Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Recent Review On 3D-Printing: Scope and Challenges with Special Focus on Pharmaceutical Field

Author(s): Shubham Singh, Mohit Kumar, Abd Almonem Doolaanea and Uttam Kumar Mandal*

Volume 28, Issue 30, 2022

Published on: 31 August, 2022

Page: [2488 - 2507] Pages: 20

DOI: 10.2174/1381612828666220623091629

Price: $65

Abstract

Background: The presentation of 3D printing in drug innovation especially focuses on the advancement of patient-centered dosage forms based on the structural design. Rising interest for customization of 3D printed inserts during surgeries combined with developing R&D speculations is driving the medical services. 3D printing technique is considered emerging digitized technology and it is beneficial for the future progression and development of customized dosage forms, prostheses, implantable medical devices, tissue making, disease modeling, and many more. 3D Printing technology has numerous benefits, such as minimum waste production, freedom of design, and the ability to make complex structures as well as rapid prototyping.

Methods: Various 3D printing techniques are utilized (such as drop on solid deposition, selective laser sintering/ melting, drop on drop deposition, stereolithography, fused deposition modeling, and pressure-assisted techniques) for the preparation of various pharmaceuticals, such as tablets, films, oral films, mouth guards, pellets, polyprintlets, catheters, etc.

Results: With the help of various 3D printing techniques, researchers minimize dose frequency and side effects of drugs with the formation of multilayer tablets or polypills and benefit the person who is suffering from various diseases at a particular time. For example, multilayer polypills containing paracetamol, caffeine, naproxen, chloramphenicol, prednisolone, and aspirin. This study, most importantly, demonstrated the possibility of 3D printing for making diverse polypills to advance patient personalization with the help of the 3D printing technique.

Conclusion: The authors hope this article will give a valuable boost to energize future researchers in the pharmaceutical field. Due to the novelty and particular highlights, 3D printing has the inborn ability to settle numerous formulation and medication conveyance challenges, which are often connected with poorly aqueous solubility. It has many unmet regulatory challenges that need to be addressed.

Keywords: 3D printing, polymers, 3D printing CAD software, slicing software, pharmaceutical, drug delivery, challenges, regulatory issue.

[1]
Omar J. A study on 3D printing and its effects on the future of transportation PhD Dessertation, mechanical and aerospace engineering. New Jersey: State University of New Jersey 2018.
[2]
Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos, Part B Eng 2017; 2018(143): 172-96.
[3]
Ratnamala KV, Reddy TS. 2020.
[4]
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev 2017; 117(15): 10212-90.
[http://dx.doi.org/10.1021/acs.chemrev.7b00074] [PMID: 28756658]
[5]
Kreiger MA, MacAllister BA, Wilhoit JM, et al.
[6]
Pedersen DB. 2013.
[7]
Scott J, Gupta N, Wember C, Newsom S, Wohlers T, Caffrey T. Additive manufacturing: Status and opportunities. Sci Technol Pol Inst 2012; pp. 1-29.
[8]
Flanagan ST, Ballard DH. 3D printed face shields: A community response to the COVID-19 global pandemic. Acad Radiol 2020; 27(6): 905-6.
[http://dx.doi.org/10.1016/j.acra.2020.04.020] [PMID: 32335004]
[9]
Sung TK. Industry 4.0: A Korea perspective. Technol Forecast Soc Change 2018; 132: 40-5.
[http://dx.doi.org/10.1016/j.techfore.2017.11.005]
[10]
Kagermann H. Change through digitization—Value creation in the age of Industry 4.0.Management of permanent change Gabler. Wiesbaden: Springer 2015; pp. 23-45.
[http://dx.doi.org/10.1007/978-3-658-05014-6_2]
[11]
Biahmou A, Emmer C, Pfouga A, et al. Digital master as an enabler for industry 4.0.Transdisciplinary engineering: Crossing boundaries. Amsterdam: IOS Press 2016; pp. 672-81.
[12]
Birtchnell T, Hoyle W. 3D printing for development in the global south: The 3D4D challenge. Basingstoke, United Kingdom: Palgrave Macmillan Publisher 2014.
[http://dx.doi.org/10.1057/9781137365668]
[13]
Peng MW. Global strategy. 2021.
[14]
Appelbaum RP, Cao C, Han X, Parker R, Simon D. Innovation in China: Challenging the global science and technology system. 1st ed. USA: John Wiley & Sons 2018.
[15]
Ali SM. 2020.
[16]
Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications–recent achievements and challenges. Pharm Res 2018; 35(9): 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x] [PMID: 29998405]
[17]
Konta AA, García-Piña M, Serrano DR. Personalised 3D printed medicines: Which techniques and polymers are more successful? Bioengineering (Basel) 2017; 4(4): 79.
[http://dx.doi.org/10.3390/bioengineering4040079] [PMID: 28952558]
[18]
Içten E, Giridhar A, Taylor LS, Nagy ZK, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J Pharm Sci 2015; 104(5): 1641-9.
[http://dx.doi.org/10.1002/jps.24367] [PMID: 25639605]
[19]
Gültekin HE, Tort S, Acartürk F. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing. Pharm Res 2019; 36(9): 128.
[http://dx.doi.org/10.1007/s11095-019-2655-y] [PMID: 31250313]
[20]
First 3D-printed pill. Nat Biotechnol 2015; 33(10): 1014.
[http://dx.doi.org/10.1038/nbt1015-1014a] [PMID: 26448072]
[21]
Shi K, Tan DK, Nokhodchi A, Maniruzzaman M. Drop-on-powder 3D printing of tablets with an anti-cancer drug, 5-fluorouracil. Pharmaceutics 2019; 11(4): 1-10.
[http://dx.doi.org/10.3390/pharmaceutics11040150] [PMID: 30939760]
[22]
Moonmoon FTZ. 2019.
[23]
Sima F, Mutlu EC, Eroglu MS, et al. Levan nanostructured thin films by MAPLE assembling. Biomacromolecules 2011; 12(6): 2251-6.
[http://dx.doi.org/10.1021/bm200340b] [PMID: 21520921]
[24]
Kruth J-PP, Mercelis P, Froyen L, et al. Binding mechanisms in selective laser sintering and selective laser melting reference. Solid Free Fabr Proc 2004; 2315(5): 357-71.
[25]
Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 2006; 12(5): 254-65.
[http://dx.doi.org/10.1108/13552540610707013]
[26]
Fina F, Goyanes A, Gaisford S, Basit AW. Selective Laser Sintering (SLS) 3D printing of medicines. Int J Pharm 2017; 529(1-2): 285-93.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.082] [PMID: 28668582]
[27]
Ali MH, Yerbolat G, Abilgaziyev A. Modeling and simulation of composite materials for SLS-Based 3D printing. Manuf Technol 2020; 20(2): 135-42.
[http://dx.doi.org/10.21062/mft.2020.041]
[28]
Wang W, He L, Yang X, Wang D. Research on the formation process of selective laser melting Mg–Y–Sm–Zn–Zr alloy. Mater Sci Technol 2021; 37(2): 174-81.
[http://dx.doi.org/10.1080/02670836.2021.1874122]
[29]
Gholamrezaei K, Vafaee F, Afkari BF, Firouz F, Seif M. Fit of cobalt-chromium copings fabricated by the selective laser melting technology and casting method: A comparative evaluation using a profilometer. Dent Res J (Isfahan) 2020; 17(3): 200-7.
[http://dx.doi.org/10.4103/1735-3327.284726] [PMID: 32774797]
[30]
Laura H, Arun G, Taylor LS, Harris MT, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms. J Pharm Sci 2014; 103(2): 496-506.
[31]
Noh G, Keum T, Seo JE, et al. Development and evaluation of a water soluble fluorometholone eye drop formulation employing polymeric micelle. Pharmaceutics 2018; 10(4)E208
[http://dx.doi.org/10.3390/pharmaceutics10040208] [PMID: 30373320]
[32]
Kara A, Vassiliadou A, Ongoren B, et al. Engineering 3D printed microfluidic chips for the fabrication of nanomedicines. Pharmaceutics 2021; 13(12): 1-17.
[33]
Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016; 234: 41-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.034] [PMID: 27189134]
[34]
Xu X, Robles-Martinez P, Madla CM, et al. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction. Addit Manuf 2020; 33101071
[http://dx.doi.org/10.1016/j.addma.2020.101071]
[35]
Xenikakis I, Tzimtzimis M, Tsongas K, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci 2019; 137104976
[http://dx.doi.org/10.1016/j.ejps.2019.104976] [PMID: 31254642]
[36]
Xu L, Yang Q, Qiang W, et al. Hydrophilic excipient-independent drug release from SLA-printed pellets. Pharmaceutics 2021; 13(10): 1717.
[http://dx.doi.org/10.3390/pharmaceutics13101717]
[37]
Jacob S, Nair AB, Patel V, Shah J. 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech 2020; 21(6): 220.
[http://dx.doi.org/10.1208/s12249-020-01771-4] [PMID: 32748243]
[38]
Yang HJ, Hong J, Lee S, Shin S, Kim J, Kim J. Pressure-assisted tryptic digestion using a syringe. Rapid Commun Mass Spectrom 2010; 24(7): 901-8.
[http://dx.doi.org/10.1002/rcm.4467] [PMID: 20196188]
[39]
Elbadawi M, Nikjoo D, Gustafsson T, et al. Pressure-assisted microsyringe 3D printing of oral films based on pullulan and hydroxypropyl methylcellulose. Int J Pharm 2021; 595120197
[http://dx.doi.org/10.1016/j.ijpharm.2021.120197]
[40]
Mohammed AA, Algahtani MS, Ahmad MZ, et al. 2021.
[41]
Sun L, Zhao L. Envisioning the era of 3D printing: A conceptual model for the fashion industry. Fash Text 2017; 4(1): 1-16.
[http://dx.doi.org/10.1186/s40691-017-0110-4]
[42]
Afsana JV. Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des 2018; 24(42): 5062-71.
[http://dx.doi.org/10.2174/1381612825666190215122208] [PMID: 30767736]
[43]
Guo C, Zhang M, Bhandari B. Model building and slicing in food 3D printing processes: A review. Compr Rev Food Sci Food Saf 2019; 18(4): 1052-69.
[http://dx.doi.org/10.1111/1541-4337.12443] [PMID: 33337002]
[44]
Gokhare VG, Raut DN, Shinde DK. A review paper on 3D-Printing aspects and various processes used in the 3D-Printing. Int J Eng Res Technol (Ahmedabad) 2017; 6: 953-8.
[45]
Sandler N, Salmela I, Fallarero A, et al. Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm 2014; 459(1-2): 62-4.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.001] [PMID: 24239831]
[46]
Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm 2017; 532(1): 313-7.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.003] [PMID: 28888978]
[47]
Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr Polym 2017; 177: 49-57.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.058] [PMID: 28962795]
[48]
Liang K, Carmone S, Brambilla D, Leroux JC. 3D printing of a wearable personalized oral delivery device: A first-in-human study. Sci Adv 2018; 4(5)eaat2544
[http://dx.doi.org/10.1126/sciadv.aat2544] [PMID: 29750201]
[49]
Banerjee S, Roy S, Nath BK, Kshetrapal P, Pillai J. Comparative study of oral Lipid Nanoparticle Formulations (LNFs) for chemical stabilization of antitubercular drugs : Physicochemical and cellular evaluation. Artif Cells Nanomed Biotechnol 2018; 46: 540-58.
[50]
Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm 2018; 544(2): 425-32.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.031] [PMID: 29555437]
[51]
Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci 2018; 115: 11-8.
[http://dx.doi.org/10.1016/j.ejps.2018.01.005] [PMID: 29305984]
[52]
Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechin-loaded formulations. Biol Pharm Bull 2019; 42(11): 1898-905.
[http://dx.doi.org/10.1248/bpb.b19-00481] [PMID: 31685772]
[53]
Weisman JA, Ballard DH, Jammalamadaka U, et al. 3D printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: In vitro proof of concept study. Acad Radiol 2019; 26(2): 270-4.
[http://dx.doi.org/10.1016/j.acra.2018.03.022] [PMID: 29801697]
[54]
Banerjee S, Roy S, Bhaumik KN, Pillai J. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. J Drug Target 2020; 28(1): 55-69.
[http://dx.doi.org/10.1080/1061186X.2019.1613409] [PMID: 31035816]
[55]
Robles-Martinez P, Xu X, Trenfield SJ, et al. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics 2019; 11(6): 274.
[http://dx.doi.org/10.3390/pharmaceutics11060274] [PMID: 31212649]
[56]
Ilyés K, Balogh A, Casian T, et al. 3D floating tablets: Appropriate 3D design from the perspective of different in vitro dissolution testing methodologies. Int J Pharm 2019; 567118433
[57]
Chen D, Xu XY, Li R, et al. Preparation and in vitro evaluation of FDM 3D-printed ellipsoid-shaped gastric floating tablets with low infill percentages. AAPS PharmSciTech 2019; 21(1): 6.
[http://dx.doi.org/10.1208/s12249-019-1521-x] [PMID: 31754916]
[58]
Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm 2020; 575118883
[http://dx.doi.org/10.1016/j.ijpharm.2019.118883] [PMID: 31811925]
[59]
Awad A, Yao A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. 3D printed tablets (Printlets) with braille and moon patterns for visually impaired patients. Pharmaceutics 2020; 12(2): 1-14.
[http://dx.doi.org/10.3390/pharmaceutics12020172] [PMID: 32092945]
[60]
Jamróz W, Kurek M, Szafraniec-Szczęsny J, et al. Speed it up, slow it down…An issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci 2020; 143105169
[http://dx.doi.org/10.1016/j.ejps.2019.105169] [PMID: 31785383]
[61]
Ajdary R, Ezazi NZ, Correia A, et al. Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarction. Adv Funct Mater 2020; 30(34): 1-10.
[http://dx.doi.org/10.1002/adfm.202003440]
[62]
Tan DK, Maniruzzaman M, Nokhodchi A. Development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing. Polymers (Basel) 2019; 12(1): 27.
[http://dx.doi.org/10.3390/polym12010027] [PMID: 31877755]
[63]
Lee J, Song C, Noh I, Song S, Rhee YS. Hot-melt 3d extrusion for the fabrication of customizable modified-release solid dosage forms. Pharmaceutics 2020; 12(8): 1-16.
[http://dx.doi.org/10.3390/pharmaceutics12080738] [PMID: 32764499]
[64]
Januskaite P, Xu X, Ranmal SR, et al. I spy with my little eye: A paediatric visual preferences survey of 3d printed tablets. Pharmaceutics 2020; 12(11): 1-16.
[http://dx.doi.org/10.3390/pharmaceutics12111100] [PMID: 33212847]
[65]
Tabriz GA, Nandi U, Hurt AP, et al. 3D printed bilayer tablet with dual controlled drug release for tuberculosis treatment. Int J Pharm 2021; 593120147
[http://dx.doi.org/10.1016/j.ijpharm.2020.120147] [PMID: 33278493]
[66]
Farmer Z-L, Utomo E, Domínguez-Robles J, et al. 3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties. Int J Pharm 2021; 593120145
[http://dx.doi.org/10.1016/j.ijpharm.2020.120145] [PMID: 33309830]
[67]
Liviana R, Costantino DG. 2021.
[68]
Marilena S, Bowles BJ, Penny MR, et al. Development and analysis of a novel loading technique for FDM 3D printed systems: Microwave-assisted impregnation of gastro-retentive PVA capsular devices. Int J Pharm 2021; 613121386
[http://dx.doi.org/10.1016/j.ijpharm.2021.121386]
[69]
Chaudhari VS, Malakar TK, Murty US, Banerjee S. Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: Design to delivery. Expert Opin Drug Deliv 2021; 18(2): 301-13.
[http://dx.doi.org/10.1080/17425247.2021.1845648] [PMID: 33131339]
[70]
Algahtani MS, Mohammed AA, Ahmad J, Abdullah MM, Saleh E. 3D printing of dapagliflozin containing self-nanoemulsifying tablets: Formulation design and in vitro characterization. Pharmaceutics 2021; 13(7): 993.
[http://dx.doi.org/10.3390/pharmaceutics13070993] [PMID: 34209066]
[71]
Parab ND, Barnes JE, Zhao C, et al. Real time observation of binder jetting printing process using high-speed X-ray imaging. Sci Rep 2019; 9(1): 2499.
[http://dx.doi.org/10.1038/s41598-019-38862-7] [PMID: 30792454]
[72]
Gibson I, Rosen D, Stucker B. Directed energy deposition processes.Additive manufacturing technologies. 2nd ed. Newyork: Springer 2015; pp. 245-68.
[http://dx.doi.org/10.1007/978-1-4939-2113-3_10]
[73]
Chaunier L, Guessasma S, Belhabib S, Della VG, Lourdin D, Leroy E. Material extrusion of plant biopolymers: Opportunities & challenges for 3D printing. Addit Manuf 2018; 21: 220-33.
[http://dx.doi.org/10.1016/j.addma.2018.03.016]
[74]
Zhang F, Saleh E, Vaithilingam J, et al. Reactive material jetting of polyimide insulators for complex circuit board design. Addit Manuf 2019; 25: 477-84.
[http://dx.doi.org/10.1016/j.addma.2018.11.017]
[75]
Sireesha M, Lee J, Kiran ASK, et al. A review on additive manufacturing and its way into the oil and gas industry. RSC Advances 2018; 8(40): 22460-8.
[http://dx.doi.org/10.1039/C8RA03194K]
[76]
Davoudinejad A, Diaz-Perez LC, Quagliotti D, et al. Additive manufacturing with vat polymerization method for precision polymer micro components production. Procedia CIRP 2018; 75: 98-102.
[http://dx.doi.org/10.1016/j.procir.2018.04.049]
[77]
Kunchala P, Kappagantula K. 3D printing high density ceramics using binder jetting with nanoparticle densifiers. Mater Des 2018; 155: 443-50.
[http://dx.doi.org/10.1016/j.matdes.2018.06.009]
[78]
Pinargote NWS, Smirnov A, Peretyagin N, Seleznev A, Peretyagin P. Direct ink writing technology (3d printing) of graphene‐based ceramic nanocomposites: A review. Nanomaterials (Basel) 2020; 10(7): 1-48.
[http://dx.doi.org/10.3390/nano10071300] [PMID: 32630782]
[79]
Zhang M, Vora A, Han W, et al. Dual-responsive hydrogels for direct-write 3D printing. Macromolecules 2015; 48(18): 6482-8.
[http://dx.doi.org/10.1021/acs.macromol.5b01550]
[80]
Long J, Gholizadeh H, Lu J, Bunt C, Seyfoddin A. Application of Fused Deposition Modelling (FDM) method of 3D printing in drug delivery. Curr Pharm Des 2017; 23(3): 433-9.
[http://dx.doi.org/10.2174/1381612822666161026162707] [PMID: 27784251]
[81]
Guo Y, Patanwala HS, Bognet B. Inkjet and inkjet-based 3D printing: Connecting fluid properties and printing performance. Rapid Prototyping J 2017; 23: 562-76.
[82]
Shah J, Snider B, Clarke T, Kozutsky S, Lacki M, Hosseini A. Large-scale 3D printers for additive manufacturing: Design considerations and challenges. Int J Adv Manuf Technol 2019; 104(9): 3679-93.
[http://dx.doi.org/10.1007/s00170-019-04074-6]
[83]
Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S. 3D‐printing of functional biomedical microdevices via light‐and extrusion‐based approaches. Small Methods 2018; 2(2)1700277
[http://dx.doi.org/10.1002/smtd.201700277] [PMID: 30090851]
[84]
Kara LB, D’Eramo CM, Shimada K, Eds. Pen-based styling design of 3D geometry using concept sketches and template models. Proceedings of the 2006 ACM symposium on Solid and physical modeling. 149-60.
[85]
Sun S, Brandt M, Easton M. 2017.
[86]
Dobrzański LA, Dobrzańska-Danikiewicz AD, Achtelik-Franczak A, et al. Porous selective laser melted Ti and Ti6Al4V materials for medical applications.Powder Metallurgy - Fundamentals and case studies. London: IntechOpen 2017; pp. 161-81.
[http://dx.doi.org/10.5772/65375]
[87]
Wei C, Gu H, Sun Z, et al. Ultrasonic material dispensing-based selective laser melting for 3D printing of metallic components and the effect of powder compression. Addit Manuf 2019; 29100818
[http://dx.doi.org/10.1016/j.addma.2019.100818]
[88]
Manapat JZ, Chen Q, Ye P, Advincula RC. 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng 2017; 302(9)1600553
[http://dx.doi.org/10.1002/mame.201600553]
[89]
Bhatt PM, Kabir AM, Peralta M, Bruck HA, Gupta SK. A robotic cell for performing sheet lamination-based additive manufacturing. Addit Manuf 2019; 27: 278-89.
[http://dx.doi.org/10.1016/j.addma.2019.02.002]
[90]
Miedzinski M. Materials for additive manufacturing by direct energy deposition 2017.
[91]
Agarwal S, Saha S, Balla VK, et al. Current developments in 3D bioprinting for tissue and organ regeneration–A review. Front Mech Eng 2020; 6589171
[92]
Hoath SD. Fundamentals of inkjet printing: The science of inkjet and droplets. John Wiley & Sons 2016.
[http://dx.doi.org/10.1002/9783527684724]
[93]
Ian G, David R, Brent S. Additive Manufacturing Technologies. 3D Printing, rapid prototyping, and direct digital manufacturing.Additive Manufacturing Technologies New York. Springer 2015; pp. 1-510.
[94]
Jamróz W, Kurek M, Łyszczarz E, et al. 3D printed orodispersible films with Aripiprazole. Int J Pharm 2017; 533(2): 413-20.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.052] [PMID: 28552800]
[95]
Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci 2018; 107(4): 1076-85.
[http://dx.doi.org/10.1016/j.xphs.2017.11.019] [PMID: 29208374]
[96]
Wang J-C, Zheng H, Chang M-W, Ahmad Z, Li JS. Preparation of active 3D film patches via aligned fiber Electrohydrodynamic (EHD) printing. Sci Rep 2017; 7(1): 43924.
[http://dx.doi.org/10.1038/srep43924] [PMID: 28272513]
[97]
Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm 2018; 539(1-2): 75-82.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.036] [PMID: 29366944]
[98]
Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 2014; 461(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.021] [PMID: 24280018]
[99]
Awad A, Fina F, Trenfield SJ, et al. 3D printed pellets (miniprintlets): A novel, multi-drug, controlled release platform technology. Pharmaceutics 2019; 11(4): 148.
[http://dx.doi.org/10.3390/pharmaceutics11040148] [PMID: 30934899]
[100]
Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 2015; 217: 308-14.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.028] [PMID: 26390808]
[101]
Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J Control Release 2017; 268: 40-8.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.003] [PMID: 28993169]
[102]
Long J, Nand AV, Ray S, et al. Development of customised 3D printed biodegradable projectile for administrating extended-release contraceptive to wildlife. Int J Pharm 2018; 548(1): 349-56.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.002] [PMID: 29991453]
[103]
Jaboori AHJ, Oyewumi OM. 3D printing technology in pharmaceutical drug delivery: Prospects and challenges. J Biomol Res Ther 2015; 4: 4.
[104]
Parulski C, Jennotte O, Lechanteur A, Evrard B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: Where are we now? Adv Drug Deliv Rev 2021; 175113810
[http://dx.doi.org/10.1016/j.addr.2021.05.020] [PMID: 34029646]
[105]
Arafat B, Wojsz M, Isreb A, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci 2018; 118: 191-9.
[http://dx.doi.org/10.1016/j.ejps.2018.03.019] [PMID: 29559404]
[106]
Schulze M, Gosheger G, Bockholt S, et al. Complex bone tumors of the trunk—the role of 3d printing and navigation in tumor orthopedics: A case series and review of the literature. J Pers Med 2021; 11(6): 517.
[http://dx.doi.org/10.3390/jpm11060517] [PMID: 34200075]
[107]
Araújo MRP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. The digital pharmacies era: How 3D printing technology using fused deposition modeling can become a reality. Pharmaceutics 2019; 11(3): 128.
[http://dx.doi.org/10.3390/pharmaceutics11030128] [PMID: 30893842]
[108]
Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials–process perspective. Pharmaceutics 2020; 12(2): 124.
[http://dx.doi.org/10.3390/pharmaceutics12020124] [PMID: 32028732]
[109]
Taylor AA, Freeman EL, van der Ploeg MJC. Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing. Ecotoxicol Environ Saf 2021; 207111458
[http://dx.doi.org/10.1016/j.ecoenv.2020.111458] [PMID: 33254383]
[110]
Park JW, Kang HG. Application of 3-dimensional printing implants for bone tumors. Clin Exp Pediatr 2021.
[http://dx.doi.org/10.3345/cep.2021.01326]
[111]
Funk KA, Hampshire VA, Schuh JCL. Nonclinical safety evaluation of medical devices.Toxicologic Pathology. 2nd ed. CRC Press 2018; pp. 95-152.
[http://dx.doi.org/10.1201/9780429504624-4]
[112]
Andreassen SS, Dreessen MH, Eriksen Ø, Matin Y. Preparing to penetrate the Chinese control room market 2009.
[113]
Jin Z, He C, Fu J, Han Q, He Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf 2022; 5(3): 580-606.
[114]
Wang Y, Ahmed A, Azam A, et al. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing. J Manuf Process 2021; 60: 709-33.
[http://dx.doi.org/10.1016/j.jmsy.2021.07.023] [PMID: 35068653]
[115]
Kermavnar T, Shannon A, O’Sullivan KJ, et al. Three-dimensional printing of medical devices used directly to treat patients: A systematic review. 3D Print. Addit Manuf 2021; 8(6): 366-408.
[116]
Ernst D. Upgrading India’s electronics manufacturing industry: Regulatory reform and industrial policy: East-West Center 2014.SSRN [https://ssrn.com/abstract=2395030
[117]
Musto M. Another Marx: Early manuscripts to the International. London: Bloomsbury Publishing 2018.
[118]
Elbadawi M, McCoubrey LE, Gavins FKH, et al. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175113805
[http://dx.doi.org/10.1016/j.addr.2021.05.015] [PMID: 34019957]
[119]
Sekar MP, Budharaju H, Zennifer A, et al. Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. J Tissue Eng 2021; 1220417314211027677
[http://dx.doi.org/10.1177/20417314211027677] [PMID: 34377431]
[120]
Saini G, Budhwar V, Choudhary M. Review on people’s trust on home use medical devices during Covid-19 pandemic in India. Health Technol 2022; 12(2): 1-20.
[http://dx.doi.org/10.1007/s12553-022-00645-y] [PMID: 35223360]
[121]
Di Leo JR, Moraru C. The Bloomsbury Handbook of World Theory. USA: Bloomsbury Publishing 2021.
[122]
Clemitson S. A history of cycling in 100 objects. London: Bloomsbury Publishing 2017.
[123]
Zhu C, Li T, Mohideen MM, et al. Realization of circular economy of 3D printed plastics: A review. Polymers (Basel) 2021; 13(5): 744.
[http://dx.doi.org/10.3390/polym13050744] [PMID: 33673625]
[124]
Saleh AS, John S, Choudhury RN, Dutta NK. Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers (Basel) 2021; 13(5): 753.
[http://dx.doi.org/10.3390/polym13050753] [PMID: 33670934]
[125]
Parhi R, Jena GK. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Transl Res 2021.
[http://dx.doi.org/10.1007/s13346-021-01074-6] [PMID: 34613595]
[126]
Eleftheriadis GK, Kantarelis E, Monou PK, et al. Automated digital design for 3D-printed individualized therapies. Int J Pharm 2021; 599120437
[http://dx.doi.org/10.1016/j.ijpharm.2021.120437] [PMID: 33662466]
[127]
Orsi R, Boissy L, Yuma P, Palmer F, Torres-Molinar S. Child welfare in non‐metro and rural communities: Experiences of child‐serving professionals addressing substance use. Child Fam Soc Work 2021; 26(4): 696-707.
[http://dx.doi.org/10.1111/cfs.12850]
[128]
Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng 2020; 117(1): 272-84.
[http://dx.doi.org/10.1002/bit.27176] [PMID: 31544957]
[129]
Zheng X, Huang J, Lin J, et al. 3D bioprinting in orthopedics translational research. J Biomater Sci Polym Ed 2019; 30(13): 1172-87.
[http://dx.doi.org/10.1080/09205063.2019.1623989] [PMID: 31124402]
[130]
Correa-Baena JP, Hippalgaonkar K, van Duren J, et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2018; 2(8): 1410-20.
[http://dx.doi.org/10.1016/j.joule.2018.05.009]
[131]
Elbadawi M, McCoubrey LE, Gavins FKH, et al. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021; 42(9): 745-57.
[http://dx.doi.org/10.1016/j.tips.2021.06.002] [PMID: 34238624]
[132]
Harrer S, Shah P, Antony B, Hu J, et al. J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci 2019; 40(8): 577-91.
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy