S.; Cavaliere, C.; Rossetti, S.; D’Aniello, C.; Chieffi, P.; Amler, E.; Buonerba, C.; Di Lorenzo, G.; Di Franco, R.; Izzo, A.; Piscitelli, R.; Iovane, G.; Muto, P.; Botti, G.; Perdonà, S.; Caraglia, M.; Facchini, G. Testicular cancer from diagnosis to epigenetic factors. Oncotarget, 2017, 8(61), 104654-104663.
[http://dx.doi.org/10.18632/oncotarget.20992] [PMID: 29262668]
[18]
Richer, G.; Baert, Y.; Goossens, E. In-vitro spermatogenesis through testis modelling: Toward the generation of testicular organoids. Andrology, 2020, 8(4), 879-891.
[http://dx.doi.org/10.1111/andr.12741] [PMID: 31823507]
[19]
Arrigoni, R.; Ballini, A.; Santacroce, L.; Cantore, S.; Inchingolo, A.; Inchingolo, F.; Di Domenico, M.; Quagliuolo, L.; Boccellino, M. Another look at dietary polyphenols: Challenges in cancer prevention and treatment. Curr. Med. Chem., 2022, 29(6), 1061-1082.
[20]
Hwang, Y.S.; Suzuki, S.; Seita, Y.; Ito, J.; Sakata, Y.; Aso, H.; Sato, K.; Hermann, B.P.; Sasaki, K. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat. Commun., 2020, 11(1), 5656.
[http://dx.doi.org/10.1038/s41467-020-19350-3] [PMID: 33168808]
[21]
Sakib, S.; Voigt, A.; Goldsmith, T.; Dobrinski, I. Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology. Environ. Epigenet., 2019, 5(3), dvz011.
[http://dx.doi.org/10.1093/eep/dvz011] [PMID: 31463083]
[22]
Caraglia, M.; Alaia, C.; Grimaldi, A.; Boccellino, M.; Quagliuolo, L. MiRNA as prognostic and therapeutic targets in tumor of male urogenital tract.In: Chatterjee, M.; Ed. Molecular Targets and Strategies in Cancer Prevention; Springer: Cham, 2016, pp. 151-171.
[http://dx.doi.org/10.1007/978-3-319-31254-5_7]
[23]
Vloeberghs, V.; Verheyen, G.; Haentjens, P.; Goossens, A.; Polyzos, N.P.; Tournaye, H. How successful is TESE-ICSI in couples with non-obstructive azoospermia? Hum. Reprod., 2015, 30(8), 1790-1796.
[http://dx.doi.org/10.1093/humrep/dev139] [PMID: 26082482]
[24]
Corona, G.; Minhas, S.; Giwercman, A.; Bettocchi, C.; Dinkelman-Smit, M.; Dohle, G.; Fusco, F.; Kadioglou, A.; Kliesch, S.; Kopa, Z.; Krausz, C.; Pelliccione, F.; Pizzocaro, A.; Rassweiler, J.; Verze, P.; Vignozzi, L.; Weidner, W.; Maggi, M.; Sofikitis, N. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: A systematic review and meta-analysis. Hum. Reprod. Update, 2019, 25(6), 733-757.
[http://dx.doi.org/10.1093/humupd/dmz028] [PMID: 31665451]
[25]
Pettini, F.; Savino, M.; Corsalini, M.; Cantore, S.; Ballini, A. Cytogenetic genotoxic investigation in peripheral blood lymphocytes of subjects with dental composite restorative filling materials. J. Biol. Regul. Homeost. Agents, 2015, 29(1), 229-233.
[PMID: 25864763]
[26]
GBD 2017 Population and Fertility Collaborators. Population and fertility by age and sex for 195 countries and territories, 1950-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 10(392), 1995-2051.
[27]
Santini, G.; Fordellone, M.; Boffo, S.; Signoriello, S.; de Vito, D.; Chiodini, P. Modeling for the stringency of lock-down policies: Effects ofmacroe-conomic and healthcare variables in response to Covid-19 pandemic. Front. Public Health, 2022, 10, 872704.
[28]
Reeder, R.J.; Schoonen, M.A.A.; Lanzirotti, A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem., 2006, 64(1), 59-113.
[http://dx.doi.org/10.2138/rmg.2006.64.3]
[29]
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Experientia Suppl., 2012, 101, 133-164.
[PMID: 22945569]
[30]
Rusyniak, D.E.; Arroyo, A.; Acciani, J.; Froberg, B.; Kao, L.; Furbee, B. Heavy metal poisoning: Management of intoxication and antidotes. EXS, 2010, 100, 365-396.
[http://dx.doi.org/10.1007/978-3-7643-8338-1_11] [PMID: 20358690]
[31]
Templeton, D.M. The importance of trace element speciation in biomedical science. Anal. Bioanal. Chem., 2003, 375(8), 1062-1066.
[http://dx.doi.org/10.1007/s00216-002-1707-y] [PMID: 12733018]
[32]
Tariba Lovaković, B.; Blanka, T. Cadmium, arsenic, and lead: Elements affecting male reproductive health. Curr. Opin. Toxicol., 2020, 19, 7-14.
[http://dx.doi.org/10.1016/j.cotox.2019.09.005]
[33]
Ilieva, Iliana; Iskra, Sainova and Yosifcheva, K. Toxic effects of heavy metals (mercury and arsenic) on the male fertility. Acta morphol. et anthropol., 2017, 28, 1-2.
[34]
de Angelis, C.; Galdiero, M.; Pivonello, C.; Salzano, C.; Gianfrilli, D.; Piscitelli, P.; Lenzi, A.; Colao, A.; Pivonello, R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod. Toxicol., 2017, 73, 105-127.
[http://dx.doi.org/10.1016/j.reprotox.2017.07.021] [PMID: 28774687]
[35]
Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; Muzi, G.; Calafiore, R.; Bodo, M. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents, 2013, 27(3), 805-816.
[PMID: 24152845]
[36]
Oliveira, H.; Spanò, M.; Santos, C.; Pereira, M.L. Adverse effects of cadmium exposure on mouse sperm. Reprod. Toxicol., 2009, 28(4), 550-555.
[http://dx.doi.org/10.1016/j.reprotox.2009.08.001] [PMID: 19695322]
[37]
Ji, Y.L.; Wang, H.; Zhao, X.F.; Wang, Q.; Zhang, C.; Zhang, Y.; Zhao, M.; Chen, Y.H.; Meng, X.H.; Xu, D.X. Crosstalk between endoplasmic reticulum stress and mitochondrial pathway mediates cadmium-induced germ cell apoptosis in testes. Toxicol. Sci., 2011, 124(2), 446-459.
[http://dx.doi.org/10.1093/toxsci/kfr232] [PMID: 21908765]
[38]
Singh, K.P.; Kumari, R.; Pevey, C.; Jackson, D.; DuMond, J.W. Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells. Cancer Lett., 2009, 279(1), 84-92.
[http://dx.doi.org/10.1016/j.canlet.2009.01.023] [PMID: 19232459]
[39]
Lafuente, A.; Márquez, N.; Pérez-Lorenzo, M.; Pazo, D.; Esquifino, A.I. Cadmium effects on hypothalamic-pituitary-testicular axis in male rats. Exp. Biol. Med. (Maywood), 2001, 226(6), 605-611.
[http://dx.doi.org/10.1177/153537020122600615] [PMID: 11395933]
[40]
Turner, A.; Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int., 2021, 156, 106622.
[http://dx.doi.org/10.1016/j.envint.2021.106622] [PMID: 34030075]
[41]
Rusin, M.; Domagalska, J.; Rogala, D.; Razzaghi, M.; Szymala, I. Concentration of cadmium and lead in vegetables and fruits. Sci. Rep., 2021, 11(1), 11913.
[http://dx.doi.org/10.1038/s41598-021-91554-z] [PMID: 34099845]
[42]
Carlsen, E.; Giwercman, A.; Keiding, N.; Skakkebaek, N.E. Evidence for decreasing quality of semen during past 50 years. BMJ, 1992, 305(6854), 609-613.
[http://dx.doi.org/10.1136/bmj.305.6854.609] [PMID: 1393072]
[43]
Nordkap, L.; Joensen, U.N.; Blomberg Jensen, M.; Jørgensen, N. Regional differences and temporal trends in male reproductive health disorders: Semen quality may be a sensitive marker of environmental exposures. Mol. Cell. Endocrinol., 2012, 355(2), 221-230.
[http://dx.doi.org/10.1016/j.mce.2011.05.048] [PMID: 22138051]
[44]
Knez, J. Endocrine-disrupting chemicals and male reproductive health. Reprod. Biomed. Online, 2013, 26(5), 440-448.
[http://dx.doi.org/10.1016/j.rbmo.2013.02.005] [PMID: 23510680]
[45]
Christian, M.S.; Hoberman, A.M. Perspectives on guidelines for developmental toxicity testing in the United States, the EEC and Japan.In: Hood, R.D., Ed.; Handbook of Developmental Toxicology; CRC Press: Boca Raton, 1996, pp. 551-595.
[46]
Zeng, X.; Lin, T.; Zhou, Y.; Kong, Q. Alterations of serum hormone levels in male workers occupationally exposed to cadmium. J. Toxicol. Environ. Health A, 2002, 65(7), 513-521.
[http://dx.doi.org/10.1080/15287390252807975] [PMID: 11939709]
[47]
Saaranen, M.; Kantola, M.; Saarikoski, S.; Vanha-Perttula, T. Human seminal plasma cadmium: Comparison with fertility and smoking habits. Andrologia, 1989, 21(2), 140-145.
[http://dx.doi.org/10.1111/j.1439-0272.1989.tb02384.x] [PMID: 2712368]
[48]
Sharpe, R.M.; McKinnell, C.; Kivlin, C.; Fisher, J.S. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction, 2003, 125(6), 769-784.
[http://dx.doi.org/10.1530/rep.0.1250769] [PMID: 12773099]
[49]
Ji, Y.L.; Wang, H.; Liu, P.; Zhao, X.F.; Zhang, Y.; Wang, Q.; Zhang, H.; Zhang, C.; Duan, Z.H.; Meng, C.; Xu, D.X. Effects of maternal cadmium exposure during late pregnant period on testicular steroidogenesis in male offspring. Toxicol. Lett., 2011, 205(1), 69-78.
[http://dx.doi.org/10.1016/j.toxlet.2011.05.233] [PMID: 21605642]
[50]
Tam, P.P.; Liu, W.K. Gonadal development and fertility of mice treated prenatally with cadmium during the early organogenesis stages. Teratology, 1985, 32(3), 453-462.
[http://dx.doi.org/10.1002/tera.1420320314] [PMID: 4082073]
[51]
Xu, L.C.; Wang, S.Y.; Yang, X.F.; Wang, X.R. Effects of cadmium on rat sperm motility evaluated with computer assisted sperm analysis. Biomed. Environ. Sci., 2001, 14(4), 312-317.
[PMID: 11862611]
[52]
Hew, K.W.; Ericson, W.A.; Welsh, M.J. A single low cadmium dose causes failure of spermiation in the rat. Toxicol. Appl. Pharmacol., 1993, 121(1), 15-21.
[http://dx.doi.org/10.1006/taap.1993.1123] [PMID: 7687796]
[53]
Monsefi, M.; Alaee, S.; Moradshahi, A.; Rohani, L. Cadmium-induced infertility in male mice. Environ. Toxicol., 2010, 25(1), 94-102.
[PMID: 19161232]
[54]
Gunn, S.A.; Gould, T.C.; Anderson, W.A. The selective injurious response of testicular and epididymal blood vessels to cadmium and its prevention by zinc. Am. J. Pathol., 1963, 42(6), 685-702.
[PMID: 13951276]
[55]
Lamberti, M.; Giovane, G.; Garzillo, E.M.; Avino, F.; Feola, A.; Porto, S.; Tombolini, V.; Di Domenico, M. Animal models in studies of cardiotoxicity side effects from antiblastic drugs in patients and occupational exposed workers. BioMed Res. Int., 2014, 2014, 240642.
[http://dx.doi.org/10.1155/2014/240642] [PMID: 24701565]
[56]
Tarantal, A.F.; Noctor, S.C.; Hartigan-O’Connor, D.J. Nonhuman primates in translational research. Annu. Rev. Anim. Biosci., 2022, 10(1), 441-468.
[http://dx.doi.org/10.1146/annurev-animal-021419-083813] [PMID: 35167321]
[57]
Grassi, F.R.; Pappalettere, C.; Di Comite, M.; Corsalini, M.; Mori, G.; Ballini, A.; Crincoli, V.; Pettini, F.; Rapone, B.; Boccaccio, A. Effect of different irrigating solutions and endodontic sealers on bond strength of the dentin-post interface with and without defects. Int. J. Med. Sci., 2012, 9(8), 642-654.
[http://dx.doi.org/10.7150/ijms.4998] [PMID: 23055816]
[58]
Mecklenburg, L.; Luetjens, C.M.; Weinbauer, G.F. Toxicologic Pathology Forum. Opinion on sexual maturity and fertility assessment in long-tailed macaques (Macaca fascicularis) in nonclinical safety studies. Toxicol. Pathol., 2019, 47(4), 444-460.
[http://dx.doi.org/10.1177/0192623319831009] [PMID: 30898082]
[59]
Henck, J.W.; Hilbish, K.G.; Serabian, M.A.; Cavagnaro, J.A.; Hendrickx, A.G.; Agnish, N.D.; Kung, A.H.; Mordenti, J. Reproductive toxicity testing of therapeutic biotechnology agents. Teratology, 1996, 53(3), 185-195.
[http://dx.doi.org/10.1002/(SICI)1096-9926(199603)53:3<185:AID-TERA6>3.0.CO;2-3] [PMID: 8761886]
[60]
Scattarella, A.; Ballini, A.; Grassi, F.R.; Carbonara, A.; Ciccolella, F.; Dituri, A.; Nardi, G.M.; Cantore, S.; Pettini, F. Treatment of oroantral fistula with autologous bone graft and application of a non-reabsorbable membrane. Int. J. Med. Sci., 2010, 7(5), 267-271.
[http://dx.doi.org/10.7150/ijms.7.267] [PMID: 20714437]
[61]
Liu, P.; Shao, H.; Ding, X.; Yang, R.; Rui, Q.; Wang, D. Dysregulation of neuronal Gαo signaling by graphene oxide in nematode Caenorhabditis elegans. Sci. Rep., 2019, 9(1), 6026.
[http://dx.doi.org/10.1038/s41598-019-42603-1] [PMID: 30988375]
[62]
Justice, M.J.; Dhillon, P. Using the mouse to model human disease: Increasing validity and reproducibility. Dis. Model. Mech., 2016, 9(2), 101-103.
[http://dx.doi.org/10.1242/dmm.024547] [PMID: 26839397]
[63]
Dixon, R.L. Toxic responses of the reproductive system.In: Klaassen, C.D.; Amdur, M.O.; Doull, J., Eds.; In The Basic Science of Poisons; , 1986, pp. 432-477.
[64]
Thomas, J.A. Toxic responses of the reproductive system. In: Casarett and Doull’s Science of Poisons; Klaasen, C.D., Ed.; McGraw Hill: New York, 1996; pp. 547-581.
[65]
Dalton, T.P.; He, L.; Wang, B.; Miller, M.L.; Jin, L.; Stringer, K.F.; Chang, X.; Baxter, C.S.; Nebert, D.W. Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc. Natl. Acad. Sci. USA, 2005, 102(9), 3401-3406.
[http://dx.doi.org/10.1073/pnas.0406085102] [PMID: 15722412]
[66]
Zhou, T.; Jia, X.; Chapin, R.E.; Maronpot, R.R.; Harris, M.W.; Liu, J.; Waalkes, M.P.; Eddy, E.M. Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol. Lett., 2004, 154(3), 191-200.
[http://dx.doi.org/10.1016/j.toxlet.2004.07.015] [PMID: 15501611]
[67]
Eleawa, S.M.; Alkhateeb, M.A.; Alhashem, F.H.; Bin-Jaliah, I.; Sakr, H.F.; Elrefaey, H.M.; Elkarib, A.O.; Alessa, R.M.; Haidara, M.A.; Shatoor, A.S.; Khalil, M.A. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression. J. Reprod. Dev., 2014, 60(2), 115-127.
[http://dx.doi.org/10.1262/jrd.2013-097] [PMID: 24492640]
[68]
Montrucchio, G.; Lupia, E.; Battaglia, E.; Del Sorbo, L.; Boccellino, M.; Biancone, L.; Emanuelli, G.; Camussi, G. Platelet-activating factor enhances vascular endothelial growth factor-induced endothelial cell motility and neoangiogenesis in a murine matrigel model. Arterioscler. Thromb. Vasc. Biol., 2000, 20(1), 80-88.
[http://dx.doi.org/10.1161/01.ATV.20.1.80] [PMID: 10634803]
[69]
Spugnini, E.P.; Cardillo, I.; Fanciulli, M. Electroporation promotes HtrA1 uptake and in a mouse model of mesothelioma. Front. BioSci. Elite., 2013, 5E(3), 974-981.
[70]
Bu, T.; Mi, Y.; Zeng, W.; Zhang, C. Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice. Anat. Rec. (Hoboken), 2011, 294(3), 520-526.
[http://dx.doi.org/10.1002/ar.21317] [PMID: 21337715]
[71]
Seed, J.; Chapin, R.E.; Clegg, E.D.; Dostal, L.A.; Foote, R.H.; Hurtt, M.E.; Klinefelter, G.R.; Makris, S.L.; Perreault, S.D.; Schrader, S.; Seyler, D.; Sprando, R.; Treinen, K.A.; Veeramachaneni, D.N.; Wise, L.D. Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: A consensus report. Reprod. Toxicol., 1996, 10(3), 237-244.
[http://dx.doi.org/10.1016/0890-6238(96)00028-7] [PMID: 8738562]
[72]
Foster, P.M.D.; Creasy, D.M.; Foster, J.R.; Gray, T.J.B. Testicular toxicity produced by ethylene glycol monomethyl and monoethyl ethers in the rat. Environ. Health Perspect., 1984, 57, 207-217.
[http://dx.doi.org/10.1289/ehp.8457207] [PMID: 6499806]
[73]
Foote, R.H.; Carney, E.W. The rabbit as a model for reproductive and developmental toxicity studies. Reprod. Toxicol., 2000, 14(6), 477-493.
[http://dx.doi.org/10.1016/S0890-6238(00)00101-5] [PMID: 11099874]
[74]
Posa, F.; Colaianni, G.; Di Cosola, M.; Dicarlo, M.; Gaccione, F.; Colucci, S.; Grano, M.; Mori, G. The myokine irisin promotes osteogenic differentiation of dental bud-derived MSCs. Biology (Basel), 2021, 10(4), 295.
[http://dx.doi.org/10.3390/biology10040295] [PMID: 33916859]
[75]
Smith, M.S.; Upfold, J.B.; Edwards, M.J.; Shiota, K.; Cawdell-Smith, J. The induction of neural tube defects by maternal hyperthermia: A comparison of the guinea-pig and human. Neuropathol. Appl. Neurobiol., 1992, 18(1), 71-80.
[http://dx.doi.org/10.1111/j.1365-2990.1992.tb00765.x] [PMID: 1579201]
[76]
Byrnes, M.L.; Reynolds, J.N.; Brien, J.F. Effect of prenatal ethanol exposure during the brain growth spurt of the guinea pig. Neurotoxicol. Teratol., 2001, 23(4), 355-364.
[http://dx.doi.org/10.1016/S0892-0362(01)00150-7] [PMID: 11485838]
[77]
Di Cosola, M.; Cazzolla, A.P.; Scivetti, M.; Testa, N.F.; Lo Muzio, L.; Favia, G.; Carrillo de Albornoz, A.; Bascones, A. Rendu-osler-weber syndrome or hereditary hemorrhagic telangiectasia (HHT): Description of two cases and literature review | Síndrome de rendu-osler-weber o Telangiectasia hemorrágica hereditaria (HHT): Descripción de dos casos y revision de la literatura. Av. Odontoestomatol., 2005, 21(6), 297-303.
[http://dx.doi.org/10.4321/S0213-12852005000600003]
[78]
Meistrich, M.L.; Brown, C.C. Estimation of the increased risk of human infertility from alterations in semen characteristics. Fertil. Steril., 1983, 40(2), 220-230.
[http://dx.doi.org/10.1016/S0015-0282(16)47241-9] [PMID: 6873319]
[79]
Schroder, J.D. Reproduction, and breeding techniques for laboratory animals. Can. J. Comp. Med., 1971, 35(4), 345.
[80]
Yanagimachi, R. Mammalian fertilization. In: Knobil, E.; Neill, J., Eds.; The Physiology of Reproduction; Raven Press, 1988, pp. 135-185.
[81]
Foote, R.H. Cadmium affects testes and semen of rabbits exposed before and after puberty. Reprod. Toxicol., 1999, 13(4), 269-277.
[http://dx.doi.org/10.1016/S0890-6238(99)00019-2] [PMID: 10453911]
[82]
He, J.H.; Gao, J.M.; Huang, C.J.; Li, C.Q. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol., 2014, 42, 35-42.
[http://dx.doi.org/10.1016/j.ntt.2014.01.006] [PMID: 24503215]
[83]
Hunt, W.L.; Foote, R.H. Effect of repeated testicular biopsy on testis function and semen quality in dogs. J. Androl., 1997, 18(6), 740-744.
[PMID: 9432148]
[84]
Faqi, A.S. A critical evaluation of developmental and reproductive toxicology in nonhuman primates. Syst Biol Reprod Med, 2012, 58(1), 23-32.
[http://dx.doi.org/10.3109/19396368.2011.648821] [PMID: 22239078]
[85]
Shimizu, K. Reproductive hormones and the ovarian cycle in macaques. J. Mamm. Ova Res., 2008, 25(3), 122-126.
[http://dx.doi.org/10.1274/0916-7625-25.3.122]
[86]
Hendrickx, A.G.; Dukelow, W.R.; Bennett, B.T.; Abee, C.R.; Henrickson, R. Nonhuman Primates in Biomedical Research Biology and Management; Academic Press: New York, 2005, pp. 147-191.
[87]
Ehmcke, J.; Wistuba, J.; Schlatt, S. Spermatogonial stem cells: Questions, models and perspectives. Hum. Reprod. Update, 2006, 12(3), 275-282.
[http://dx.doi.org/10.1093/humupd/dmk001] [PMID: 16446319]
[88]
Weinbauer, G.F.; Frings, W.; Fuchs, A.; Osterburg, I. Reproductive/developmental toxicity assessment of biopharmaceuticals in nonhuman primates.In: Cavagnaro, J.A., Ed.; Preclinical Safety Evaluation of Biopharmaceuticals. A Science-Based Approach to Facilitating Clinical Trials; John Wiley & Sons: Hoboken, NJ, 2008, pp. 379-397.
[http://dx.doi.org/10.1002/9780470292549.ch18]
[89]
Goossens, E.; Tournaye, H. Testicular stem cells. Semin. Reprod. Med., 2006, 24(5), 370-378.
[http://dx.doi.org/10.1055/s-2006-952158] [PMID: 17123232]
[90]
Chellman, G.J.; Bussiere, J.L.; Makori, N.; Martin, P.L.; Ooshima, Y.; Weinbauer, G.F. Developmental and reproductive toxicology studies in nonhuman primates. Birth Defects Res. B Dev. Reprod. Toxicol., 2009, 86(6), 446-462.
[http://dx.doi.org/10.1002/bdrb.20216] [PMID: 20025046]
[91]
Perinthottathil, S.; Kim, C. Bam and Bgcn in Drosophila germline stem cell differentiation. Vitam. Horm., 2011, 87, 399-416.
[http://dx.doi.org/10.1016/B978-0-12-386015-6.00038-X] [PMID: 22127253]
[92]
Medrano, J.V.; Andrés, M.D.M.; García, S.; Herraiz, S.; Vilanova-Pérez, T.; Goossens, E.; Pellicer, A. Basic and clinical approaches for fertility preservation and restoration in cancer patients. Trends Biotechnol., 2018, 36(2), 199-215.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.010] [PMID: 29153762]
[93]
Boccellino, M.; Quagliuolo, L.; Verde, A.; La Porta, R.; Crispi, S.; Piccolo, M.T.; Vitiello, A.; Baldi, A.; Signorile, P.G. In vitro model of stromal and epithelial immortalized endometriotic cells. J. Cell. Biochem., 2012, 113(4), 1292-1301.
[http://dx.doi.org/10.1002/jcb.24000] [PMID: 22109698]
[94]
Boccellino, M.; Di Stasio, D.; Dipalma, G.; Cantore, S.; Ambrosio, P.; Coppola, M.; Quagliuolo, L.; Scarano, A.; Malcangi, G.; Borsani, E.; Rinaldi, B.; Nuzzolese, M.; Xhajanka, E.; Ballini, A.; Inchingolo, F.; Di Domenico, M. Steroids and growth factors in oral squamous cell carcinoma: Useful source of dental-derived stem cells to develop a steroidogenic model in new clinical strategies. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8730-8740.
[PMID: 31696459]
[95]
Yamanaka, H.; Komeya, M.; Nakamura, H.; Sanjo, H.; Sato, T.; Yao, M.; Kimura, H.; Fujii, T.; Ogawa, T. A monolayer microfluidic device supporting mouse spermatogenesis with improved visibility. Biochem. Biophys. Res. Commun., 2018, 500(4), 885-891.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.180] [PMID: 29705697]
[96]
Bhattacharya, S.; Zhang, Q.; Carmichael, P.L.; Boekelheide, K.; Andersen, M.E. Toxicity testing in the 21 century: Defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One, 2011, 6(6), e20887.
[http://dx.doi.org/10.1371/journal.pone.0020887] [PMID: 21701582]
[97]
Ho, W.J.; Pham, E.A.; Kim, J.W.; Ng, C.W.; Kim, J.H.; Kamei, D.T.; Wu, B.M. Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci., 2010, 101(12), 2637-2643.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01723.x] [PMID: 20849469]
[98]
Fiorelli, A.; Morgillo, F.; Fasano, M.; Vicidomini, G.; Di Crescenzo, V.G.; Di Domenico, M.; Accardo, M.; Santini, M. The value of matrix metalloproteinase-9 and vascular endothelial growth factor receptor 1 pathway in diagnosing indeterminate pleural effusion. Interact. Cardiovasc. Thorac. Surg., 2013, 16(3), 263-269.
[http://dx.doi.org/10.1093/icvts/ivs466] [PMID: 23190621]
[99]
Fiorelli, A.; Rizzo, A.; Messina, G.; Izzo, A.; Vicidomini, G.; Pannone, G.; Santini, M.; Di Domenico, M. Correlation between matrix metalloproteinase 9 and 18F-2-fluoro-2-deoxyglucose-positron emission tomography as diagnostic markers of lung cancer. Eur. J. Cardiothorac. Surg., 2012, 41(4), 852-860.
[http://dx.doi.org/10.1093/ejcts/ezr117] [PMID: 22219420]
[100]
Saberi-Karimian, M.; Katsiki, N.; Caraglia, M.; Boccellino, M.; Majeed, M.; Sahebkar, A. Vascular endothelial growth factor: An important molecular target of curcumin. Crit. Rev. Food Sci. Nutr., 2019, 59(2), 299-312.
[http://dx.doi.org/10.1080/10408398.2017.1366892] [PMID: 28853916]
[101]
Ricci, S.; Pinto, F.; Auletta, A.; Giordano, A.; Giovane, A.; Settembre, G.; Boccellino, M.; Boffo, S.; Di Carlo, A.; Di Domenico, M. The enigmatic role of matrix metalloproteinases in epithelial-to-mesenchymal transition of oral squamous cell carcinoma: Implications and nutraceutical aspects. J. Cell. Biochem., 2019, 120(5), 6813-6819.
[http://dx.doi.org/10.1002/jcb.26905] [PMID: 30714188]
[102]
Buommino, E.; Boccellino, M.; De Filippis, A.; Petrazzuolo, M.; Cozza, V.; Nicoletti, R.; Ciavatta, M.L.; Quagliuolo, L.; Tufano, M.A. 3-O-methylfunicone produced by Penicillium pinophilum affects cell motility of breast cancer cells, downregulating alphavbeta5 integrin and inhibiting metalloproteinase-9 secretion. Mol. Carcinog., 2007, 46(11), 930-940.
[http://dx.doi.org/10.1002/mc.20322] [PMID: 17562555]
[103]
Baker, M. Tissue models: A living system on a chip. Nature, 2011, 471(7340), 661-665.
[http://dx.doi.org/10.1038/471661a] [PMID: 21455183]
[104]
Spugnini, E.P.; Melillo, A.; Quagliuolo, L.; Boccellino, M.; Vincenzi, B.; Pasquali, P.; Baldi, A. Definition of novel electrochemotherapy parameters and validation of their in vitro and in vivo effectiveness. J. Cell. Physiol., 2014, 229(9), 1177-1181.
[http://dx.doi.org/10.1002/jcp.24548] [PMID: 24403005]
[105]
Willerton, L.; Smith, R.A.; Russell, D.; Mackay, S. Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. Int. J. Dev. Biol., 2004, 48(7), 637-643.
[http://dx.doi.org/10.1387/ijdb.031778lw] [PMID: 15470636]
[106]
van der Wee, K.; Hofmann, M.C. An in vitro tubule assay identifies HGF as a morphogen for the formation of seminiferous tubules in the postnatal mouse testis. Exp. Cell Res., 1999, 252(1), 175-185.
[http://dx.doi.org/10.1006/excr.1999.4630] [PMID: 10502410]
[107]
Papa, S.; Petruzzella, V.; Scacco, S.; Sardanelli, A.M.; Iuso, A.; Panelli, D.; Vitale, R.; Trentadue, R.; De Rasmo, D.; Capitanio, N.; Piccoli, C.; Papa, F.; Scivetti, M.; Bertini, E.; Rizza, T.; De Michele, G. Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases. Biochim. Biophys. Acta, 2009, 1787(5), 502-517.
[http://dx.doi.org/10.1016/j.bbabio.2008.12.018] [PMID: 19210954]
[108]
von Kopylow, K.; Schulze, W.; Salzbrunn, A.; Schaks, M.; Schäfer, E.; Roth, B.; Schlatt, S.; Spiess, A.N. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. Mol. Hum. Reprod., 2018, 24(3), 123-134.
[http://dx.doi.org/10.1093/molehr/gax070] [PMID: 29304256]
[109]
Tung, P.S.; Fritz, I.B. Cell-substratum and cell-cell interactions promote testicular peritubular myoid cell histotypic expression in vitro. Dev. Biol., 1986, 115(1), 155-170.
[http://dx.doi.org/10.1016/0012-1606(86)90237-X] [PMID: 3699244]
[110]
Schirinzi, A.; Cazzolla, A.P.; Mascolo, E.; Palmieri, G.; Pesce, F.; Gesualdo, L.; Santacroce, L.; Ballini, A.; Lovero, R.; Di Serio, F. Determination of the upper reference limit of human epididymis secretory protein 4 (HE4) in healthy male individuals and correlation with renal and fertility markers. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(5), 912-918.
[http://dx.doi.org/10.2174/1871530320666200807121050] [PMID: 32767951]
[111]
Mincheva, M.; Sandhowe-Klaverkamp, R.; Wistuba, J.; Redmann, K.; Stukenborg, J.B.; Kliesch, S.; Schlatt, S. Reassembly of adult human testicular cells: Can testis cord-like structures be created in vitro? Mol. Hum. Reprod., 2018, 24(2), 55-63.
[http://dx.doi.org/10.1093/molehr/gax063] [PMID: 29294090]
[112]
De Rasmo, D.; Palmisano, G.; Scacco, S.; Technikova-Dobrova, Z.; Panelli, D.; Cocco, T.; Sardanelli, A.M.; Gnoni, A.; Micelli, L.; Trani, A.; Di Luccia, A.; Papa, S. Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. Mitochondrion, 2010, 10(5), 464-471.
[http://dx.doi.org/10.1016/j.mito.2010.04.005] [PMID: 20433953]
[113]
Baert, Y.; Dvorakova-Hortova, K.; Margaryan, H.; Goossens, E. Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication, 2019, 11(3), 035011.
[http://dx.doi.org/10.1088/1758-5090/ab1452] [PMID: 30921781]
[114]
Tatullo, M.; Marrelli, B.; Benincasa, C.; Aiello, E.; Makeeva, I.; Zavan, B.; Ballini, A.; De Vito, D.; Spagnuolo, G. Organoids in translational oncology. J. Clin. Med., 2020, 27(9), 2774.
[http://dx.doi.org/10.3390/jcm9092774]
[115]
Kleinman, H.K.; McGarvey, M.L.; Liotta, L.A.; Robey, P.G.; Tryggvason, K.; Martin, G.R. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 1982, 21(24), 6188-6193.
[http://dx.doi.org/10.1021/bi00267a025] [PMID: 6217835]
[116]
Archambeault, D.R.; Yao, H.H.C. Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc. Natl. Acad. Sci. USA, 2010, 107(23), 10526-10531.
[http://dx.doi.org/10.1073/pnas.1000318107] [PMID: 20498064]
[117]
Zhang, J.; Hatakeyama, J.; Eto, K.; Abe, S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen. Comp. Endocrinol., 2014, 205, 121-132.
[http://dx.doi.org/10.1016/j.ygcen.2014.03.030] [PMID: 24717811]
[118]
Kulibin, A.Y.; Malolina, E.A. Only a small population of adult Sertoli cells actively proliferates in culture. Reproduction, 2016, 152(4), 271-281.
[http://dx.doi.org/10.1530/REP-16-0013] [PMID: 27512121]
[119]
Pan, C.; Kumar, C.; Bohl, S.; Klingmueller, U.; Mann, M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol. Cell. Proteomics, 2009, 8(3), 443-450.
[http://dx.doi.org/10.1074/mcp.M800258-MCP200] [PMID: 18952599]
[120]
Edmonds, M.E.; Woodruff, T.K. Testicular organoid formation is a property of immature somatic cells, which self-assemble and exhibit long-term hormone-responsive endocrine function. Biofabrication, 2020, 12(4), 045002.
[http://dx.doi.org/10.1088/1758-5090/ab9907] [PMID: 32492667]
[121]
Di Domenico, M.; Giordano, A. Signal transduction growth factors: The effective governance of transcription and cellular adhesion in cancer invasion. Oncotarget, 2017, 8(22), 36869-36884.
[http://dx.doi.org/10.18632/oncotarget.16300] [PMID: 28415812]
[122]
Boccellino, M.; Camussi, G.; Giovane, A.; Ferro, L.; Calderaro, V.; Balestrieri, C.; Quagliuolo, L. Platelet-activating factor regulates cadherin-catenin adhesion system expression and β-catenin phosphorylation during Kaposi’s sarcoma cell motility. Am. J. Pathol., 2005, 166(5), 1515-1522.
[http://dx.doi.org/10.1016/S0002-9440(10)62367-X] [PMID: 15855650]
[123]
Baert, Y.; Stukenborg, J.B.; Landreh, M.; De Kock, J.; Jörnvall, H.; Söder, O.; Goossens, E. Derivation and characterization of a cytocompatible scaffold from human testis. Hum. Reprod., 2015, 30(2), 256-267.
[http://dx.doi.org/10.1093/humrep/deu330] [PMID: 25505010]
[124]
Baert, Y.; De Kock, J.; Alves-Lopes, J.P.; Söder, O.; Stukenborg, J.B.; Goossens, E. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Reports, 2017, 8(1), 30-38.
[http://dx.doi.org/10.1016/j.stemcr.2016.11.012] [PMID: 28017656]
[125]
Signorile, A.; Micelli, L.; De Rasmo, D.; Santeramo, A.; Papa, F.; Ficarella, R.; Gattoni, G.; Scacco, S.; Papa, S. Regulation of the biogenesis of OXPHOS complexes in cell transition from replicating to quiescent state: Involvement of PKA and effect of hydroxytyrosol. Biochim. Biophys. Acta, 2014, 1843(4), 675-684.
[http://dx.doi.org/10.1016/j.bbamcr.2013.12.017] [PMID: 24389246]
[126]
Parks Saldutti, L.; Beyer, B.K.; Breslin, W.; Brown, T.R.; Chapin, R.E.; Campion, S.; Enright, B.; Faustman, E.; Foster, P.M.; Hartung, T.; Kelce, W.; Kim, J.H.; Loboa, E.G.; Piersma, A.H.; Seyler, D.; Turner, K.J.; Yu, H.; Yu, X.; Sasaki, J.C. In vitro testicular toxicity models: Opportunities for advancement via biomedical engineering techniques. Altern. Anim. Exp., 2013, 30(3), 353-377.
[http://dx.doi.org/10.14573/altex.2013.3.353] [PMID: 23861079]
[127]
Migliaccio, A.; Castoria, G.; de Falco, A.; Di Domenico, M.; Galdiero, M.; Nola, E.; Chambon, P.; Auricchio, F. In vitro phosphorylation and hormone binding activation of the synthetic wild type human estradiol receptor. J. Steroid Biochem. Mol. Biol., 1991, 38(4), 407-413.
[http://dx.doi.org/10.1016/0960-0760(91)90328-3] [PMID: 1851630]
[128]
Di Domenico, M.; Feola, A.; Ambrosio, P.; Pinto, F.; Galasso, G.; Zarrelli, A.; Di Fabio, G.; Porcelli, M.; Scacco, S.; Inchingolo, F.; Quagliuolo, L.; Ballini, A.; Boccellino, M. Antioxidant effect of beer polyphenols and their bioavailability in dental-derived stem cells (D-dSCs) and human intestinal epithelial lines (Caco-2) Cells. Stem Cells Int., 2020, 2020(10), 8835813.
[http://dx.doi.org/10.1155/2020/8835813] [PMID: 33101420]
[129]
Charitos, I.A.; Ballini, A.; Cantore, S.; Boccellino, M.; Di Domenico, M.; Borsani, E.; Nocini, R.; Di Cosola, M.; Santacroce, L.; Bottalico, L. Stem cells: A historical review about biological, religious, and ethical issues. Stem Cells Int., 2021, 2021(29), 9978837.
[http://dx.doi.org/10.1155/2021/9978837] [PMID: 34012469]
[130]
Borghese, C.; Casagrande, N.; Pivetta, E.; Colombatti, A.; Boccellino, M.; Amler, E.; Normanno, N.; Caraglia, M.; De Rosa, G.; Aldinucci, D. Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells. Oncotarget, 2017, 8(26), 42926-42938.
[http://dx.doi.org/10.18632/oncotarget.17216] [PMID: 28477013]
[131]
Brinster, R.L.; Zimmermann, J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA, 1994, 91(24), 11298-11302.
[http://dx.doi.org/10.1073/pnas.91.24.11298] [PMID: 7972053]
[132]
Vij, S.C.; Sabanegh, E., Jr; Agarwal, A. Biological therapy for non-obstructive azoospermia. Expert Opin. Biol. Ther., 2018, 18(1), 19-23.
[http://dx.doi.org/10.1080/14712598.2018.1380622] [PMID: 28927307]
[133]
Toyooka, Y.; Tsunekawa, N.; Akasu, R.; Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11457-11462.
[http://dx.doi.org/10.1073/pnas.1932826100] [PMID: 14504407]
[134]
Bellomo, F.; Piccoli, C.; Cocco, T.; Scacco, S.; Papa, F.; Gaballo, A.; Boffoli, D.; Signorile, A.; D’Aprile, A.; Scrima, R.; Sardanelli, A.M.; Capitanio, N.; Papa, S. Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxid. Redox Signal., 2006, 8(3-4), 495-502.
[http://dx.doi.org/10.1089/ars.2006.8.495] [PMID: 16677093]
[135]
Park, T.S.; Galic, Z.; Conway, A.E.; Lindgren, A.; van Handel, B.J.; Magnusson, M.; Richter, L.; Teitell, M.A.; Mikkola, H.K.; Lowry, W.E.; Plath, K.; Clark, A.T. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells, 2009, 27(4), 783-795.
[http://dx.doi.org/10.1002/stem.13] [PMID: 19350678]
[136]
Kurkure, P.; Prasad, M.; Dhamankar, V.; Bakshi, G. Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reprod. Biol. Endocrinol., 2015, 13(1), 122.
[http://dx.doi.org/10.1186/s12958-015-0121-1] [PMID: 26553338]
[137]
Di Cosola, M.; Cantore, S.; Balzanelli, M.G.; Isacco, C.G.; Nguyen, K.C.; Saini, R. Dental-derived stem cells and biowaste biomaterials: What’s next in bone regenerative medicine applications. Biocell, 2022, 46, 923-929.
[http://dx.doi.org/10.32604/biocell.2022.018409]
[138]
Hua, J.; Pan, S.; Yang, C.; Dong, W.; Dou, Z.; Sidhu, K.S. Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod. Biomed. Online, 2009, 19(1), 99-105.
[http://dx.doi.org/10.1016/S1472-6483(10)60052-1] [PMID: 19573297]
[139]
Afsartala, Z.; Rezvanfar, M.A.; Hodjat, M.; Tanha, S.; Assadollahi, V.; Bijangi, K.; Abdollahi, M.; Ghasemzadeh-Hasankolaei, M. Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In Vitro Cell. Dev. Biol. Anim., 2016, 52(10), 1060-1071.
[http://dx.doi.org/10.1007/s11626-016-0073-6] [PMID: 27503516]
[140]
Asgari, H.R.; Akbari, M.; Abbasi, M.; Ai, J.; Korouji, M.; Aliakbari, F.; Babatunde, K.A.; Aval, F.S.; Joghataei, M.T. Human Wharton’s jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells. Iran. J. Basic Med. Sci., 2015, 18(1), 22-29.
[PMID: 25810872]
[141]
Cakici, C.; Buyrukcu, B.; Duruksu, G.; Haliloglu, A.H.; Aksoy, A. Isık, A.; Uludag, O.; Ustun, H.; Subası C.; Karaoz, E. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. BioMed Res. Int., 2013, 2013, 529589.
[http://dx.doi.org/10.1155/2013/529589] [PMID: 23509736]
[142]
Tamadon, A.; Mehrabani, D.; Rahmanifar, F.; Jahromi, A.R.; Panahi, M.; Zare, S.; Khodabandeh, Z.; Jahromi, I.R.; Tanideh, N.; Dianatpour, M.; Ramzi, M.; Koohi-Hoseinabadi, O. Induction of spermatogenesis by bone marrow-derived mesenchymal stem cells in busulfan-induced azoospermia in hamster. Int. J. Stem Cells, 2015, 8(2), 134-145.
[http://dx.doi.org/10.15283/ijsc.2015.8.2.134] [PMID: 26634062]
[143]
Wang, F.; Liu, C.; Zhang, S.; Liu, W.; Hua, J. Transplantation of goat bone marrow Mesenchymal Stem Cells (gMSCs) help restore spermatogenesis in endogenous germ cells-depleted mouse models. J. Integr. Agric., 2013, 12(3), 483-494.
[http://dx.doi.org/10.1016/S2095-3119(13)60249-X]
[144]
Chen, H.; Tang, Q.L.; Wu, X.Y.; Xie, L.C.; Lin, L.M.; Ho, G.Y.; Ma, L. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol. Med. Rep., 2015, 12(1), 819-828.
[http://dx.doi.org/10.3892/mmr.2015.3528] [PMID: 25815600]
[145]
Ballini, A.; Cantore, S.; Scacco, S.; Perillo, L.; Scarano, A.; Aityan, S.K.; Contaldo, M.; Cd Nguyen, K.; Santacroce, L.; Syed, J.; De Vito, D.; Dipalma, G.; Gargiulo Isacco, C.; Inchingolo, F. A comparative study on different stemness gene expression between dental pulp stem cells vs. dental bud stem cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1626-1633.
[PMID: 30840286]
[146]
Yuan, Y.; Zhou, Q.; Wan, H.; Shen, B.; Wang, X.; Wang, M.; Feng, C.; Xie, M.; Gu, T.; Zhou, T.; Fu, R.; Huang, X.; Zhou, Q.; Sha, J.; Zhao, X.Y. Generation of fertile offspring from Kit(w)/Kit(wv) mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Res., 2015, 25(7), 851-863.
[http://dx.doi.org/10.1155/2017/7617048] [PMID: 28769982]
[147]
Hayashi, K.; Ohta, H.; Kurimoto, K.; Aramaki, S.; Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 2011, 146(4), 519-532.
[PMID: 31002142]
[148]
Zhou, Q.; Wang, M.; Yuan, Y.; Wang, X.; Fu, R.; Wan, H.; Xie, M.; Liu, M.; Guo, X.; Zheng, Y.; Feng, G.; Shi, Q.; Zhao, X.Y.; Sha, J.; Zhou, Q. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell, 2016, 18(3), 330-340.
[http://dx.doi.org/10.1016/j.stem.2016.01.017] [PMID: 26923202]
[149]
Cantore, S.; Crincoli, V.; Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Monno, G.; Bollero, P.; Derla, C.; Fabiano, F.; Ballini, A.; Santacroce, L. Recent advances in endocrine, metabolic and immune disorders: Mesenchymal stem cells (MSCs) and engineered scaffolds. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 466-469.
[http://dx.doi.org/10.2174/1871530318666180423102905] [PMID: 29692270]
[150]
Contaldo, M.; Boccellino, M.; Zannini, G.; Romano, A.; Sciarra, A.; Sacco, A.; Settembre, G.; Coppola, M.; Di Carlo, A.; D’Angelo, L.; Inchingolo, F.; Feola, A.; Di Domenico, M. Sex hormones and inflammation role in oral cancer progression: A molecular and biological point of view. J. Oncol., 2020, 2020(27), 9587971.
[http://dx.doi.org/10.1155/2020/9587971] [PMID: 32684934]
[151]
Panula, S.; Medrano, J.V.; Kee, K.; Bergström, R.; Nguyen, H.N.; Byers, B.; Wilson, K.D.; Wu, J.C.; Simon, C.; Hovatta, O.; Reijo Pera, R.A. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum. Mol. Genet., 2011, 20(4), 752-762.
[http://dx.doi.org/10.1093/hmg/ddq520] [PMID: 21131292]
[152]
Medrano, J.V.; Ramathal, C.; Nguyen, H.N.; Simon, C.; Reijo Pera, R.A. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells, 2012, 30(3), 441-451.
[http://dx.doi.org/10.1002/stem.1012] [PMID: 22162380]
[153]
Ntemou, E.; Kadam, P.; Van Saen, D.; Wistuba, J.; Mitchell, R.T.; Schlatt, S.; Goossens, E. Complete spermatogenesis in intratesticular testis tissue xenotransplants from immature non-human primate. Hum. Reprod., 2019, 34(3), 403-413.
[http://dx.doi.org/10.1093/humrep/dey373] [PMID: 30753464]
[154]
Durruthy Durruthy, J.; Ramathal, C.; Sukhwani, M.; Fang, F.; Cui, J.; Orwig, K.E.; Reijo Pera, R.A. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum. Mol. Genet., 2014, 23(12), 3071-3084.
[http://dx.doi.org/10.1093/hmg/ddu012] [PMID: 24449759]
[155]
Di Benedetto, A.; Posa, F.; De Maria, S.; Ravagnan, G.; Ballini, A.; Porro, C.; Trotta, T.; Grano, M.; Muzio, L.L.; Mori, G. Polydatin, natural precursor of resveratrol, promotes osteogenic differentiation of mesenchymal stem cells. Int. J. Med. Sci., 2018, 15(9), 944-952.
[http://dx.doi.org/10.7150/ijms.24111] [PMID: 30008608]
[156]
Gassei, K.; Orwig, K.E. Experimental methods to preserve male fertility and treat male factor infertility. Fertil. Steril., 2016, 105(2), 256-266.
[http://dx.doi.org/10.1016/j.fertnstert.2015.12.020] [PMID: 26746133]
[157]
World Health Organization Occupational and Environmental Health Team. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005: Summary of risk assessment; World Health Organization, 2005. Available from. WHO.int/
[158]
Lovreglio, P.; Bukvic, N.; Fustinoni, S.; Ballini, A.; Drago, I.; Foà, V.; Guanti, G.; Soleo, L. Lack of genotoxic effect in workers exposed to very low doses of 1,3-butadiene. Arch. Toxicol., 2006, 80(6), 378-381.
[http://dx.doi.org/10.1007/s00204-005-0046-0] [PMID: 16307232]
[159]
European Environmental Agency Publication Office of the European Union.Air Quality in Europe- 2020 Report. 2020, 119-121. Available Online at: EEA/Europe | Publication- Air Quality in Europe- 2020 Report.
[160]
Tutic, A.; Novakovic, S.; Lutovac, M.; Biocanin, R.; Ketin, S.; Omerovic, N. The heavy metals in agrosystems and impact on health and quality of life. Open Access Maced. J. Med. Sci., 2015, 3(2), 345-355.
[http://dx.doi.org/10.3889/oamjms.2015.048] [PMID: 27275249]
[161]
World development indicators: Population dynamics. The World Bank, Available from: http://wdi.worldbank.org/table/2.1
[162]
Roser, M.; Ortiz-Ospina, E.; Ritchie, H. Life Expectancy. OurWorldInData.org; , 2013. Available from. https://ourworldindata.org/life-expectancy
[163]
Roser, M. Fertility rate; , 2014. Available from. https://ourworldindata.org/fertility-rate
[164]
Roser, M. Population momentum: If the number of children is not growing, why is the population still increasing?; , 2019. Available from. https://ourworldindata.org/population-momentum
[165]
Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol., 2015, 13(1), 37.
[http://dx.doi.org/10.1186/s12958-015-0032-1] [PMID: 25928197]
[166]
Todaro, N.M.; Testa, F.; Daddi, T.; Iraldo, F. The influence of managers’ awareness of climate change, perceived climate risk exposure and risk tolerance on the adoption of corporate responses to climate change. Bus. Strategy Environ., 2021, 30(2), 1232-1248.
[http://dx.doi.org/10.1002/bse.2681]
[167]
European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-“A Europe that protects: Clean air for all”. 2018, Brussels, (COM(2018) 330 final of 17 May 2018), 2-3. Available online at: EC/Europe | Environment- Clean Air for All.
[168]
European Commission. European Green Deal, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions -“The European Green Deal” 2019. (COM (2019) 6430 final of 11 December 2019). Available online at: EC.europa / files- European Green Deal Communication.
[169]
Crocetto, F.; Boccellino, M.; Barone, B.; Di Zazzo, E.; Sciarra, A.; Galasso, G.; Settembre, G.; Quagliuolo, L.; Imbimbo, C.; Boffo, S.; Angelillo, I.F.; Di Domenico, M. The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay? Nutrients, 2020, 12(9), 2648.
[http://dx.doi.org/10.3390/nu12092648] [PMID: 32878054]
[170]
Cicinelli, E.; Ballini, A.; Marinaccio, M.; Poliseno, A.; Coscia, M.F.; Monno, R.; De Vito, D. Microbiological findings in endometrial specimen: Our experience. Arch. Gynecol. Obstet., 2012, 285(5), 1325-1329.
[http://dx.doi.org/10.1007/s00404-011-2138-9] [PMID: 22113463]
[171]
Boccellino, M.; Quagliuolo, L.; D’Angelo, S. Annurca apple biophenols’ effects in combination with cisplatin on A549 cells. Curr. Nutr. Food Sci., 2021, 17(1), 111-120.
[http://dx.doi.org/10.2174/1573401316999200504093028]
[172]
Ballini, A.; Cantore, S.; Fatone, L.; Montenegro, V.; De Vito, D.; Pettini, F.; Crincoli, V.; Antelmi, A.; Romita, P.; Rapone, B.; Miniello, G.; Perillo, L.; Grassi, F.R.; Foti, C. Transmission of nonviral sexually transmitted infections and oral sex. J. Sex. Med., 2012, 9(2), 372-384.
[http://dx.doi.org/10.1111/j.1743-6109.2011.02515.x] [PMID: 22023797]
[173]
Giudice, A.; Montella, M.; Boccellino, M.; Crispo, A.; D’Arena, G.; Bimonte, S.; Facchini, G.; Ciliberto, G.; Botti, G.; Quagliuolo, L.; Caraglia, M.; Capunzo, M. Epigenetic changes induced by green tea catechins are associated with prostate cancer. Curr. Mol. Med., 2017, 17(6), 405-420.
[PMID: 29256350]
[174]
Han, H.J.; Powers, S.J.; Gabrielson, K.L. The common marmoset-biomedical research animal model applications and common spontaneous diseases. Toxicol. Pathol., 2022, 1926233221095449.
[http://dx.doi.org/10.1177/01926233221095449] [PMID: 35535728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy