Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Insights of Metformin on Hepatocellular Carcinoma (HCC)

Author(s): Kaizhen Wang, Kuojun Zhang, Xiangyu Zhang, Dong Chen and Sheng Jiang*

Volume 23, Issue 11, 2023

Published on: 06 October, 2022

Page: [1154 - 1166] Pages: 13

DOI: 10.2174/1389557522666220623150717

Price: $65

Abstract

Metformin is an oral hypoglycemic drug, the first option used to treat type 2 diabetes mellitus due to its high efficacy and low cost. Recently, it has drawn attention among researchers due to its new-found antitumor effect. Growing evidence showed that metformin could inhibit cancer progression, especially in hepatocellular carcinoma, and several clinical trials are underway. However, the underlying mechanisms of the inhibition of hepatocellular carcinoma remain to be further explored and clarified. Herein, we reviewed the latest findings of how metformin acts against hepatocellular carcinoma and the proposed mechanisms. In addition, we included related preclinical trials, along with the limitations and perspectives of its treatment in hepatocellular carcinoma, providing novel ideas for research to conquer hepatocellular carcinoma.

Keywords: HCC, Metformin, Mechanism, Cell cycle arrest, Apoptosis, Immune modulation.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[3]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[4]
Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253.
[http://dx.doi.org/10.1007/s11523-017-0484-7] [PMID: 28299600]
[5]
Huang, A.; Yang, X.R.; Chung, W.Y.; Dennison, A.R.; Zhou, J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther., 2020, 5(1), 146.
[http://dx.doi.org/10.1038/s41392-020-00264-x] [PMID: 32782275]
[6]
Scarpello, J.H.; Howlett, H.C. Metformin therapy and clinical uses. Diab. Vasc. Dis. Res., 2008, 5(3), 157-167.
[http://dx.doi.org/10.3132/dvdr.2008.027] [PMID: 18777488]
[7]
Wang, Y.W.; He, S.J.; Feng, X.; Cheng, J.; Luo, Y.T.; Tian, L.; Huang, Q. Metformin: A review of its potential indications. Drug Des. Devel. Ther., 2017, 11, 2421-2429.
[http://dx.doi.org/10.2147/DDDT.S141675] [PMID: 28860713]
[8]
Badr, D.; Kurban, M.; Abbas, O. Metformin in dermatology: An overview. J. Eur. Acad. Dermatol. Venereol., 2013, 27(11), 1329-1335.
[http://dx.doi.org/10.1111/jdv.12116] [PMID: 23437788]
[9]
Meng, X.; Xu, S.; Chen, G.; Derwahl, M.; Liu, C. Metformin and thyroid disease. J. Endocrinol., 2017, 233(1), R43-R51.
[http://dx.doi.org/10.1530/JOE-16-0450] [PMID: 28196954]
[10]
Zhou, P.T.; Li, B.; Liu, F.R.; Zhang, M.C.; Wang, Q.; Li, Y.Y.; Xu, C.; Liu, Y.H.; Yao, Y.; Li, D. Metformin is associated with survival benefit in pancreatic cancer patients with diabetes: A systematic review and meta-analysis. Oncotarget, 2017, 8(15), 25242-25250.
[http://dx.doi.org/10.18632/oncotarget.15692] [PMID: 28445955]
[11]
Jaune, E.; Rocchi, S. Metformin: Focus on melanoma. Front. Endocrinol. (Lausanne), 2018, 9, 472.
[http://dx.doi.org/10.3389/fendo.2018.00472] [PMID: 30186236]
[12]
Rosilio, C.; Ben-Sahra, I.; Bost, F.; Peyron, J.F. Metformin: A metabolic disruptor and anti-diabetic drug to target human leukemia. Cancer Lett., 2014, 346(2), 188-196.
[http://dx.doi.org/10.1016/j.canlet.2014.01.006] [PMID: 24462823]
[13]
Meireles, C.G.; Pereira, S.A.; Valadares, L.P.; Rêgo, D.F.; Simeoni, L.A.; Guerra, E.N.S.; Lofrano-Porto, A. Effects of metformin on endometrial cancer: Systematic review and meta-analysis. Gynecol. Oncol., 2017, 147(1), 167-180.
[http://dx.doi.org/10.1016/j.ygyno.2017.07.120] [PMID: 28760367]
[14]
El-Arabey, A.A. New insight for metformin against bladder cancer. Genes Environ., 2017, 39(1), 13.
[http://dx.doi.org/10.1186/s41021-017-0074-z] [PMID: 28373897]
[15]
Higurashi, T.; Nakajima, A. Metformin and colorectal cancer. Front. Endocrinol. (Lausanne), 2018, 9, 622.
[http://dx.doi.org/10.3389/fendo.2018.00622] [PMID: 30405532]
[16]
Levy, A.; Doyen, J. Metformin for non-small cell lung cancer patients: Opportunities and pitfalls. Crit. Rev. Oncol. Hematol., 2018, 125, 41-47.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.001] [PMID: 29650275]
[17]
Zaidi, S.; Gandhi, J.; Joshi, G.; Smith, N.L.; Khan, S.A. The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis., 2019, 22(3), 351-361.
[http://dx.doi.org/10.1038/s41391-018-0085-2] [PMID: 30651580]
[18]
De, A.; Kuppusamy, G. Metformin in breast cancer: Preclinical and clinical evidence. Curr. Probl. Cancer, 2020, 44(1), 100488.
[http://dx.doi.org/10.1016/j.currproblcancer.2019.06.003] [PMID: 31235186]
[19]
Kamarudin, M.N.A.; Sarker, M.M.R.; Zhou, J.R.; Parhar, I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J. Exp. Clin. Cancer Res., 2019, 38(1), 491.
[http://dx.doi.org/10.1186/s13046-019-1495-2] [PMID: 31831021]
[20]
Miyoshi, H.; Kato, K.; Iwama, H.; Maeda, E.; Sakamoto, T.; Fujita, K.; Toyota, Y.; Tani, J.; Nomura, T.; Mimura, S.; Kobayashi, M.; Morishita, A.; Kobara, H.; Mori, H.; Yoneyama, H.; Deguchi, A.; Himoto, T.; Kurokohchi, K.; Okano, K.; Suzuki, Y.; Murao, K.; Masaki, T. Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int. J. Oncol., 2014, 45(1), 322-332.
[http://dx.doi.org/10.3892/ijo.2014.2419] [PMID: 24806290]
[21]
Vacante, F.; Senesi, P.; Montesano, A.; Paini, S.; Luzi, L.; Terruzzi, I. Metformin counteracts HCC progression and metastasis enhancing KLF6/p21 expression and downregulating the IGF axis. Int. J. Endocrinol., 2019, 20197570146.
[http://dx.doi.org/10.1155/2019/7570146] [PMID: 30774659]
[22]
Cai, X.; Hu, X.; Cai, B.; Wang, Q.; Li, Y.; Tan, X.; Hu, H.; Chen, X.; Huang, J.; Cheng, J.; Jing, X. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol. Rep., 2013, 30(5), 2449-2457.
[http://dx.doi.org/10.3892/or.2013.2718] [PMID: 24008375]
[23]
Zhou, J.; Han, S.; Qian, W.; Gu, Y.; Li, X.; Yang, K. Metformin induces miR-378 to downregulate the CDK1, leading to suppression of cell proliferation in hepatocellular carcinoma. OncoTargets Ther., 2018, 11, 4451-4459.
[http://dx.doi.org/10.2147/OTT.S167614] [PMID: 30104887]
[24]
Cheng, J.; Huang, T.; Li, Y.; Guo, Y.; Zhu, Y.; Wang, Q.; Tan, X.; Chen, W.; Zhang, Y.; Cheng, W.; Yamamoto, T.; Jing, X.; Huang, J. AMP-activated protein kinase suppresses the in vitro and in vivo proliferation of hepatocellular carcinoma. PLoS One, 2014, 9(4), e93256.
[http://dx.doi.org/10.1371/journal.pone.0093256] [PMID: 24709998]
[25]
Breckenridge, D.G.; Xue, D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr. Opin. Cell Biol., 2004, 16(6), 647-652.
[http://dx.doi.org/10.1016/j.ceb.2004.09.009] [PMID: 15530776]
[26]
Zheng, J.H.; Viacava Follis, A.; Kriwacki, R.W.; Moldoveanu, T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J., 2016, 283(14), 2690-2700.
[http://dx.doi.org/10.1111/febs.13527] [PMID: 26411300]
[27]
Zhang, H.H.; Zhang, Y.; Cheng, Y.N.; Gong, F.L.; Cao, Z.Q.; Yu, L.G.; Guo, X.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog., 2018, 57(1), 44-56.
[http://dx.doi.org/10.1002/mc.22718] [PMID: 28833603]
[28]
Sun, R.; Zhai, R.; Ma, C.; Miao, W. Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway. Cancer Med., 2020, 9(3), 1141-1151.
[http://dx.doi.org/10.1002/cam4.2723] [PMID: 31830378]
[29]
Kasof, G.M.; Gomes, B.C. Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem., 2001, 276(5), 3238-3246.
[http://dx.doi.org/10.1074/jbc.M003670200] [PMID: 11024045]
[30]
Qu, Z.; Zhang, Y.; Liao, M.; Chen, Y.; Zhao, J.; Pan, Y. In vitro and in vivo antitumoral action of metformin on hepatocellular carcinoma. Hepatol. Res., 2012, 42(9), 922-33.
[31]
Sun, Y.; Tao, C.; Huang, X.; He, H.; Shi, H.; Zhang, Q.; Wu, H. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. OncoTargets Ther., 2016, 9, 2845-2853.
[PMID: 27274280]
[32]
Kalender, A.; Selvaraj, A.; Kim, S.Y.; Gulati, P.; Brûlé, S.; Viollet, B.; Kemp, B.E.; Bardeesy, N.; Dennis, P.; Schlager, J.J.; Marette, A.; Kozma, S.C.; Thomas, G. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab., 2010, 11(5), 390-401.
[http://dx.doi.org/10.1016/j.cmet.2010.03.014] [PMID: 20444419]
[33]
Xiong, Y.; Lu, Q.J.; Zhao, J.; Wu, G.Y. Metformin inhibits growth of hepatocellular carcinoma cells by inducing apoptosis via mitochondrion-mediated pathway. Asian Pac. J. Cancer Prev., 2012, 13(7), 3275-3279.
[http://dx.doi.org/10.7314/APJCP.2012.13.7.3275] [PMID: 22994747]
[34]
Ben Sahra, I.; Regazzetti, C.; Robert, G.; Laurent, K.; Le Marchand-Brustel, Y.; Auberger, P.; Tanti, J.F.; Giorgetti-Peraldi, S.; Bost, F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res., 2011, 71(13), 4366-4372.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1769] [PMID: 21540236]
[35]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 169(2), 361-371.
[http://dx.doi.org/10.1016/j.cell.2017.03.035] [PMID: 28388417]
[36]
Ben-Sahra, I.; Manning, B.D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell Biol., 2017, 45, 72-82.
[http://dx.doi.org/10.1016/j.ceb.2017.02.012] [PMID: 28411448]
[37]
Bhat, M.; Yanagiya, A.; Graber, T.; Razumilava, N.; Bronk, S.; Zammit, D.; Zhao, Y.; Zakaria, C.; Metrakos, P.; Pollak, M.; Sonenberg, N.; Gores, G.; Jaramillo, M.; Morita, M.; Alain, T. Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget, 2016, 8(31), 50542-50556.
[http://dx.doi.org/10.18632/oncotarget.10671] [PMID: 28881582]
[38]
Larsson, O.; Morita, M.; Topisirovic, I.; Alain, T.; Blouin, M-J.; Pollak, M.; Sonenberg, N. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 8977-8982.
[http://dx.doi.org/10.1073/pnas.1201689109] [PMID: 22611195]
[39]
Xie, Q.; Liu, Y.; Li, X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl. Oncol., 2020, 13(12), 100871.
[http://dx.doi.org/10.1016/j.tranon.2020.100871] [PMID: 32950931]
[40]
Tsai, H.H.; Lai, H.Y.; Chen, Y.C.; Li, C.F.; Huang, H.S.; Liu, H.S.; Tsai, Y.S.; Wang, J.M. Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget, 2017, 8(8), 13832-13845.
[http://dx.doi.org/10.18632/oncotarget.14640] [PMID: 28099155]
[41]
Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat., 2004, 7(2), 97-110.
[http://dx.doi.org/10.1016/j.drup.2004.01.004] [PMID: 15158766]
[42]
Wang, N.; Wu, Y.; Bian, J.; Qian, X.; Lin, H.; Sun, H.; You, Q.; Zhang, X. Current development of ROS-modulating agents as novel antitumor therapy. Curr. Cancer Drug Targets, 2017, 17(2), 122-136.
[http://dx.doi.org/10.2174/1568009616666160216125833] [PMID: 26881931]
[43]
Park, D. Metformin induces oxidative stress-mediated apoptosis without the blockade of glycolysis in H4IIE hepatocellular carcinoma cells. Biol. Pharm. Bull., 2019, 42(12), 2002-2008.
[http://dx.doi.org/10.1248/bpb.b19-00474] [PMID: 31787716]
[44]
Saito, T.; Chiba, T.; Yuki, K.; Zen, Y.; Oshima, M.; Koide, S.; Motoyama, T.; Ogasawara, S.; Suzuki, E.; Ooka, Y.; Tawada, A.; Tada, M.; Kanai, F.; Takiguchi, Y.; Iwama, A.; Yokosuka, O. Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS One, 2013, 8(7), e70010-e70010.
[http://dx.doi.org/10.1371/journal.pone.0070010] [PMID: 23922888]
[45]
Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis, 2017, 20(4), 409-426.
[http://dx.doi.org/10.1007/s10456-017-9562-9] [PMID: 28660302]
[46]
Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 2019, 176(6), 1248-1264.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[47]
Ranieri, G.; Ammendola, M.; Marech, I.; Laterza, A.; Abbate, I.; Oakley, C.; Vacca, A.; Sacco, R.; Gadaleta, C.D. Vascular endothelial growth factor and tryptase changes after chemoembolization in hepatocarcinoma patients. World J. Gastroenterol., 2015, 21(19), 6018-6025.
[http://dx.doi.org/10.3748/wjg.v21.i19.6018] [PMID: 26019468]
[48]
Yang, Z. F.; Poon, R. T. Vascular changes in hepatocellular carcinoma. Anat. Rec., 2008, 291(6), 721-34.
[49]
Cauchy, F.; Mebarki, M.; Leporq, B.; Laouirem, S.; Albuquerque, M.; Lambert, S.; Bourgoin, P.; Soubrane, O.; Van Beers, B. E.; Faivre, S.; Bedossa, P.; Paradis, V. Strong antineoplastic effects of metformin in preclinical models of liver carcinogenesis. Clin. Sci. (London, England : 1979), 2017, 131(1), 27-36.
[50]
Dallaglio, K.; Bruno, A.; Cantelmo, A.R.; Esposito, A.I.; Ruggiero, L.; Orecchioni, S.; Calleri, A.; Bertolini, F.; Pfeffer, U.; Noonan, D.M.; Albini, A. Paradoxic effects of metformin on endothelial cells and angiogenesis. Carcinogenesis, 2014, 35(5), 1055-1066.
[http://dx.doi.org/10.1093/carcin/bgu001] [PMID: 24419232]
[51]
Cauchy, F.; Mebarki, M.; Albuquerque, M.; Laouirem, S.; Rautou, P.E.; Soubrane, O.; Raymond, E.; Bedossa, P.; Paradis, V. Anti-angiogenic effect of metformin in human liver carcinogenesis related to metabolic syndrome. Gut, 2015, 64(9), 1498-1500.
[http://dx.doi.org/10.1136/gutjnl-2015-310069] [PMID: 26123027]
[52]
Hanahan, D.; Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[53]
Qu, H.; Yang, X. Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. Cell Biochem. Biophys., 2015, 71(2), 931-936.
[http://dx.doi.org/10.1007/s12013-014-0287-8] [PMID: 25326336]
[54]
Wang, J.C.; Sun, X.; Ma, Q.; Fu, G.F.; Cong, L.L.; Zhang, H.; Fan, D.F.; Feng, J.; Lu, S.Y.; Liu, J.L.; Li, G.Y.; Liu, P.J. Metformin’s antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J. Cell. Mol. Med., 2018, 22(8), 3825-3836.
[http://dx.doi.org/10.1111/jcmm.13655] [PMID: 29726618]
[55]
Chengye, W.; Yu, T.; Ping, S.; Deguang, S.; Keyun, W.; Yan, W.; Rixin, Z.; Rui, L.; Zhenming, G.; Mingliang, Y.; Liming, W. Metformin reverses bFGF-induced epithelial-mesenchymal transition in HCC cells. Oncotarget, 2017, 8(61), 104247-104257.
[http://dx.doi.org/10.18632/oncotarget.22200] [PMID: 29262637]
[56]
Zhao, J.; Zhang, X.; Shi, M.; Xu, H.; Jin, J.; Ni, H.; Yang, S.; Dai, J.; Wu, M.; Guo, Y. TIP30 inhibits growth of HCC cell lines and inhibits HCC xenografts in mice in combination with 5-FU. Hepatology, 2006, 44(1), 205-215.
[http://dx.doi.org/10.1002/hep.21213] [PMID: 16799960]
[57]
Zhao, J.; Lu, B.; Xu, H.; Tong, X.; Wu, G.; Zhang, X.; Liang, A.; Cong, W.; Dai, J.; Wang, H.; Wu, M.; Guo, Y. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology, 2008, 48(1), 265-275.
[http://dx.doi.org/10.1002/hep.22280] [PMID: 18537194]
[58]
Zhang, W.; Sun, H.C.; Wang, W.Q.; Zhang, Q.B.; Zhuang, P.Y.; Xiong, Y.Q.; Zhu, X.D.; Xu, H.X.; Kong, L.Q.; Wu, W.Z.; Wang, L.; Song, T.Q.; Li, Q.; Tang, Z.Y. Sorafenib down-regulates expression of HTATIP2 to promote invasiveness and metastasis of orthotopic hepatocellular carcinoma tumors in mice. Gastroenterology, 2012, 143(6), 1641-1649.e5.
[http://dx.doi.org/10.1053/j.gastro.2012.08.032] [PMID: 22922424]
[59]
Chen, J.; Jin, R.; Zhao, J.; Liu, J.; Ying, H.; Yan, H.; Zhou, S.; Liang, Y.; Huang, D.; Liang, X.; Yu, H.; Lin, H.; Cai, X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett., 2015, 367(1), 1-11.
[http://dx.doi.org/10.1016/j.canlet.2015.06.019] [PMID: 26170167]
[60]
Guo, Z.; Cao, M.; You, A.; Gao, J.; Zhou, H.; Li, H.; Cui, Y.; Fang, F.; Zhang, W.; Song, T.; Li, Q.; Zhu, X.; Sun, H.; Zhang, T. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30. Cancer Sci., 2016, 107(4), 507-513.
[http://dx.doi.org/10.1111/cas.12885] [PMID: 26752068]
[61]
Yang, Q.; Guo, X.; Yang, L. Metformin enhances the effect of regorafenib and inhibits recurrence and metastasis of hepatic carcinoma after liver resection via regulating expression of hypoxia inducible factors 2α (HIF-2α) and 30 kDa HIV Tat-interacting protein (TIP30). Med. Sci. Monit., 2018, 24, 2225-2234.
[http://dx.doi.org/10.12659/MSM.906687] [PMID: 29654226]
[62]
Zhang, Q.; Kong, J.; Dong, S.; Xu, W.; Sun, W. Metformin exhibits the anti-proliferation and anti-invasion effects in hepatocellular carcinoma cells after insufficient radiofrequency ablation. Cancer Cell Int., 2017, 17(1), 48.
[http://dx.doi.org/10.1186/s12935-017-0418-6] [PMID: 28450808]
[63]
Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer, 2016, 16(10), 635-649.
[http://dx.doi.org/10.1038/nrc.2016.77] [PMID: 27634447]
[64]
Salani, B.; Del Rio, A.; Marini, C.; Sambuceti, G.; Cordera, R.; Maggi, D. Metformin, cancer and glucose metabolism. Endocr. Relat. Cancer, 2014, 21(6), R461-R471.
[http://dx.doi.org/10.1530/ERC-14-0284] [PMID: 25273809]
[65]
DeWaal, D.; Nogueira, V.; Terry, A.R.; Patra, K.C.; Jeon, S.M.; Guzman, G.; Au, J.; Long, C.P.; Antoniewicz, M.R.; Hay, N. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun., 2018, 9(1), 446.
[http://dx.doi.org/10.1038/s41467-017-02733-4] [PMID: 29386513]
[66]
Shi, W.K.; Zhu, X.D.; Wang, C.H.; Zhang, Y.Y.; Cai, H.; Li, X.L.; Cao, M.Q.; Zhang, S.Z.; Li, K.S.; Sun, H.C. PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT. Cell Death Dis., 2018, 9(4), 428.
[http://dx.doi.org/10.1038/s41419-018-0435-y] [PMID: 29559632]
[67]
Hu, L.; Zeng, Z.; Xia, Q.; Liu, Z.; Feng, X.; Chen, J.; Huang, M.; Chen, L.; Fang, Z.; Liu, Q.; Zeng, H.; Zhou, X.; Liu, J. Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway. Life Sci., 2019, 239, 116966.
[http://dx.doi.org/10.1016/j.lfs.2019.116966] [PMID: 31626790]
[68]
Wang, Z.; Kang, F.; Gao, Y.; Liu, Y.; Xu, X.; Ma, X.; Ma, W.; Yang, W.; Wang, J. Metformin promotes 2-Deoxy-2-[18F]Fluoro-D-Glucose uptake in hepatocellular carcinoma cells through FoxO1-mediated downregulation of glucose-6-phosphatase. Mol. Imaging Biol., 2018, 20(3), 388-397.
[http://dx.doi.org/10.1007/s11307-017-1150-2] [PMID: 29256045]
[69]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules, 2020, 25(17), E3935.
[http://dx.doi.org/10.3390/molecules25173935] [PMID: 32872164]
[70]
Song, Y.M.; Lee, Y.H.; Kim, J.W.; Ham, D.S.; Kang, E.S.; Cha, B.S.; Lee, H.C.; Lee, B.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy, 2015, 11(1), 46-59.
[http://dx.doi.org/10.4161/15548627.2014.984271] [PMID: 25484077]
[71]
Zang, M.; Zuccollo, A.; Hou, X.; Nagata, D.; Walsh, K.; Herscovitz, H.; Brecher, P.; Ruderman, N.B.; Cohen, R.A. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem., 2004, 279(46), 47898-47905.
[http://dx.doi.org/10.1074/jbc.M408149200] [PMID: 15371448]
[72]
Bhalla, K.; Hwang, B.J.; Dewi, R.E.; Twaddel, W.; Goloubeva, O.G.; Wong, K.K.; Saxena, N.K.; Biswal, S.; Girnun, G.D. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev. Res. (Phila.), 2012, 5(4), 544-552.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0228] [PMID: 22467080]
[73]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[74]
Kuhajda, F.P. Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition, 2000, 16(3), 202-208.
[http://dx.doi.org/10.1016/S0899-9007(99)00266-X] [PMID: 10705076]
[75]
Zhang, C.; Hu, J.; Sheng, L.; Yuan, M.; Wu, Y.; Chen, L.; Zheng, G.; Qiu, Z. Metformin delays AKT/c-Met-driven hepatocarcinogenesis by regulating signaling pathways for de novo lipogenesis and ATP generation. Toxicol. Appl. Pharmacol., 2019, 365, 51-60.
[http://dx.doi.org/10.1016/j.taap.2019.01.004] [PMID: 30625338]
[76]
Beckers, A.; Organe, S.; Timmermans, L.; Scheys, K.; Peeters, A.; Brusselmans, K.; Verhoeven, G.; Swinnen, J.V. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res., 2007, 67(17), 8180-8187.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0389] [PMID: 17804731]
[77]
Lv, Q.; Zhen, Q.; Liu, L.; Gao, R.; Yang, S.; Zhou, H.; Goswami, R.; Li, Q. AMP-kinase pathway is involved in tumor necrosis factor alpha-induced lipid accumulation in human hepatoma cells. Life Sci., 2015, 131, 23-29.
[http://dx.doi.org/10.1016/j.lfs.2015.03.003] [PMID: 25817233]
[78]
Saharinen, P.; Vihinen, M.; Silvennoinen, O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell, 2003, 14(4), 1448-1459.
[http://dx.doi.org/10.1091/mbc.e02-06-0342] [PMID: 12686600]
[79]
Zhang, Y.; Takemori, H.; Wang, C.; Fu, J.; Xu, M.; Xiong, L.; Li, N.; Wen, X. Role of salt inducible kinase 1 in high glucose-induced lipid accumulation in HepG2 cells and metformin intervention. Life Sci., 2017, 173, 107-115.
[http://dx.doi.org/10.1016/j.lfs.2017.02.001] [PMID: 28174122]
[80]
Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1809-1814.
[http://dx.doi.org/10.1073/pnas.1417636112] [PMID: 25624476]
[81]
de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol., 2019, 70(4), 710-721.
[http://dx.doi.org/10.1016/j.jhep.2018.11.034] [PMID: 30572006]
[82]
Garrido, F.; Perea, F.; Bernal, M.; Sánchez-Palencia, A.; Aptsiauri, N.; Ruiz-Cabello, F. The escape of cancer from T Cell-mediated immune surveillance: HLA class I loss and tumor tissue architecture. Vaccines (Basel), 2017, 5(1), E7.
[http://dx.doi.org/10.3390/vaccines5010007] [PMID: 28264447]
[83]
Zhao, D.; Long, X.D.; Lu, T.F.; Wang, T.; Zhang, W.W.; Liu, Y.X.; Cui, X.L.; Dai, H.J.; Xue, F.; Xia, Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer, 2015, 136(11), 2556-2565.
[http://dx.doi.org/10.1002/ijc.29305] [PMID: 25370454]
[84]
Ling, S.; Tian, Y.; Zhang, H.; Jia, K.; Feng, T.; Sun, D.; Gao, Z.; Xu, F.; Hou, Z.; Li, Y.; Wang, L. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel-7402/5-fluorouracil cells. Mol. Med. Rep., 2014, 10(6), 2891-2897.
[http://dx.doi.org/10.3892/mmr.2014.2614] [PMID: 25310259]
[85]
Wu, W.; Yang, J.L.; Wang, Y.L.; Wang, H.; Yao, M.; Wang, L.; Gu, J.J.; Cai, Y.; Shi, Y.; Yao, D.F. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription. World J. Hepatol., 2016, 8(23), 985-993.
[http://dx.doi.org/10.4254/wjh.v8.i23.985] [PMID: 27621764]
[86]
Mantovani, A.; Targher, G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: Spotlight on nonalcoholic fatty liver disease. Ann. Transl. Med., 2017, 5(13), 270.
[http://dx.doi.org/10.21037/atm.2017.04.41] [PMID: 28758096]
[87]
Capece, D.; Fischietti, M.; Verzella, D.; Gaggiano, A.; Cicciarelli, G.; Tessitore, A.; Zazzeroni, F.; Alesse, E. The inflammatory microenvironment in hepatocellular carcinoma: A pivotal role for tumor-associated macrophages. BioMed Res. Int., 2013, 2013, 187204.
[http://dx.doi.org/10.1155/2013/187204] [PMID: 23533994]
[88]
Guo, F.; Estévez-Vázquez, O.; Benedé-Ubieto, R.; Maya-Miles, D.; Zheng, K.; Gallego-Durán, R.; Rojas, Á.; Ampuero, J.; Romero-Gómez, M.; Philip, K.; Egbuniwe, I.U.; Chen, C.; Simon, J.; Delgado, T.C.; Martínez-Chantar, M.L.; Sun, J.; Reissing, J.; Bruns, T.; Lamas-Paz, A.; Moral, M.G.D.; Woitok, M.M.; Vaquero, J.; Regueiro, J.R.; Liedtke, C.; Trautwein, C.; Bañares, R.; Cubero, F.J.; Nevzorova, Y.A. A Shortcut from metabolic-associated fatty liver disease (MAFLD) to hepatocellular carcinoma (HCC): c-MYC a promising target for preventative strategies and individualized therapy. Cancers (Basel), 2021, 14(1), 192.
[http://dx.doi.org/10.3390/cancers14010192] [PMID: 35008356]
[89]
Zhang, Y.; Wang, H.; Xiao, H. Metformin actions on the liver: Protection mechanisms emerging in hepatocytes and immune cells against NASH-Related HCC. Int. J. Mol. Sci., 2021, 22(9), 5016.
[http://dx.doi.org/10.3390/ijms22095016] [PMID: 34065108]
[90]
Samsuri, N.A.B.; Leech, M.; Marignol, L. Metformin and improved treatment outcomes in radiation therapy-A review. Cancer Treat. Rev., 2017, 55, 150-162.
[http://dx.doi.org/10.1016/j.ctrv.2017.03.005] [PMID: 28399491]
[91]
Koritzinsky, M. Metformin: A novel biological modifier of tumor response to radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 93(2), 454-464.
[http://dx.doi.org/10.1016/j.ijrobp.2015.06.003] [PMID: 26383681]
[92]
Oh, B.Y.; Park, Y.A.; Huh, J.W.; Cho, Y.B.; Yun, S.H.; Lee, W.Y.; Park, H.C.; Choi, D.H.; Park, Y.S.; Kim, H.C. Metformin enhances the response to radiotherapy in diabetic patients with rectal cancer. J. Cancer Res. Clin. Oncol., 2016, 142(6), 1377-1385.
[http://dx.doi.org/10.1007/s00432-016-2148-x] [PMID: 27011019]
[93]
Wang, Z.; Lai, S.T.; Ma, N.Y.; Deng, Y.; Liu, Y.; Wei, D.P.; Zhao, J.D.; Jiang, G.L. Radiosensitization of metformin in pancreatic cancer cells via abrogating the G2 checkpoint and inhibiting DNA damage repair. Cancer Lett., 2015, 369(1), 192-201.
[http://dx.doi.org/10.1016/j.canlet.2015.08.015] [PMID: 26304716]
[94]
Fasih, A.; Elbaz, H.A.; Hüttemann, M.; Konski, A.A.; Zielske, S.P. Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway. Radiat. Res., 2014, 182(1), 50-59.
[http://dx.doi.org/10.1667/RR13568.1] [PMID: 24909911]
[95]
Feng, T.; Li, L.; Ling, S.; Fan, N.; Fang, M.; Zhang, H.; Fang, X.; Lan, W.; Hou, Z.; Meng, Q.; Jin, D.; Xu, F.; Li, Y. Metformin enhances radiation response of ECa109 cells through activation of ATM and AMPK. Biomed. Pharmacother., 2015, 69, 260-266.
[http://dx.doi.org/10.1016/j.biopha.2014.11.021] [PMID: 25661368]
[96]
Skinner, H.D.; Crane, C.H.; Garrett, C.R.; Eng, C.; Chang, G.J.; Skibber, J.M.; Rodriguez-Bigas, M.A.; Kelly, P.; Sandulache, V.C.; Delclos, M.E.; Krishnan, S.; Das, P. Metformin use and improved response to therapy in rectal cancer. Cancer Med., 2013, 2(1), 99-107.
[http://dx.doi.org/10.1002/cam4.54] [PMID: 24133632]
[97]
Deguchi, T.; Hosoya, K.; Kim, S.; Murase, Y.; Yamamoto, K.; Bo, T.; Yasui, H.; Inanami, O.; Okumura, M. Metformin preferentially enhances the radio-sensitivity of cancer stem-like cells with highly mitochondrial respiration ability in HMPOS. Mol. Ther. Oncolytics, 2021, 22, 143-151.
[http://dx.doi.org/10.1016/j.omto.2021.08.007] [PMID: 34514095]
[98]
De Bruycker, S.; Vangestel, C.; Staelens, S.; Wyffels, L.; Detrez, J.; Verschuuren, M.; De Vos, W.H.; Pauwels, P.; Van den Wyngaert, T.; Stroobants, S. Effects of metformin on tumor hypoxia and radiotherapy efficacy: A [18F]HX4 PET imaging study in colorectal cancer xenografts. EJNMMI Res., 2019, 9(1), 74.
[http://dx.doi.org/10.1186/s13550-019-0543-4] [PMID: 31375940]
[99]
Murley, J.S.; Arbiser, J.L.; Weichselbaum, R.R.; Grdina, D.J. ROS modifiers and NOX4 affect the expression of the survivin-associated radio-adaptive response. Free Radic. Biol. Med., 2018, 123, 39-52.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.547] [PMID: 29660403]
[100]
Elsayed, M.; Wagstaff, W.; Behbahani, K.; Villalobos, A.; Bercu, Z.; Majdalany, B.S.; Akce, M.; Schuster, D.M.; Mao, H.; Kokabi, N. Improved tumor response in patients on metformin undergoing yttrium-90 radioembolization segmentectomy for hepatocellular carcinoma. Cardiovasc. Intervent. Radiol., 2021, 44(12), 1937-1944.
[http://dx.doi.org/10.1007/s00270-021-02916-z] [PMID: 34312687]
[101]
Kim, E.H.; Kim, M.S.; Cho, C.K.; Jung, W.G.; Jeong, Y.K.; Jeong, J.H. Low and high linear energy transfer radiation sensitization of HCC cells by metformin. J. Radiat. Res. (Tokyo), 2014, 55(3), 432-442.
[http://dx.doi.org/10.1093/jrr/rrt131] [PMID: 24375278]
[102]
Kim, E.H.; Kim, M.S.; Furusawa, Y.; Uzawa, A.; Han, S.; Jung, W.G.; Sai, S. Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams. Oncotarget, 2016, 7(49), 80568-80578.
[http://dx.doi.org/10.18632/oncotarget.12966] [PMID: 27802188]
[103]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; Implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[104]
Liu, J.; Hou, M.; Yuan, T.; Yi, G.; Zhang, S.; Shao, X.; Chen, J.; Jia, X.; He, Z. Enhanced cytotoxic effect of low doses of metformin combined with ionizing radiation on hepatoma cells via ATP deprivation and inhibition of DNA repair. Oncol. Rep., 2012, 28(4), 1406-1412.
[http://dx.doi.org/10.3892/or.2012.1932] [PMID: 22843031]
[105]
Donadon, V.; Balbi, M.; Mas, M. D.; Casarin, P.; Zanette, G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int., 2010, 30(5), 750-758.
[106]
Donadon, V.; Balbi, M.; Ghersetti, M.; Grazioli, S.; Perciaccante, A.; Della Valentina, G.; Gardenal, R.; Dal Mas, M.; Casarin, P.; Zanette, G.; Miranda, C. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J. Gastroenterol., 2009, 15(20), 2506-2511.
[http://dx.doi.org/10.3748/wjg.15.2506] [PMID: 19469001]
[107]
Jo, W.; Yu, E.S.; Chang, M.; Park, H.K.; Choi, H.J.; Ryu, J.E.; Jang, S.; Lee, H.J.; Jang, J.J.; Son, W.C. Metformin inhibits early stage diethylnitrosamine-induced hepatocarcinogenesis in rats. Mol. Med. Rep., 2016, 13(1), 146-152.
[http://dx.doi.org/10.3892/mmr.2015.4513] [PMID: 26548419]
[108]
DePeralta, D.K.; Wei, L.; Ghoshal, S.; Schmidt, B.; Lauwers, G.Y.; Lanuti, M.; Chung, R.T.; Tanabe, K.K.; Fuchs, B.C. Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer, 2016, 122(8), 1216-1227.
[http://dx.doi.org/10.1002/cncr.29912] [PMID: 26914713]
[109]
Chung, Y.G.; Tak, E.; Hwang, S.; Lee, J.Y.; Kim, J.Y.; Kim, Y.Y.; Song, G.W.; Lee, K.J.; Kim, N. Synergistic effect of metformin on sorafenib in in vitro study using hepatocellular carcinoma cell lines. Ann. Hepatobiliary Pancreat. Surg., 2018, 22(3), 179-184.
[http://dx.doi.org/10.14701/ahbps.2018.22.3.179] [PMID: 30215039]
[110]
Ling, S.; Song, L.; Fan, N.; Feng, T.; Liu, L.; Yang, X.; Wang, M.; Li, Y.; Tian, Y.; Zhao, F.; Liu, Y.; Huang, Q.; Hou, Z.; Xu, F.; Shi, L.; Li, Y. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway. Int. J. Oncol., 2017, 50(1), 297-309.
[http://dx.doi.org/10.3892/ijo.2016.3799] [PMID: 27959383]
[111]
Roskoski, R., Jr. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol. Res., 2016, 111, 784-803.
[http://dx.doi.org/10.1016/j.phrs.2016.07.038] [PMID: 27473820]
[112]
Hsieh, S.C.; Tsai, J.P.; Yang, S.F.; Tang, M.J.; Hsieh, Y.H. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids, 2014, 46(12), 2809-2822.
[http://dx.doi.org/10.1007/s00726-014-1838-4] [PMID: 25245054]
[113]
Tokarski, J.S.; Zupa-Fernandez, A.; Tredup, J.A.; Pike, K.; Chang, C.; Xie, D.; Cheng, L.; Pedicord, D.; Muckelbauer, J.; Johnson, S.R.; Wu, S.; Edavettal, S.C.; Hong, Y.; Witmer, M.R.; Elkin, L.L.; Blat, Y.; Pitts, W.J.; Weinstein, D.S.; Burke, J.R. Tyrosine Kinase 2-mediated signal Transduction in T Lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J. Biol. Chem., 2015, 290(17), 11061-11074.
[http://dx.doi.org/10.1074/jbc.M114.619502] [PMID: 25762719]
[114]
You, A.; Cao, M.; Guo, Z.; Zuo, B.; Gao, J.; Zhou, H.; Li, H.; Cui, Y.; Fang, F.; Zhang, W.; Song, T.; Li, Q.; Zhu, X.; Yin, H.; Sun, H.; Zhang, T. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models. J. Hematol. Oncol., 2016, 9(1), 20.
[http://dx.doi.org/10.1186/s13045-016-0253-6] [PMID: 26957312]
[115]
Dong, H.; Huang, J.; Zheng, K.; Tan, D.; Chang, Q.; Gong, G.; Zhang, Q.; Tang, H.; Sun, J.; Zhang, S. Metformin enhances the chemosensitivity of hepatocarcinoma cells to cisplatin through AMPK pathway. Oncol. Lett., 2017, 14(6), 7807-7812.
[http://dx.doi.org/10.3892/ol.2017.7198] [PMID: 29344225]
[116]
Abdelmonsif, D.A.; Sultan, A.S.; El-Hadidy, W.F.; Abdallah, D.M. Targeting AMPK, mTOR and β-Catenin by combined metformin and aspirin therapy in HCC: An appraisal in Egyptian HCC patients. Mol. Diagn. Ther., 2018, 22(1), 115-127.
[http://dx.doi.org/10.1007/s40291-017-0307-7] [PMID: 29094287]
[117]
Sabry, D.; Abdelaleem, O.O.; El Amin Ali, A.M.; Mohammed, R.A.; Abdel-Hameed, N.D.; Hassouna, A.; Khalifa, W.A. Anti-proliferative and anti-apoptotic potential effects of epigallocatechin-3-gallate and/or metformin on hepatocellular carcinoma cells: In vitro study. Mol. Biol. Rep., 2019, 46(2), 2039-2047.
[http://dx.doi.org/10.1007/s11033-019-04653-6] [PMID: 30710234]
[118]
Tawfik, S.M.; Abdollah, M.R.A.; Elmazar, M.M.; El-Fawal, H.A.N.; Abdelnaser, A. Effects of metformin combined with antifolates on HepG2 cell metabolism and cellular proliferation. Front. Oncol., 2022, 12, 828988.
[http://dx.doi.org/10.3389/fonc.2022.828988] [PMID: 35186762]
[119]
Chung, H.W.; Wen, J.; Lim, J.B.; Bang, S.; Park, S.W.; Song, S.Y. Radiosensitization effect of STI-571 on pancreatic cancer cells in vitro. Int. J. Radiat. Oncol. Biol. Phys., 2009, 75(3), 862-869.
[http://dx.doi.org/10.1016/j.ijrobp.2009.06.021] [PMID: 19801102]
[120]
Maehara, O.; Ohnishi, S.; Asano, A.; Suda, G.; Natsuizaka, M.; Nakagawa, K.; Kobayashi, M.; Sakamoto, N.; Takeda, H. Metformin regulates the expression of CD133 through the AMPK-CEBPβ pathway in hepatocellular carcinoma cell lines. Neoplasia, 2019, 21(6), 545-556.
[http://dx.doi.org/10.1016/j.neo.2019.03.007] [PMID: 31042624]
[121]
Yan, J.B.; Lai, C.C.; Jhu, J.W.; Gongol, B.; Marin, T.L.; Lin, S.C.; Chiu, H.Y.; Yen, C.J.; Wang, L.Y.; Peng, I.C. Insulin and metformin control cell proliferation by regulating TDG-mediated DNA demethylation in liver and breast cancer cells. Mol. Ther. Oncolytics, 2020, 18, 282-294.
[http://dx.doi.org/10.1016/j.omto.2020.06.010] [PMID: 32728616]
[122]
Saber, S.; Ghanim, A.M.H.; El-Ahwany, E.; El-Kader, E.M.A. Novel complementary antitumour effects of celastrol and metformin by targeting IκBκB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced murine hepatocarcinogenesis. Cancer Chemother. Pharmacol., 2020, 85(2), 331-343.
[http://dx.doi.org/10.1007/s00280-020-04033-z] [PMID: 31989218]
[123]
Shen, C.; Ka, S.O.; Kim, S.J.; Kim, J.H.; Park, B.H.; Park, J.H. Metformin and AICAR regulate NANOG expression via the JNK pathway in HepG2 cells independently of AMPK. Tumour Biol., 2016, 37(8), 11199-11208.
[http://dx.doi.org/10.1007/s13277-016-5007-0] [PMID: 26939902]
[124]
Petrushev, B.; Tomuleasa, C.; Soritau, O.; Aldea, M.; Pop, T.; Susman, S.; Kacso, G.; Berindan, I.; Irimie, A.; Cristea, V. Metformin plus PIAF combination chemotherapy for hepatocellular carcinoma. Exp. Oncol., 2012, 34(1), 17-24.
[PMID: 22453143]
[125]
Liu, Y.; Hu, X.; Shan, X.; Chen, K.; Tang, H. Rosiglitazone metformin adduct inhibits hepatocellular carcinoma proliferation via activation of AMPK/p21 pathway. Cancer Cell Int., 2019, 19(1), 13.
[http://dx.doi.org/10.1186/s12935-019-0732-2] [PMID: 30651718]
[126]
Rogalska, A.; Bukowska, B.; Marczak, A. Metformin and epothilone A treatment up regulate pro-apoptotic PARP-1, Casp-3 and H2AX genes and decrease of AKT kinase level to control cell death of human hepatocellular carcinoma and ovary adenocarcinoma cells. Toxicol. In Vitro, 2018, 47, 48-62.
[http://dx.doi.org/10.1016/j.tiv.2017.11.001] [PMID: 29117515]
[127]
Yang, X.; Sun, D.; Tian, Y.; Ling, S.; Wang, L. Metformin sensitizes hepatocellular carcinoma to arsenic trioxide-induced apoptosis by downregulating Bcl2 expression. Tumour Biol., 2015, 36(4), 2957-2964.
[http://dx.doi.org/10.1007/s13277-014-2926-5] [PMID: 25492486]
[128]
Chen, H.H.; Lin, M.C.; Muo, C.H.; Yeh, S.Y.; Sung, F.C.; Kao, C.H. Combination therapy of metformin and statin may decrease hepatocellular carcinoma among diabetic patients in Asia. Medicine (Baltimore), 2015, 94(24), e1013.
[http://dx.doi.org/10.1097/MD.0000000000001013] [PMID: 26091447]
[129]
Wang, Y.; Lu, H.; Sun, L.; Chen, X.; Wei, H.; Suo, C.; Feng, J.; Yuan, M.; Shen, S.; Jia, W.; Wang, Y.; Zhang, H.; Li, Z.; Zhong, X.; Gao, P. Metformin sensitises hepatocarcinoma cells to methotrexate by targeting dihydrofolate reductase. Cell Death Dis., 2021, 12(10), 902.
[http://dx.doi.org/10.1038/s41419-021-04199-1] [PMID: 34601503]
[130]
Casadei Gardini, A.; Faloppi, L.; De Matteis, S.; Foschi, F.G.; Silvestris, N.; Tovoli, F.; Palmieri, V.; Marisi, G.; Brunetti, O.; Vespasiani-Gentilucci, U.; Perrone, G.; Valgiusti, M.; Granato, A.M.; Ercolani, G.; Negrini, G.; Tamburini, E.; Aprile, G.; Passardi, A.; Santini, D.; Cascinu, S.; Frassineti, G.L.; Scartozzi, M. Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib: Validation study and biological rationale. Eur. J. Cancer, 2017, 86, 106-114.
[http://dx.doi.org/10.1016/j.ejca.2017.09.003] [PMID: 28985579]
[131]
Casadei Gardini, A.; Marisi, G.; Scarpi, E.; Scartozzi, M.; Faloppi, L.; Silvestris, N.; Masi, G.; Vivaldi, C.; Brunetti, O.; Tamberi, S.; Foschi, F.G.; Tamburini, E.; Tenti, E.; Ricca Rosellini, S.; Ulivi, P.; Cascinu, S.; Nanni, O.; Frassineti, G.L. Effects of metformin on clinical outcome in diabetic patients with advanced HCC receiving sorafenib. Expert Opin. Pharmacother., 2015, 16(18), 2719-2725.
[http://dx.doi.org/10.1517/14656566.2015.1102887] [PMID: 26513009]
[132]
Antwi, S.O.; Li, Z.; Mody, K.; Roberts, L.R.; Patel, T. Independent and joint use of statins and metformin by elderly patients with diabetes and overall survival following HCC diagnosis. J. Clin. Gastroenterol., 2020, 54(5), 468-476.
[http://dx.doi.org/10.1097/MCG.0000000000001182] [PMID: 32271517]
[133]
Vilar-Gomez, E.; Vuppalanchi, R.; Desai, A.P.; Gawrieh, S.; Ghabril, M.; Saxena, R.; Cummings, O.W.; Chalasani, N. Long-term metformin use may improve clinical outcomes in diabetic patients with non-alcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis. Aliment. Pharmacol. Ther., 2019, 50(3), 317-328.
[http://dx.doi.org/10.1111/apt.15331] [PMID: 31157422]
[134]
Bhat, M.; Chaiteerakij, R.; Harmsen, W.S.; Schleck, C.D.; Yang, J.D.; Giama, N.H.; Therneau, T.M.; Gores, G.J.; Roberts, L.R. Metformin does not improve survival in patients with hepatocellular carcinoma. World J. Gastroenterol., 2014, 20(42), 15750-15755.
[http://dx.doi.org/10.3748/wjg.v20.i42.15750] [PMID: 25400459]
[135]
Harris, K.; Smith, L. Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann. Pharmacother., 2013, 47(10), 1348-1352.
[http://dx.doi.org/10.1177/1060028013503108] [PMID: 24259699]
[136]
Pernicova, I.; Korbonits, M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 2014, 10(3), 143-156.
[http://dx.doi.org/10.1038/nrendo.2013.256] [PMID: 24393785]
[137]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[138]
Feng, Y.; Guo, X.; Huang, X.; Wu, M.; Li, X.; Wu, S.; Luo, X. Metformin reverses stem cell-like HepG2 sphere formation and resistance to sorafenib by attenuating epithelial-mesenchymal transformation. Mol. Med. Rep., 2018, 18(4), 3866-3872.
[http://dx.doi.org/10.3892/mmr.2018.9348] [PMID: 30106125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy