Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Iodine(III)-Mediate Oxidative Cyanation, Azidation, Nitration, Sulfenylation and Slenization in Olefins and Aromatic Systems

Author(s): Luis A. Segura-Quezada, Karina R. Torres-Carbajal, Kevin A. Juárez-Ornelas, Pedro Navarro-Santos, Angélica J. Granados-López, Gerardo González-García, Rafael Ortiz-Alvarado*, Claudia de León-Solis* and César R. Solorio-Alvarado*

Volume 26, Issue 21, 2022

Published on: 19 September, 2022

Page: [1954 - 1968] Pages: 15

DOI: 10.2174/1385272826666220621142211

Price: $65

Abstract

Iodine(III) reagents represent nowadays a class of highly relevant oxidants in organic synthesis which possess important properties such as safer, non-toxic, green and easy to handle compounds. These characteristics, in several cases, make them important alternatives to the procedures which use hazardous and strong reaction conditions. Based upon their ability as oxidants, they have been exploited in the functionalization of the different aromatic nuclei, allowing the introduction of several groups: among them, inorganic functionalities. Herein, the most relevant developed protocols for functionalizing a broad amount of aryls, heteroaryls and olefins are summarized by introducing the inorganic groups cyano, azido, nitro, sulfur and selenium, using different iodine(III) reagents.

Keywords: Oxidative aromatic functionalization, iodine(III) based reagents, cyanation, azidation, nitration, sulfenilation, selenization

Graphical Abstract

[1]
Willgerodt, C. Ueber einige aromatische jodidchloride. J. Prakt. Chem., 1885, 33, 154-160.
[http://dx.doi.org/10.1002/prac.18860330117]
[2]
Neu, R. Zur kenntnis der aryljodidchloride (I. mitteil.). Ber. Dtsch. Chem. Ges., 1939, 72, 1505-1512.
[http://dx.doi.org/10.1002/cber.19390720806]
[3]
Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9052-9070.
[http://dx.doi.org/10.1002/anie.200904689] [PMID: 19876992]
[4]
Aliyarova, I.S.; Ivanov, D.M.; Soldatova, N.S.; Novikov, A.S.; Postnikov, P.S.; Yusubov, M.S.; Kukushkin, V.Y. Bifurcated halogen bonding involving diaryliodonium cations as iodine(III)-based double-σ-hole donors. Cryst. Growth Des., 2021, 21, 1136-1147.
[http://dx.doi.org/10.1021/acs.cgd.0c01463]
[5]
Soldatova, N.S.; Yusuvob, M.S.; Postnikov, P.S.; Kukushkin, V.Y.; Suslonov, V.V.; Kissler, T.Y.; Ivanov, D.M.; Novikov, A.S. Halogen bonding provides heterooctameric supramolecular aggregation of diaryliodonium thiocyanate. Crystals (Basel), 2020, 10, 230.
[http://dx.doi.org/10.3390/cryst10030230]
[6]
Satkar, Y.; Wrobel, K.; Trujillo-González, D.E.; Ortiz-Alvarado, R.; Jiménez-Halla, J.O.C.; Solorio-Alvarado, C.R. The diaryliodonium(III) salts reaction with free-radicals enables one-pot double arylation of naphthols. Front Chem., 2020, 8, 563470.
[http://dx.doi.org/10.3389/fchem.2020.563470] [PMID: 33195052]
[7]
Nahide, P.D.; Solorio-Alvarado, C.R. Mild, rapid and efficient metal-free synthesis of 2-aryl-4-aryloxyquinolines via direct csp2-o bond formation by using diaryliodonium salts. Tetrahedron Lett., 2017, 58, 279-284.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.093]
[8]
Yahuaca-Juárez, B.; González, G.; Ramírez-Morales, M.A.; Alba-Betancourt, C.; Deveze-Álvarez, M.A.; Mendoza-Macías, C.L.; Ortiz-Alvarado, R.; Juárez-Ornelas, K.A.; Solorio-Alvarado, C.R.; Maruoka, K. Iodine(III)-catalyzed benzylic oxidation by using the (PhIO)n/Al(NO3)3 system. Synth. Commun., 2020, 50, 539-548.
[http://dx.doi.org/10.1080/00397911.2019.1707225]
[9]
Nahide, P.D.; Ramadoss, V.; Juárez-Ornelas, K.A.; Satkar, Y.; Ortiz-Alvarado, R.; Cervera-Villanueva, J.M.J.; Alonso-Castro, Á.J.; Zapata-Morales, J.R.; Ramírez-Morales, M.A.; Ruiz-Padilla, A.J.; Deveze-Álvarez, M.A.; Solorio-Alvarado, C.R. In situ formed IIII-based reagent for the electrophilicortho-chlorination of phenols and phenol ethers: The use of PIFA-AlCl3 system. Eur. J. Org. Chem., 2018, 2018, 485-493.
[http://dx.doi.org/10.1002/ejoc.201701399]
[10]
Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C.R. Iodine(III)/AlX3-mediated electrophilic chlorination and bromination of arenes. Dual role of AlX3 (X = Cl, Br) for (PhIO)n depolymerization and as the halogen source. Tetrahedron Lett., 2019, 60, 1551-1555.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.019]
[11]
Satkar, Y.; Ramadoss, V.; Nahide, P.D.; García-Medina, E.; Juárez-Ornelas, K.A.; Alonso-Castro, A.J.; Chávez-Rivera, R.; Jiménez-Halla, J.O.C.; Solorio-Alvarado, C.R. Practical, mild and efficient electrophilic bromination of phenols by a new I(iii)-based reagent: The PIDA-AlBr3 system. RSC Advances, 2018, 8(32), 17806-17812.
[http://dx.doi.org/10.1039/C8RA02982B] [PMID: 35542081]
[12]
Satkar, Y.; Yera-Ledesma, L.F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L.A.; Ramírez-Morales, P.I.; Solorio-Alvarado, C.R. Iodine(III)-mediated, controlled di- or monoiodination of phenols. J. Org. Chem., 2019, 84(7), 4149-4164.
[http://dx.doi.org/10.1021/acs.joc.9b00161] [PMID: 30888169]
[13]
Ramadoss, V.; Nahide, P.D.; Juárez-Ornelas, K.A.; Rentería-Gómez, M.; Ortiz-Alvarado, R.; Solorio-Alvarado, C.R. A four-step scalable formal synthesis of ningalin C. ARKIVOC, 2016, 2016, 385-394.
[http://dx.doi.org/10.3998/ark.5550190.p009.631]
[14]
Ramadoss, V.; Alonso-Castro, A.J.; Campos-Xolalpa, N.; Solorio-Alvarado, C.R. Protecting-group-free total synthesis and biological evaluation of 3-methylkealiiquinone and structural analogues. J. Org. Chem., 2018, 83(17), 10627-10635.
[http://dx.doi.org/10.1021/acs.joc.8b01436] [PMID: 30091606]
[15]
Ramadoss, V.; Alonso-Castro, A.J.; Campos-Xolalpa, N.; Ortiz-Alvarado, R.; Yahuaca-Juárez, B.; Solorio-Alvarado, C.R. Total synthesis of kealiiquinone: The regio-controlled strategy for accessing its 1-methyl-4-arylbenzimidazolone core. RSC Adv., 2018, 8, 30761-30776.
[http://dx.doi.org/10.1039/C8RA06676K]
[16]
Solorio-Alvarado, C.R.; Ramadoss, V.; Gámez-Montaño, R.; Zapata-Morales, J.R.; Alonso-Castro, A.J. Total synthesis of the linear and angular 3-methylated regioisomers of the marine natural product kealiiquinone and biological evaluation of related Leucetta sp. alkaloids on human breast cancer. Med. Chem. Res., 2019, 28, 473-484.
[http://dx.doi.org/10.1007/s00044-019-02290-z]
[17]
Gutierrez-Cano, J.R.; Nahide, P.D.; Ramadoss, V.; Satkar, Y.; Ortiz-Alvarado, R.; Alba-Betancourt, C.; Mendoza-Macías, C.L.; Solorio-Alvarado, C.R. Synthesis and biological evaluation of new 3,4-diarylmaleimides as enhancers (modulators) of doxorubicin cytotoxic activity on cultured tumor cells from a real case of breast cancer. J. Mex. Chem. Soc., 2017, 61, 41-49.
[http://dx.doi.org/10.29356/jmcs.v61i1.126]
[18]
Yunusova, S.N.; Novikov, A.S.; Soldatova, N.S.; Vovk, M.A.; Bolotin, D.S. Iodonium salts as efficient iodine(iii)-based noncovalent organocatalysts for Knorr-type reactions. RSC Advances, 2021, 11(8), 4574-4583.
[http://dx.doi.org/10.1039/D0RA09640G] [PMID: 35424399]
[19]
Il’in, M.V.; Sysoeva, A.A.; Novikov, A.S.; Bolotin, D.S. Diaryliodoniums as hybrid hydrogen- and halogen-bond-donating organocatalysts for the groebke-blackburn-bienaymé reaction. J. Org. Chem., 2022, 87(7), 4569-4579.
[http://dx.doi.org/10.1021/acs.joc.1c02885] [PMID: 35176856]
[20]
Nahide, P.D.; Jiménez-Halla, J.O.C.; Wrobel, K.; Solorio-Alvarado, C.R.; Ortiz Alvarado, R.; Yahuaca-Juárez, B. Gold(I)-catalysed high-yielding synthesis of indenes by direct Csp3-H bond activation. Org. Biomol. Chem., 2018, 16(40), 7330-7335.
[http://dx.doi.org/10.1039/C8OB02056F] [PMID: 30259052]
[21]
Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Satkar, Y.; Juárez Ornelas, K.A.; Mali, N.; Patil, D.B.; Gámez-Montaño, R.; Zapata-Morales, J.R.; Lagunas-Rivera, S.; Ortíz-Alvarado, R.; Solorio-Alvarado, C.R. Oxidative halogenation of arenes, olefins and alkynes mediated by iodine(III) reagents. Mini Rev. Org. Chem., 2021, 18, 159-172.
[http://dx.doi.org/10.2174/1570193X17999200504095803]
[22]
Fleming, F.F.; Yao, L.; Ravikumar, P.C.; Funk, L.; Shook, B.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore. J. Med. Chem., 2010, 53(22), 7902-7917.
[http://dx.doi.org/10.1021/jm100762r] [PMID: 20804202]
[23]
Donald, J.R.; Berrell, S.L. Radical cyanomethylation via vinyl azide cascade-fragmentation. Chem. Sci. (Camb.), 2019, 10(22), 5832-5836.
[http://dx.doi.org/10.1039/C9SC01370A] [PMID: 31293772]
[24]
Dohi, T.; Morimoto, K.; Kiyono, Y.; Tohma, H.; Kita, Y. Novel and direct oxidative cyanation reactions of heteroaromatic compounds mediated by a hypervalent iodine(III) reagent. Org. Lett., 2005, 7(4), 537-540.
[http://dx.doi.org/10.1021/ol0476826] [PMID: 15704888]
[25]
Dohi, T.; Morimoto, K.; Takenaga, N.; Goto, A.; Maruyama, A.; Kiyono, Y.; Tohma, H.; Kita, Y. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer. J. Org. Chem., 2007, 72(1), 109-116.
[http://dx.doi.org/10.1021/jo061820i] [PMID: 17194088]
[26]
Dohi, T.; Morimoto, K.; Takenaga, N.; Maruyama, A.; Kita, Y. A facile and clean direct cyanation of heteroaromatic compounds using a recyclable hypervalent iodine(III) reagent. Chem. Pharm. Bull. (Tokyo), 2006, 54(11), 1608-1610.
[http://dx.doi.org/10.1248/cpb.54.1608] [PMID: 17077564]
[27]
Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Hypervalent iodine(III): Selective and efficient single-electron-transfer (SET) oxidizing agent. Tetrahedron, 2009, 65, 10797-10815.
[http://dx.doi.org/10.1016/j.tet.2009.10.040]
[28]
Mukherjee, C.; Zhu, D.; Biehl, E.R.; Hua, L. Exploring the synthetic applicability of a cyanobacterium nitrilase as catalyst for nitrile hydrolysis. Eur. J. Org. Chem., 2006, 2006, 5238-5242.
[http://dx.doi.org/10.1002/ejoc.200600699]
[29]
The Khai, B.; Arcelli, A. RuCl2(PPh3)3/HCOOH/Et3N as a new hydrogen source. Selective reduction of aromatic nitro compounds catalysed by pd on carbon. J. Organomet. Chem., 1986, 309, C63-C66.
[http://dx.doi.org/10.1016/S0022-328X(00)99646-3]
[30]
Mouselmani, R.; Hachem, A.; Alaaeddine, A.; Métay, E.; Lemaire, M. Reduction of aromatic nitriles into aldehydes using calcium hypophosphite and a nickel precursor. Org. Biomol. Chem., 2018, 16(35), 6600-6605.
[http://dx.doi.org/10.1039/C8OB01751D] [PMID: 30175348]
[31]
Noè, M.; Perosa, A.; Selva, M. A flexible pinner preparation of orthoesters: The model case of trimethylorthobenzoate. Green Chem., 2013, 15, 2252.
[http://dx.doi.org/10.1039/c3gc40774h]
[32]
Wang, K.; Jiang, P.; Yang, M.; Ma, P.; Qin, J.; Huang, X.; Ma, L.; Li, R. Metal-free nitrogen -doped carbon nanosheets: A catalyst for the direct synthesis of imines under mild conditions. Green Chem., 2019, 21, 2448-2461.
[http://dx.doi.org/10.1039/C9GC00908F]
[33]
Xu, F.; Li, Y.; Huang, X.; Fang, X.; Li, Z.; Jiang, H.; Qiao, J.; Chu, W.; Sun, Z. Hypervalent iodine(III)‐mediated regioselective cyanation of quinoline N‐oxides with trimethylsilyl cyanide. Adv. Synth. Catal., 2018, 361, 520-525.
[http://dx.doi.org/10.1002/adsc.201801185]
[34]
Lenstra, D.C.; Wolf, J.J.; Mecinović, J. Catalytic staudinger reduction at room temperature. J. Org. Chem., 2019, 84(10), 6536-6545.
[http://dx.doi.org/10.1021/acs.joc.9b00831] [PMID: 31050295]
[35]
Qin, H-L.; Zheng, Q.; Bare, G.A.L.; Wu, P.; Sharpless, K.B. A heck-matsuda process for the synthesis of β-arylethenesulfonyl fluorides: Selectively addressable bis-electrophiles for sufex click chemistry. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 14155-14158.
[http://dx.doi.org/10.1002/anie.201608807] [PMID: 27723200]
[36]
Juríček, M.; Kouwer, P.H.J.; Rowan, A.E. Triazole: A unique building block for the construction of functional materials. Chem. Commun. (Camb.), 2011, 47(31), 8740-8749.
[http://dx.doi.org/10.1039/c1cc10685f] [PMID: 21556388]
[37]
Baraniak, D.; Boryski, J. Triazole-modified nucleic acids for the application in bioorganic and medicinal chemistry. Biomedicines, 2021, 9(6), 628.
[http://dx.doi.org/10.3390/biomedicines9060628] [PMID: 34073038]
[38]
Moriarty, R.M.; Khosrowshahi, J.S. A versatile synthesis of vicinal diazides using hypervalent iodine. Tetrahedron Lett., 1986, 27, 2809-2812.
[http://dx.doi.org/10.1016/S0040-4039(00)84648-1]
[39]
Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. A novel oxidative azidation of aromatic compounds with hypervalent iodine reagent, phenyliodine(III) bis(trifluoroacetate) (PIFA) and trimethylsilyl azide. Tetrahedron Lett., 1991, 32, 4321-4324.
[http://dx.doi.org/10.1016/S0040-4039(00)92160-9]
[40]
Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. Hypervalent iodine-induced nucleophilic substitution of para-substituted phe-nol ethers. Generation of cation radicals as reactive intermediates. J. Am. Chem. Soc., 1994, 116, 3684-3691.
[http://dx.doi.org/10.1021/ja00088a003]
[41]
Magnus, P.; Lacour, J.; Evans, P.A.; Roe, M.B.; Hulme, C. Hypervalent iodine chemistry: New oxidation reactions using the iodosylbenzene−trimethylsilyl azide reagent combination. Direct α- and β-azido functionalization of triisopropylsilyl enol ethers. J. Am. Chem. Soc., 1996, 118, 3406-3418.
[http://dx.doi.org/10.1021/ja953906r]
[42]
Tohma, H. A novel and direct α-azidation of cyclic sulfides using a hypervalent iodine(III) reagent. Chem. Commun. (Camb.), 1998, 173-174.
[http://dx.doi.org/10.1039/a707727k]
[43]
Chen, D-J.; Chen, Z-C. Hypervalent iodine in synthesis. Part 54: One-step conversion of aryl aldehydes to aroyl azides using a combined reagent of (diacetoxyiodo)benzene with sodium azide. Tetrahedron Lett., 2000, 41, 7361-7363.
[http://dx.doi.org/10.1016/S0040-4039(00)00990-4]
[44]
Chung, R.; Yu, E.; Incarvito, C.D.; Austin, D.J. Hypervalent iodine-mediated vicinal syn diazidation: Application to the total synthesis of (+/-)-dibromophakellstatin. Org. Lett., 2004, 6(22), 3881-3884.
[http://dx.doi.org/10.1021/ol0490532] [PMID: 15496054]
[45]
Tsarevsky, N.V. Hypervalent iodine-mediated direct azidation of polystyrene and consecutive click-type functionalization. J. Polym. Sci., 2010, 48, 966-974.
[http://dx.doi.org/10.1002/pola.23854]
[46]
Li, P.; Zhao, J.; Xia, C.; Li, F. The development of carbene-stabilized N-O radical coupling strategy in metal-free regioselective C–H azidation of quinoline N-oxides. Org. Chem. Front., 2015, 2, 1313-1317.
[http://dx.doi.org/10.1039/C5QO00204D]
[47]
Wang, Y.; Fang, Z.; Chen, X.; Wang, Y. Dirhodium(II)-catalyzed C(sp2)-H azidation of benzaldehydes. Chemistry, 2020, 26(30), 6805-6811.
[http://dx.doi.org/10.1002/chem.201905855] [PMID: 32045045]
[48]
Kloeckner, U.; Nachtsheim, B.J. Mild hypervalent iodine mediated oxidative nitration of N-aryl sulfonamides. Chem. Commun. (Camb.), 2014, 50(72), 10485-10487.
[http://dx.doi.org/10.1039/C4CC04738A] [PMID: 25068377]
[49]
Reitti, M.; Villo, P.; Olofsson, B. One-pot C-H functionalization of arenes by diaryliodonium salts. Angew. Chem. Int. Ed. Engl., 2016, 55(31), 8928-8932.
[http://dx.doi.org/10.1002/anie.201603175] [PMID: 27272891]
[50]
An, D.; Song, W.; Peng, Z.; Zhang, Y.; Dong, W. Transition‐metal‐free hypervalent iodine(III) reagent‐promoted site‐selective solid‐phase synthesis of mononitroarylamines. ChemistrySelect, 2018, 3, 12946-12950.
[http://dx.doi.org/10.1002/slct.201801783]
[51]
Tian, C.; Yao, X.; Ji, W.; Wang, Q.; An, G.; Li, G. A para-C-H functionalization of aniline derivatives via in situ generated bulky hypervalent iodinium reagents. Eur. J. Org. Chem., 2018, 5972-5979. An isolated example of anilide nitration using PIFA/NaNO2 was described:
[http://dx.doi.org/10.1002/ejoc.201801058]
[52]
Juárez-Ornelas, K.A.; Jiménez-Halla, J.O.C.; Kato, T.; Solorio-Alvarado, C.R.; Maruoka, K. Iodine(III)-catalyzed electrophilic nitration of phenols via non-brønsted acidic NO2+ generation. Org. Lett., 2019, 21(5), 1315-1319.
[http://dx.doi.org/10.1021/acs.orglett.8b04141] [PMID: 30746948]
[53]
Saha, M.; Das, A.R. Hypervalent iodine promoted ortho diversification: 2-aryl benzimidazole, quinazoline and imidazopyridine as directing templates. Org. Biomol. Chem., 2020, 18(5), 941-955.
[http://dx.doi.org/10.1039/C9OB02533B] [PMID: 31922163]
[54]
Xiao, M-M.; Ren, H.; Liu, T-Z.; Li, Z-Y.; Wang, J-Z.; Miao, J-Y.; Zhao, BX. Two fluorescent turn-on probes for detecting thiophenols in environmental water and in living cell imaging. Microchem. J., 2022, 175, 107220.
[http://dx.doi.org/10.1016/j.microc.2022.107220]
[55]
Rivero-Crespo, M.A.; Toupalas, G.; Morandi, B. Preparation of recyclable and versatile porous poly(aryl thioether)s by reversible pd-catalyzed C-S/C-S metathesis. J. Am. Chem. Soc., 2021, 143(50), 21331-21339.
[http://dx.doi.org/10.1021/jacs.1c09884] [PMID: 34871503]
[56]
Kita, Y.; Takada, T.; Mihara, S.; Tohma, H. A novel and direct sulfenylation of phenol ethers using phenyl iodine(III) bis(trifluoroacetate) (PIFA) and various thiophenols. Synlett, 1995, 1995, 211-212.
[http://dx.doi.org/10.1055/s-1995-4907]
[57]
Kita, Y.; Takada, T.; Mihara, S.; Whelan, B.A.; Tohma, H. Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent. J. Org. Chem., 1995, 60, 7144-7148.
[http://dx.doi.org/10.1021/jo00127a018]
[58]
Kita, Y.; Egi, M.; Ohtsubo, M.; Saiki, T.; Takada, T.; Tohma, H. Novel and efficient synthesis of sulfur-containing heterocycles using a hypervalent iodine(III) reagent. Chem. Commun. (Camb.), 1996, 2225-2226.
[http://dx.doi.org/10.1039/cc9960002225]
[59]
Hamdouchi, C. Chemoselective arylsulfenylation of 2-aminoimidazol[1,2-a]pyridines by phenyliodine(III) bis(trifluoroacetate) (PIFA). Synthesis, 1998, 1998, 867-872.
[http://dx.doi.org/10.1055/s-1998-2078]
[60]
Feng, Q.; Chen, D.; Hong, M.; Wang, F.; Huang, S. Phenyliodine(III) bis(trifluoroacetate) (PIFA)-mediated synthesis of aryl sulfides in water. J. Org. Chem., 2018, 83(14), 7553-7558.
[http://dx.doi.org/10.1021/acs.joc.8b00435] [PMID: 29664643]
[61]
Choudhuri, K.; Maiti, S.; Mal, P. Iodine(III) enabled dehydrogenative aryl C−S coupling by in situ generated sulfenium ion. Adv. Synth. Catal., 2019, 361, 1092-1101.
[http://dx.doi.org/10.1002/adsc.201801510]
[62]
Liu, Z-D.; Zeng, H.; Chen, Z-C. Hypervalent iodine in synthesis XV: A convenient new method for the preparation of unsymmetrical diaryl selenides. Synth. Commun., 1994, 24, 475-479.
[http://dx.doi.org/10.1080/00397919408011497]
[63]
Yan, J.; Chen, Z-C. Hypervalent iodine in synthesis 44: Stereoselective synthesis of vinylic selenides by the reaction of sodium selenolates with vinyl (phenyl) iodonium salts. Synth. Commun., 2000, 30, 1009-1015.
[http://dx.doi.org/10.1080/00397910008087118]
[64]
Wang, L.; Chen, Z-C.; Zheng, Q-G. Hypervalent iodine in synthesis 64: Syntheses of diaryl selenides and alkyl aryl selenides by palladium-catalyzed arylation of areneselenyl or alkaneselenyl magnesium bromide with diaryliodonium salt. Chin. J. Chem., 2010, 20, 1457-1459.
[http://dx.doi.org/10.1002/cjoc.20020201152]
[65]
Kumar, R.K.; Manna, S.; Mahesh, D.; Sar, D.; Punniyamurthy, T. Oxidative aromatic C-H functionalization promoted by phenyliodine(III) diacetate to form C-N, C-S, and C-Se bonds. Asian J. Org. Chem., 2013, 2, 843-847.
[http://dx.doi.org/10.1002/ajoc.201300151]
[66]
Song, Z.; Ding, C.; Wang, S.; Dai, Q.; Sheng, Y.; Zheng, Z.; Liang, G. Metal-free regioselective C-H chalcogenylation of coumarins/(hetero)arenes at ambient temperature. Chem. Commun. (Camb.), 2020, 56(12), 1847-1850.
[http://dx.doi.org/10.1039/C9CC09001K] [PMID: 31950956]
[67]
Dai, P.; Yu, X.; Teng, P.; Zhang, W-H.; Deng, C. Visible-light- and oxygenpromoted direct Csp2-H radical difluoromethylation of coumarins and antifungal activities. Org. Lett., 2018, 20(21), 6901-6905.
[http://dx.doi.org/10.1021/acs.orglett.8b02965] [PMID: 30354155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy