Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Assessing Long Non-coding RNAs in Tobacco-associated Oral Cancer

Author(s): Manish Kumar Mishra, Sachin Gupta, Shivangi and Shelly Sehgal*

Volume 22, Issue 11, 2022

Published on: 29 August, 2022

Page: [879 - 888] Pages: 10

DOI: 10.2174/1568009622666220623115234

Price: $65

Abstract

Cancer is one of the compelling and pegged diseases battled by clinicians and researchers worldwide. Among different types of cancer, oral cancer holds the sixth position globally. With an escalating prevalence in Asian countries, India, China, and Pakistan constitute a large proportion of total incidents of oral cancer patients in terms of new cases or deaths. This mounting prevalence is ascribed to poor oral hygiene and rampant use of substances earmarked as potential risk factors for the disease. Risk factors (dietary/lifestyle habits/occupational/environmental) trigger the activation of oncogenes, dysregulation of lncRNA and miRNA, and silence the tumor suppressor genes, which robustly contributes to the onset and progression of tumorigenesis in oral squamous cell carcinoma. Evidence suggests that specific carcinogens identified in tobacco and related products alter many cellular pathways predisposing to advanced stages of oral cancer. Long non-coding RNAs represent a broad group of heterogenous transcripts longer than 200 nucleotides which do not translate to form functional proteins. They regulate various cellular pathways by specifically interacting with other RNAs, DNA, and proteins. Their role in the pathogenesis of OSCC and other cancer is still being debated. In this review, we discuss the molecular insights of significant lncRNAs involved in some crucial deregulated pathways of tobacco-associated OSCC. The implications and challenges to harnessing the potential of lncRNAs as biomarkers in early diagnosis and targeted treatment have also been analyzed.

Keywords: lncRNA, tobacco, oral cancer, carcinogens, tumorigenesis, human papillomavirus.

Graphical Abstract

[1]
Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45(4-5), 309-316.
[http://dx.doi.org/10.1016/j.oraloncology.2008.06.002] [PMID: 18804401]
[2]
Gupta, N.; Gupta, R.; Acharya, A.K.; Patthi, B.; Goud, V.; Reddy, S.; Garg, A.; Singla, A. Changing trends in oral cancer- a global scenario. Nepal J. Epidemiol., 2016, 6(4), 613-619.
[http://dx.doi.org/10.3126/nje.v6i4.17255] [PMID: 28804673]
[3]
WHOIA for R on C (IARC). G (2020) population fact sheets 2020.
[4]
Borse, V.; Konwar, A.N.; Buragohain, P. Oral cancer diagnosis and perspectives in India. Sens. Int., 2020, 1, 100046.
[http://dx.doi.org/10.1016/j.sintl.2020.100046] [PMID: 34766046]
[5]
Krishna, A.; Singh, S.; Kumar, V.; Pal, U.S. Molecular concept in human oral cancer. Natl. J. Maxillofac. Surg., 2015, 6(1), 9-15.
[http://dx.doi.org/10.4103/0975-5950.168235] [PMID: 26668446]
[6]
Singh, P.K.; Yadav, A.; Singh, L.; Mazumdar, S.; Sinha, D.N.; Straif, K.; Singh, S. Areca nut consumption with and without tobacco among the adult population: a nationally representative study from India. BMJ Open, 2021, 11(6), e043987-e043987.
[http://dx.doi.org/10.1136/bmjopen-2020-043987] [PMID: 34130957]
[7]
Neville, B.W.; Day, T.A. Oral cancer and precancerous lesions. CA Cancer J. Clin., 2002, 52(4), 195-215.
[http://dx.doi.org/10.3322/canjclin.52.4.195] [PMID: 12139232]
[8]
Thavarool, S.B.; Muttath, G.; Nayanar, S.; Duraisamy, K.; Bhat, P.; Shringarpure, K.; Nayak, P.; Tripathy, J.P.; Thaddeus, A.; Philip, S. B, S. Improved survival among oral cancer patients: Findings from a retrospective study at a tertiary care cancer centre in rural Kerala, India. World J. Surg. Oncol., 2019, 17(1), 15.
[http://dx.doi.org/10.1186/s12957-018-1550-z] [PMID: 30635062]
[9]
Momen-Heravi, F.; Bala, S. Emerging role of non-coding RNA in oral cancer. Cell. Signal., 2018, 42, 134-143.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.009] [PMID: 29056500]
[10]
Shih, J-W.; Chiang, W-F.; Wu, A.T.H.; Wu, M.H.; Wang, L.Y.; Yu, Y.L.; Hung, Y.W.; Wang, W.C.; Chu, C.Y.; Hung, C.L.; Changou, C.A.; Yen, Y.; Kung, H.J. Long noncoding RNA LncHIFCAR/MIR31HG is a HIF-1α co-activator driving oral cancer progression. Nat. Commun., 2017, 8, 15874.
[http://dx.doi.org/10.1038/ncomms15874] [PMID: 28639619]
[11]
Statello, L.; Guo, C-J.; Chen, L-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[12]
Lei, C-S.; Kung, H-J.; Shih, J-W. Long non-coding RNAs as functional codes for oral cancer: translational potential, progress and promises. Int. J. Mol. Sci., 2021, 22(9), 4903.
[http://dx.doi.org/10.3390/ijms22094903] [PMID: 34063159]
[13]
Schmitt, A.M.; Chang, H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell, 2016, 29(4), 452-463.
[http://dx.doi.org/10.1016/j.ccell.2016.03.010] [PMID: 27070700]
[14]
Tomar, S.L.; Hecht, S.S.; Jaspers, I.; Gregory, R.L.; Stepanov, I. Oral health effects of combusted and smokeless tobacco products. Adv. Dent. Res., 2019, 30(1), 4-10.
[http://dx.doi.org/10.1177/0022034519872480] [PMID: 31538806]
[15]
Xue, J.; Yang, S.; Seng, S. Mechanisms of cancer induction by tobacco-specific NNK and NNN. Cancers (Basel), 2014, 6(2), 1138-1156.
[http://dx.doi.org/10.3390/cancers6021138] [PMID: 24830349]
[16]
Behura, S.S.; Masthan, M.K.; Narayanasamy, A.B. Oral mucosal lesions associated with smokers and chewers - a case-control study in Chennai population. J. Clin. Diagn. Res., 2015, 9(7), ZC17-ZC22.
[http://dx.doi.org/10.7860/JCDR/2015/14008.6169] [PMID: 26393198]
[17]
Jiang, X.; Wu, J.; Wang, J.; Huang, R. Tobacco and oral squamous cell carcinoma: a review of carcinogenic pathways. Tob. Induc. Dis., 2019, 17, 29.
[http://dx.doi.org/10.18332/tid/111652] [PMID: 31582940]
[18]
Wang, R.; Feng, N.; Wang, Y.; Gao, S.; Zhang, F.; Qian, Y.; Gao, M.; Yu, H.; Zhou, B.; Qian, B. SNPs in LncRNA genes are associated with non-small cell lung cancer in a chinese population. J. Clin. Lab. Anal., 2019, 33(4), e22858-e22858.
[http://dx.doi.org/10.1002/jcla.22858] [PMID: 30980423]
[19]
Yu, Y.; Mao, L.; Cheng, Z.; Zhu, X.; Cui, J.; Fu, X.; Cheng, J.; Zhou, Y.; Qiu, A.; Dong, Y.; Zhuang, X.; Lu, Y.; Lian, Y.; Tian, T.; Wu, S.; Chu, M. A novel regQTL-SNP and the risk of lung cancer: a multi-dimensional study. Arch. Toxicol., 2021, 95(12), 3815-3827.
[http://dx.doi.org/10.1007/s00204-021-03170-5] [PMID: 34596730]
[20]
Zhu, L.; He, Y.; Feng, G.; Yu, Y.; Wang, R.; Chen, N.; Yuan, H. Genetic variants in long non-coding RNAs UCA1 and NEAT1 were associated with the prognosis of oral squamous cell carcinoma. Int. J. Oral Maxillofac. Implants, 2021, 50(9), 1131-1137.
[http://dx.doi.org/10.1016/j.ijom.2020.11.024] [PMID: 33384238]
[21]
Harsha, C.; Banik, K.; Ang, H.L.; Girisa, S.; Vikkurthi, R.; Parama, D.; Rana, V.; Shabnam, B.; Khatoon, E.; Kumar, A.P.; Kunnumakkara, A.B. Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials. Int. J. Mol. Sci., 2020, 21(9), 3285.
[http://dx.doi.org/10.3390/ijms21093285] [PMID: 32384682]
[22]
Vander Broek, R.; Mohan, S.; Eytan, D.F. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, cross-talk, and therapies. Oral Dis., 2015, 21, 815-825.
[23]
Oikawa, Y.; Morita, K-I.; Kayamori, K.; Tanimoto, K.; Sakamoto, K.; Katoh, H.; Ishikawa, S.; Inazawa, J.; Harada, H. Receptor tyrosine kinase amplification is predictive of distant metastasis in patients with oral squamous cell carcinoma. Cancer Sci., 2017, 108(2), 256-266.
[http://dx.doi.org/10.1111/cas.13126] [PMID: 27889930]
[24]
Simpson, D.R.; Mell, L.K.; Cohen, E.E.W. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol., 2015, 51(4), 291-298.
[http://dx.doi.org/10.1016/j.oraloncology.2014.11.012] [PMID: 25532816]
[25]
Hsieh, M.H.; Lu, H.J.; Lin, C.W.; Lee, C.Y.; Yang, S.J.; Wu, P.H.; Chen, M.K.; Yang, S.F. Genetic variants of lncRNA GAS5 are associated with the clinicopathologic development of oral cancer. J. Pers. Med., 2021, 11(5), 348.
[http://dx.doi.org/10.3390/jpm11050348] [PMID: 33925911]
[26]
Wang, R.; Lu, X.; Yu, R. lncRNA MALAT1 promotes EMT process and cisplatin resistance of oral squamous cell carcinoma via PI3K/AKT/m-TOR signal pathway. OncoTargets Ther., 2020, 13, 4049-4061.
[http://dx.doi.org/10.2147/OTT.S251518] [PMID: 32494159]
[27]
Wang, J.; Li, L.; Wu, K.; Ge, W.; Zhang, Z.; Gong, L.; Yuan, D. Knockdown of long noncoding RNA urothelial cancer-associated 1 enhances cisplatin chemosensitivity in tongue squamous cell carcinoma cells. Pharmazie, 2016, 71(10), 598-602.
[http://dx.doi.org/10.1691/ph.2016.6625] [PMID: 29441929]
[28]
Heah, K.G.; Hassan, M.I.A.; Huat, S.C. p53 Expression as a marker of microinvasion in oral squamous cell carcinoma. Asian Pac. J. Cancer Prev., 2011, 12(4), 1017-1022.
[PMID: 21790244]
[29]
Ragos, V.; S Mastronikolis, N.; Tsiambas, E.; Baliou, E.; N Mastronikolis, S.; Tsoukalas, N.; E Patsouri, E.; P Fotiades, P. p53 mutations in oral cavity carcinoma. J. BUON, 2018, 23(6), 1569-1572.
[PMID: 30610778]
[30]
Park, J.E.; Jang, Y.L.; Jang, C.Y. The tobacco carcinogen NNK disturbs mitotic chromosome alignment by interrupting p53 targeting to the centrosome. Toxicol. Lett., 2017, 281, 110-118.
[http://dx.doi.org/10.1016/j.toxlet.2017.09.019] [PMID: 28964810]
[31]
Denaro, N.; Lo Nigro, C.; Natoli, G.; Russi, E.G.; Adamo, V.; Merlano, M.C. The role of p53 and MDM2 in head and neck cancer. ISRN Otolaryngol., 2011, 2011, 931813.
[http://dx.doi.org/10.5402/2011/931813] [PMID: 23724261]
[32]
Chen, Y-K.; Huse, S-S.; Lin, L-M. Expression of inhibitor of apoptosis family proteins in human oral squamous cell carcinogenesis. Head Neck, 2011, 33(7), 985-998.
[http://dx.doi.org/10.1002/hed.21582] [PMID: 20967871]
[33]
Reis, R.S.D.; Santos, J.A.D.; Abreu, P.M.; Dettogni, R.S.; Santos, E.V.W.D.; Stur, E.; Agostini, L.P.; Anders, Q.S.; Alves, L.N.R.; Valle, I.B.D.; Lima, M.A.; Souza, E.D.; Podestá, J.R.V.; Zeidler, S.V.V.; Cordeiro-Silva, M.F.; Louro, I.D. Hypermethylation status of DAPK, MGMT and RUNX3 in HPV negative oral and oropharyngeal squamous cell carcinoma. Genet. Mol. Biol., 2020, 43(3), e20190334-e20190334.
[http://dx.doi.org/10.1590/1678-4685-gmb-2019-0334] [PMID: 32870234]
[34]
Molinolo, A.A.; Amornphimoltham, P.; Squarize, C.H.; Castilho, R.M.; Patel, V.; Gutkind, J.S. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol., 2009, 45(4-5), 324-334.
[http://dx.doi.org/10.1016/j.oraloncology.2008.07.011] [PMID: 18805044]
[35]
Chakrobarty, B.; Roy, J.G.; Majumdar, S.; Uppala, D. Relationship among tobacco habits, Human Papilloma Virus (HPV) infection, p53 polymorphism/mutation and the risk of oral squamous cell carcinoma. J. Oral Maxillofac. Pathol., 2014, 18(2), 211-216.
[http://dx.doi.org/10.4103/0973-029X.140752] [PMID: 25328301]
[36]
Lu, K.H.; Li, W.; Liu, X.H.; Sun, M.; Zhang, M.L.; Wu, W.Q.; Xie, W.P.; Hou, Y.Y. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer, 2013, 13, 461.
[http://dx.doi.org/10.1186/1471-2407-13-461] [PMID: 24098911]
[37]
Liu, Z.; Wu, C.; Xie, N.; Wang, P. Long non-coding RNA MEG3 inhibits the proliferation and metastasis of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway. Oncol. Lett., 2017, 14(4), 4053-4058.
[http://dx.doi.org/10.3892/ol.2017.6682] [PMID: 28959364]
[38]
Li, S.; Balmain, A.; Counter, C.M. A model for RAS mutation patterns in cancers: finding the sweet spot. Nat. Rev. Cancer, 2018, 18(12), 767-777.
[http://dx.doi.org/10.1038/s41568-018-0076-6] [PMID: 30420765]
[39]
Khan, A.Q.; Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Shanmugakonar, M.; Al-Naemi, H.A.; Haris, M.; Dermime, S.; Uddin, S. RAS-mediated oncogenic signaling pathways in human malignancies. Semin. Cancer Biol., 2019, 54, 1-13.
[http://dx.doi.org/10.1016/j.semcancer.2018.03.001] [PMID: 29524560]
[40]
Karnoub, A.E.; Weinberg, R.A. Ras oncogenes: Split personalities. Nat. Rev. Mol. Cell Biol., 2008, 9(7), 517-531.
[http://dx.doi.org/10.1038/nrm2438] [PMID: 18568040]
[41]
Kratz, C.P.; Niemeyer, C.M.; Zenker, M. An unexpected new role of mutant Ras: perturbation of human embryonic development. J. Mol. Med. (Berl.), 2007, 85(3), 227-235.
[http://dx.doi.org/10.1007/s00109-006-0135-4] [PMID: 17211612]
[42]
Murugan, A.K.; Grieco, M.; Tsuchida, N. RAS mutations in human cancers: roles in precision medicine. Semin. Cancer Biol., 2019, 59, 23-35.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.007] [PMID: 31255772]
[43]
Jayaprakash, C.; Varghese, V.K.; Jayaram, P.; Chakrabarty, S.; Kudva, A.; Ray, S.; Satyamoorthy, K. Relevance and actionable mutational spectrum in oral squamous cell carcinoma. J. Oral Pathol. Med., 2020, 49(5), 427-434.
[http://dx.doi.org/10.1111/jop.12985] [PMID: 31845386]
[44]
Krishna, A.; Singh, S.; Singh, V.; Kumar, V.; Singh, U.S.; Sankhwar, S.N. Does Harvey-Ras gene expression lead to oral squamous cell carcinoma? A clinicopathological aspect. J. Oral Maxillofac. Pathol., 2018, 22(1), 65-72.
[http://dx.doi.org/10.4103/jomfp.JOMFP_246_17] [PMID: 29731559]
[45]
Uchibori, M.; Osawa, Y.; Ishii, Y. Analysis of HRAS mutations in Japanese patients with oral squamous cell carcinoma. Adv. in Oral and Maxillofac. Surg., 2021, 1, 100021.
[http://dx.doi.org/10.1016/j.adoms.2021.100021]
[46]
Moazeni-Roodi, A.; Allameh, A.; Harirchi, I.; Motiee-Langroudi, M.; Garajei, A. Studies on the contribution of Cox-2 expression in the progression of oral squamous cell carcinoma and H-Ras activation. Pathol. Oncol. Res., 2017, 23(2), 355-360.
[http://dx.doi.org/10.1007/s12253-016-0114-1] [PMID: 27628320]
[47]
Ram, H.; Sarkar, J.; Kumar, H.; Konwar, R.; Bhatt, M.L.; Mohammad, S. Oral cancer: risk factors and molecular pathogenesis. J. Maxillofac. Oral Surg., 2011, 10(2), 132-137.
[http://dx.doi.org/10.1007/s12663-011-0195-z] [PMID: 22654364]
[48]
Nagel, Z.D.; Beharry, A.A.; Mazzucato, P.; Kitange, G.J.; Sarkaria, J.N.; Kool, E.T.; Samson, L.D. Fluorescent reporter assays provide direct, accurate, quantitative measurements of MGMT status in human cells. PLoS One, 2019, 14(2), e0208341-e0208341.
[http://dx.doi.org/10.1371/journal.pone.0208341] [PMID: 30811507]
[49]
Hema, K.N.; Smitha, T.; Sheethal, H.S.; Mirnalini, S.A. Epigenetics in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol., 2017, 21(2), 252-259.
[http://dx.doi.org/10.4103/jomfp.JOMFP_150_17] [PMID: 28932035]
[50]
Peterson, L.A. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J. Nucleic Acids, 2010, 2010, 284935.
[http://dx.doi.org/10.4061/2010/284935] [PMID: 20871819]
[51]
Sanchez-Cespedes, M.; Esteller, M.; Wu, L. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res., 2000, 60, 892-895.
[52]
Rosas, S.L.B.; Koch, W.; Carvalho, M.; Da, G.; Da, C. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res., 2001, 61, 939-942.
[53]
Li, S.; Yang, X.; Wang, P.; Ran, X. The effects of GLUT1 on the survival of head and neck squamous cell carcinoma. Cell. Physiol. Biochem., 2013, 32(3), 624-634.
[http://dx.doi.org/10.1159/000354466] [PMID: 24022001]
[54]
Demeda, C.F.; De Carvalho, C.H.P.; De Aquino, A.R.L. Expression of glucose transporters 1 and 3 in metastatic and non-metastatic lower lip squamous cell carcinoma. Braz. Dent. J., 2014, 25, 372-378.
[55]
Liberti, M.V.; Locasale, J.W. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci., 2016, 41, 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001]
[56]
Ward, P.S.; Thompson, C.B. Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol., 2012, 4(7), a006783-a006783.
[http://dx.doi.org/10.1101/cshperspect.a006783] [PMID: 22687276]
[57]
Pragallapati, S.; Manyam, R. Glucose transporter 1 in health and disease. J. Oral Maxillofac. Pathol., 2019, 23(3), 443-449.
[http://dx.doi.org/10.4103/jomfp.JOMFP_22_18] [PMID: 31942129]
[58]
Chu, H.; Li, Z.; Gan, Z.; Yang, Z.; Wu, Z.; Rong, M. LncRNA ELF3-AS1 is involved in the regulation of oral squamous cell carcinoma cell proliferation by reprogramming glucose metabolism. OncoTargets Ther., 2019, 12, 6857-6863.
[http://dx.doi.org/10.2147/OTT.S217473] [PMID: 31686842]
[59]
Li, X.; Ren, H. Long noncoding RNA PVT1 promotes tumor cell proliferation, invasion, migration and inhibits apoptosis in oral squamous cell carcinoma by regulating miR-150-5p/GLUT-1. Oncol. Rep., 2020, 44(4), 1524-1538.
[http://dx.doi.org/10.3892/or.2020.7706] [PMID: 32945498]
[60]
Wang, Y.; Zhang, X.; Wang, Z.; Hu, Q.; Wu, J.; Li, Y.; Ren, X.; Wu, T.; Tao, X.; Chen, X.; Li, X.; Xia, J.; Cheng, B. LncRNAp23154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis. Cancer Lett., 2018, 434, 172-183.
[http://dx.doi.org/10.1016/j.canlet.2018.07.016] [PMID: 30026052]
[61]
Bialik, S.; Kimchi, A. The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem., 2006, 75, 189-210.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142615] [PMID: 16756490]
[62]
Michie, A.M.; McCaig, A.M.; Nakagawa, R.; Vukovic, M. Death-Associated Protein Kinase (DAPK) and signal transduction: regulation in cancer. FEBS J., 2010, 277(1), 74-80.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07414.x] [PMID: 19878310]
[63]
NICPR. Commonly used smokeless tobacco products around the globe, 2020. Available from: https://untobaccocontrol.org/kh/smokeless-tobacco/paan-betel-quid-tobacco/ [Assessed on June 14th, 2022].
[64]
Muthukrishnan, A.; Warnakulasuriya, S. Oral health consequences of smokeless tobacco use. Indian J. Med. Res., 2018, 148(1), 35-40.
[http://dx.doi.org/10.4103/ijmr.IJMR_1793_17] [PMID: 30264752]
[65]
Mishra, N.K.S.; Rai, J.; Awasthi, N. Tobacco related lesions of oral cavity- a review. Int. J. Contemp. Med. Surg. and Radiol., 2017, 2, 25-28.
[66]
Niaz, K.; Maqbool, F.; Khan, F.; Bahadar, H.; Ismail Hassan, F.; Abdollahi, M. Smokeless tobacco (paan and gutkha) consumption, prevalence, and contribution to oral cancer. Epidemiol. Health, 2017, 39, e2017009-e2017009.
[http://dx.doi.org/10.4178/epih.e2017009] [PMID: 28292008]
[67]
Anand, R.; Dhingra, C.; Prasad, S.; Menon, I. Betel nut chewing and its deleterious effects on oral cavity. J. Cancer Res. Ther., 2014, 10(3), 499-505.
[http://dx.doi.org/10.4103/0973-1482.137958] [PMID: 25313728]
[68]
Ali, F.M.; Aher, V.; Prasant, M.C.; Bhushan, P.; Mudhol, A.; Suryavanshi, H. Oral submucous fibrosis: comparing clinical grading with duration and frequency of habit among areca nut and its products chewers. J. Cancer Res. Ther., 2013, 9(3), 471-476.
[http://dx.doi.org/10.4103/0973-1482.119353] [PMID: 24125985]
[69]
Gupta, P.C.; Ray, C.S.; Murti, P.R.; Sinha, D.N. Rising incidence of oral cancer in Ahmedabad city. Indian J. Cancer, 2014, 51(Suppl. 1), S67-S72.
[http://dx.doi.org/10.4103/0019-509X.147476] [PMID: 25526252]
[70]
Dongre, A.; Deshmukh, P.; Murali, N.; Garg, B. Tobacco consumption among adolescents in rural wardha: where and how tobacco control should focus its attention? Indian J. Cancer, 2008, 45(3), 100-106.
[http://dx.doi.org/10.4103/0019-509X.44065] [PMID: 19018113]
[71]
Müller, S. Frictional keratosis, contact keratosis and smokeless tobacco keratosis: features of reactive white lesions of the oral mucosa. Head Neck Pathol., 2019, 13(1), 16-24.
[http://dx.doi.org/10.1007/s12105-018-0986-3] [PMID: 30671762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy