Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthesis of Graphene-Based Nanomaterials for Medicinal Applications: A Mini- Review

Author(s): Shobhana Sharma and Anupama Singh*

Volume 26, Issue 11, 2022

Published on: 19 August, 2022

Page: [1112 - 1118] Pages: 7

DOI: 10.2174/1385272826666220621141128

Price: $65

Abstract

“Graphene oxide” is obtained by the reaction of two-dimensional graphene sheets with oxygen-containing oxidants, like atomic oxygen (O), hydroxyl (OH) and carboxyl (COOH). Graphene oxide-based nanomaterials are an interesting topic in research due to the presence of distinctive physicochemical properties in them. Biocompatibility is an important factor for applications in tissue engineering. The catalytic activity of carbon-based catalysts has been deeply affected by their surface chemistry. The presence of oxygen functionality at the graphene oxide surface provides reactive sites for chemical alteration. Graphene oxide (GO), is currently being used in biotechnology and medicine for the treatment of cancer, drug delivery, and also for cellular imaging and as anti-viral agents, etc. Also, GO is characterized by various physicochemical properties, like nanoscale size, high surface area, and electrical charge. Recent studies suggest that several factors affect the biocompatibility of carbon-based nanomaterials.

Keywords: Graphene, nanomaterial, graphene oxide, biocompatible, tissue engineering, surface chemistry, carbon-based catalysts, reactive sites.

« Previous
Graphical Abstract

[1]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol., 2019, 9, 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[2]
Marsh, H.; Rodríguez-Reinoso, F. Activated carbon; Elsevier, 2006, pp. 13-86.
[http://dx.doi.org/10.1016/B978-008044463-5/50016-9]
[3]
Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: A review. J. Adv. Res., 2019, 18, 185-201.
[http://dx.doi.org/10.1016/j.jare.2019.03.011] [PMID: 31032119]
[4]
Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater., 2018, 19(1), 613-648.
[http://dx.doi.org/10.1080/14686996.2018.1494493] [PMID: 30181789]
[5]
Smith, A.T.; Chance, A.M.L.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci., 2019, 1(1), 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[6]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol., 2009, 11-19.
[http://dx.doi.org/10.1142/9789814287005_0002]
[7]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[8]
Dideikin, A.T.; Vul, A.Y. Graphene oxide and derivatives: the place in graphene family. Front. Phys., 2019, 6, 149.
[http://dx.doi.org/10.3389/fphy.2018.00149]
[9]
Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: status and prospect. J. Sci.: Adv. Mater. and Devices, 2020, 5(1), 10-29.
[10]
Gonçalves, G.; Vila, M.; Portolés, M.T.; Vallet-Regi, M.; Gracio, J.; Marques, P.A.; Marques, A.P. Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv. Healthc. Mater., 2013, 2(8), 1072-1090.
[http://dx.doi.org/10.1002/adhm.201300023] [PMID: 23526812]
[11]
Jain, V.P.; Chaudhary, S.; Sharma, D.; Dabas, N.; Lalji, R.S.K.; Singh, B.K.; Jaiswar, G. Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur. Polym. J., 2021, 142, 110124.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110124]
[12]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[13]
Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2011, 6(1), 8.
[http://dx.doi.org/10.1007/s11671-010-9751-6] [PMID: 27502632]
[14]
Wu, S.; Zhao, X.; Cui, Z.; Zhao, C.; Wang, Y.; Du, L.; Li, Y. Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. Int. J. Nanomed., 2014, 9, 1413-1421.
[PMID: 24672235]
[15]
Das, S.; Mitra, S.; Khurana, S.M.P.; Debnath, N. Nanomaterials for biomedical applications. Front. Life Sci., 2013, 7(3-4), 90-98.
[http://dx.doi.org/10.1080/21553769.2013.869510]
[16]
Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for cancer therapy and imaging. Mol. Cells, 2011, 31(4), 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5] [PMID: 21360197]
[17]
Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed., 2018, 13, 5637-5655.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
[18]
Simon, J.; Flahaut, E.; Golzio, M. Overview of carbon nanotubes for biomedical applications. Mater., 2019, 12(4), 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[19]
Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol., 2019, 16(1), 18.
[http://dx.doi.org/10.1186/s12989-019-0299-z] [PMID: 30975174]
[20]
Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: evaluation of toxicity at biointerfaces. J. Pharm. Anal., 2019, 9(5), 293-300.
[http://dx.doi.org/10.1016/j.jpha.2019.04.003] [PMID: 31929938]
[21]
Dasari Shareena, T.P.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett., 2018, 10(3), 53.
[http://dx.doi.org/10.1007/s40820-018-0206-4] [PMID: 30079344]
[22]
Tahereh, S.; Kamali, A.R. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. Med. in Drug Discovery, 2021, 11, 10009923.
[23]
Seifi, T.; Kamali, A.R. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf. B Biointerfaces, 2021, 199, 111509.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111509] [PMID: 33340933]
[24]
Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102, 4477-4482.
[http://dx.doi.org/10.1021/jp9731821]
[25]
Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomed., 2016, 11, 1927-1945.
[http://dx.doi.org/10.2147/IJN.S105264] [PMID: 27226713]
[26]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[27]
Li, C.; Chen, X.; Shen, L.; Bao, N. Revisiting the oxidation of graphite: reaction mechanism, chemical stability, and structure self-regulation. ACS Omega, 2020, 5(7), 3397-3404.
[http://dx.doi.org/10.1021/acsomega.9b03633] [PMID: 32118154]
[28]
Brodie, B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond., 1859, 149, 249-259.
[http://dx.doi.org/10.1098/rstl.1859.0013]
[29]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges., 1898, 31(2), 1481-1487.
[http://dx.doi.org/10.1002/cber.18980310237]
[30]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[31]
Singh, R.K.; Kumar, R.; Sing, D.P. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv., 2016, 6, 64993.
[http://dx.doi.org/10.1039/C6RA07626B]
[32]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[33]
Dong, L.; Yang, J.; Chhowalla, M.; Loh, K.P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev., 2017, 46(23), 7306-7316.
[http://dx.doi.org/10.1039/C7CS00485K] [PMID: 29051935]
[34]
Timochenco, L.; Costa-Almeida, R.; Bogas, D.; Silva, F.A.L.S.; Silva, J.; Pereira, A.; Magalhães, F.D.; Pinto, A.M. High-yield production of nano-lateral size graphene oxide by high-power ultrasonication. Mater. (Basel), 2021, 14(8), 1916.
[http://dx.doi.org/10.3390/ma14081916] [PMID: 33921291]
[35]
Lin, S.; Dong, L.; Zhang, J.; Lu, H. Room-temperature intercalation and ~1000-fold chemical expansion for scalable preparation of high-quality graphene. Chem. Mater., 2016, 28, 2138-2146.
[http://dx.doi.org/10.1021/acs.chemmater.5b05043]
[36]
Alam, S.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by modified hummers method and its thermal reduction to obtain reduced Graphene Oxide (rGO). Graphene, 2017, 6, 1-18.
[http://dx.doi.org/10.4236/graphene.2017.61001]
[37]
Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. Chem. Select, 2020, 5(33), 10200-10219.
[http://dx.doi.org/10.1002/slct.202002501]
[38]
Liu, W.; Speranza, G. Tuning the oxygen content of reduced graphene oxide and effects on its properties. ACS Omega, 2021, 6(9), 6195-6205.
[http://dx.doi.org/10.1021/acsomega.0c05578] [PMID: 33718710]
[39]
Kumar, P.V.; Bardhan, N.M.; Tongay, S.; Wu, J.; Belcher, A.M.; Grossman, J.C. Scalable enhancement of graphene oxide properties by thermally driven phase transfor-mation. Nat. Chem., 2014, 6(2), 151-158.
[http://dx.doi.org/10.1038/nchem.1820] [PMID: 24451592]
[40]
Wen, K.P.; Chen, Y.C.; Chuang, C.H.; Chang, H.Y.; Lee, C.Y.; Tai, N.H. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. J. Appl. Toxicol., 2015, 35(10), 1211-1218.
[http://dx.doi.org/10.1002/jat.3187] [PMID: 26099253]
[41]
Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomater., 2012, 33(32), 8017-8025.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.040] [PMID: 22863381]
[42]
Li, Y.; Wang, Y.; Tu, L.; Chen, D.; Luo, Z.; Liu, D.; Miao, Z.; Feng, G.; Qing, L.; Wang, S. Sub-acute toxicity study of graphene oxide in the sprague-dawley rat. Int. J. Environ. Res. Public Health, 2016, 13(11), E1149.
[http://dx.doi.org/10.3390/ijerph13111149] [PMID: 27869683]
[43]
Tran, T.T.T.; Le, H.N.T.; Van Tran, H.; Tran, L.T.; Vu, T.H.T. Tithonia diversifolia pectin-reduced graphene oxide and its cytotoxic activity. Mater. Lett., 2016, 183, 127-130.
[http://dx.doi.org/10.1016/j.matlet.2016.07.088]
[44]
Mari, E.; Mardente, S.; Morgante, E.; Tafani, M.; Lococo, E.; Fico, F.; Valentini, F.; Zicari, A. Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines. Int. J. Mol. Sci., 2016, 17(12), E1995.
[http://dx.doi.org/10.3390/ijms17121995] [PMID: 27916824]
[45]
Cho, Y.C.; Pak, P.J.; Joo, Y.H.; Lee, H.S.; Chung, N. In vitro and in vivo comparison of the immunotoxicity of single-and multi-layered graphene oxides with or without pluronic F-127. Sci. Rep., 2016, 6, 38884.
[http://dx.doi.org/10.1038/srep38884] [PMID: 27941848]
[46]
Syama, S.; Aby, C.P.; Maekawa, T.; Sakthikumar, D.; Mohanan, P.V. Nano-bio compatibility of PEGylated reduced graphene oxide on mesenchymal stem cells. IOP Sci., 2017, 4(2), 1.
[http://dx.doi.org/10.1088/2053-1583/aa65c2]
[47]
Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep., 2013, 3, 3469.
[http://dx.doi.org/10.1038/srep03469] [PMID: 24326739]
[48]
Jiao, J.; Yuan, C.; Wang, J.; Xia, Z.; Xie, L. The role of graphene oxide on tobacco root growth and its preliminary mechanism. J. Nanosci. Nanotechnol., 2016, 16, 12449-12454.
[http://dx.doi.org/10.1166/jnn.2016.12987]
[49]
Lai, P.X.; Chen, C.W.; Wei, S.C.; Lin, T.Y.; Jian, H.J.; Lai, I.P.; Mao, J.Y.; Hsu, P.H.; Lin, H.J.; Tzou, W.S.; Chen, S.Y.; Harroun, S.G.; Lai, J.Y.; Huang, C.C. Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application. Biomater., 2016, 109, 12-22.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.005] [PMID: 27639528]
[50]
Meng, N; Su, Y; Zhou, N; Zhang, M; Shao, M 2016, Carboxylated graphene oxide functionalized with beta-cyclodextrin-engineering of a novel nanohybrid drug carrier. Int. J. Biol. Macromol., 93(Pt A), 117-122.
[51]
Han, W.; Niu, W.Y.; Sun, B.; Shi, G.C.; Cui, X.Q. Biofabrication of polyphenols stabilized reduced graphene oxide and its anti-tuberculosis activity. J. Photo. Chem. Photobiol. B-Biol., 2016, 165, 305-309.
[52]
Massoumi, B.; Ghandomi, F.; Abbasian, M.; Eskandani, M.; Jaymand, M. Surface functionalization of graphene oxide with poly(2-hydroxyethyl methacrylate)-graft-poly(epsilon-caprolactone) and its electrospun nanofibers with gelatin. Appl. Phys., A Mater. Sci. Process., 2016, 122(12), 13.
[http://dx.doi.org/10.1007/s00339-016-0538-1]
[53]
Shi, L.; Wang, L.; Chen, J.; Chen, J.; Ren, L.; Shi, X. Modifying graphene oxide with short peptide via click chemistry for biomedical applications. Appl. Mater. Today, 2016, 5, 111-117.
[http://dx.doi.org/10.1016/j.apmt.2016.09.014]
[54]
Zhang, Y.; Zhou, H.; Zhang, Z.H.; Wu, X.L.; Chen, W.G.; Zhu, Y.; Fang, C.F.; Zhao, Y.G. Three-dimensional ionic liquid functionalized magnetic graphene oxide nano-composite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils. J. Chromatogr. A, 2017, 1489, 29-38.
[http://dx.doi.org/10.1016/j.chroma.2017.02.010] [PMID: 28193466]
[55]
Zhao, X.; Zou, X.; Ye, L. Controlled pH and glucose-responsive drug release behavior of cationic chitosan based nano-composite hydrogels by using graphene oxide as drug nanocarrier. J. Ind. Eng. Chem., 2017, 49, 36-45.
[http://dx.doi.org/10.1016/j.jiec.2016.12.023]
[56]
Zhang, W.; Sun, Y.; Lou, Z.; Song, L.; Wu, Y.; Gu, N.; Zhang, Y. In vitro cytotoxicity evaluation of graphene oxide from the peroxidase-like activity perspective. Colloids Surf. B Biointerfaces, 2017, 151, 215-223.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.025] [PMID: 28013165]
[57]
Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem., 2009, 1(5), 403-408.
[http://dx.doi.org/10.1038/nchem.281] [PMID: 21378895]
[58]
Zhang, Y-L.; Guo, L.; Xia, H.; Chen, Q-D. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater., 2014, 2(1), 10-28.
[http://dx.doi.org/10.1002/adom.201300317]
[59]
Behar, D.; Rajh, T.; Liu, Y.; Connell, J.; Stamenkovic, V.; Rabani, J. Unusual reduction of graphene oxide by titanium dioxide electrons produced by ionizing radiation: reaction products and mechanism. J. Phys. Chem. C, 2020, 124(9), 5425-5435.
[http://dx.doi.org/10.1021/acs.jpcc.9b11042]
[60]
Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon, 2012, 50(9), 3210-3228.
[http://dx.doi.org/10.1016/j.carbon.2011.11.010]
[61]
Ng, Y.H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light bivo4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett., 2010, 1(17), 2607-2612.
[http://dx.doi.org/10.1021/jz100978u]
[62]
Wang, H.; Robinson, J.T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc., 2009, 131(29), 9910-9911.
[http://dx.doi.org/10.1021/ja904251p] [PMID: 19580268]
[63]
Dubin, S.; Gilje, S.; Wang, K.; Tung, V.C.; Cha, K.; Hall, A.S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R.B. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 2010, 4(7), 3845-3852.
[http://dx.doi.org/10.1021/nn100511a] [PMID: 20586422]
[64]
Hernaez, M. Applications of graphene-based materials in sensors. Sens., 2020, 20(11), 3196.
[http://dx.doi.org/10.3390/s20113196] [PMID: 32512876]
[65]
Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev., 2012, 112(11), 6156-6214.
[http://dx.doi.org/10.1021/cr3000412] [PMID: 23009634]
[66]
Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv., 2020, 10(26), 15328-15345.
[http://dx.doi.org/10.1039/D0RA01068E] [PMID: 35495479]
[67]
Kravets, V.G.; Marshall, O.P.; Nair, R.R.; Thackray, B.; Zhukov, A.; Leng, J.; Grigorenko, A.N. Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels. Opt. Expr., 2015, 23(2), 1265-1275.
[http://dx.doi.org/10.1364/OE.23.001265] [PMID: 25835885]
[68]
Antidormi, A.; Roche, S.; Colombo, L. Impact of oxidation morphology on reduced graphene oxides upon thermal annealing. J. Phys. Mater., 2020, 3
[http://dx.doi.org/10.1088/2515-7639/ab5ef2]
[69]
Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomater., 2019, 9(8), 1180.
[http://dx.doi.org/10.3390/nano9081180] [PMID: 31426617]
[70]
Bocharov, G.S.; Eletskii, A.V. Percolation conduction of carbon nanocomposites. Int. J. Mol. Sci., 2020, 21(20), 7634.
[http://dx.doi.org/10.3390/ijms21207634] [PMID: 33076446]
[71]
Mohan, V.B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Characterization of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B, 2015, 193, 49-60.
[http://dx.doi.org/10.1016/j.mseb.2014.11.002]
[72]
Rao, S.; Upadhyay, J.; Polychronopoulou, K.; Umer, R.; Das, R. Reduced graphene oxide: effect of reduction on electrical conductivity. J. Compos. Sci., 2018, 2, 25.
[http://dx.doi.org/10.3390/jcs2020025]
[73]
Lomeda, J.R.; Doyle, C.D.; Kosynkin, D.V.; Hwang, W.F.; Tour, J.M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc., 2008, 130(48), 16201-16206.
[http://dx.doi.org/10.1021/ja806499w] [PMID: 18998637]
[74]
Xu, Y.; Wang, Y.; Liang, J.; Huang, Y.; Ma, Y.; Wan, X.; Chen, Y. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res., 2009, 2, 343-348.
[http://dx.doi.org/10.1007/s12274-009-9032-9]
[75]
Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 2009, 25(10), 5957-5968.
[http://dx.doi.org/10.1021/la804216z] [PMID: 19341286]
[76]
Rana, V.K.; Choi, M.C.; Kong, J.Y.; Kim, G.Y.; Kim, M.J.; Kim, S.H.; Mishra, S.; Singh, R.P.; Ha, C.S. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng., 2011, 296, 131-140.
[http://dx.doi.org/10.1002/mame.201000307]
[77]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[78]
Haag, D.R.; Kung, H.H. Metal free graphene based catalysts: a review. Top. Catal., 2014, 57, 762-773.
[http://dx.doi.org/10.1007/s11244-013-0233-9]
[79]
Mohs, R.C.; Greig, N.H. Drug discovery and development: role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[80]
Lahlou, M. The success of natural products in drug discovery. J. Pharm. Pharmacol., 2013, 4(3A), 33502.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[81]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16, 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[82]
Singh, R.P. Prospects of nanobiomaterials for biosensing. Int. J. Electrochem., 2011, 125487.
[http://dx.doi.org/10.4061/2011/125487]
[83]
Zakeri, M.; Abouzari-lotf, E.; Miyake, M.; Mehdipour-Ataei, S.; Shameli, K. Phosphoric acid functionalized graphene oxide: a highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles. Arab. J. Chem., 2019, 12, 188-197.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.006]
[84]
Subodh, ; Mogha, N.K.; Chaudhary, K.; Kumar, G.; Masram, D.T. Fur-imine-functionalized graphene oxide-immobilized copper oxide nanoparticle catalyst for the synthesis of xanthene derivatives. ACS Omega, 2018, 3(11), 16377-16385.
[http://dx.doi.org/10.1021/acsomega.8b01781] [PMID: 31458273]
[85]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[86]
Rakshanipour, M.; Es hghi, H.; Bakavoli, M. New functionalization of graphene oxide with N2O2 ligand for efficient loading of Cu nanostructures as a heterogeneous nanocatalyst for the synthesis of β‐hydroxy‐1,2,3‐triazoles. Appl. Organomet. Chem., 2020, 34, 5426.
[87]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[88]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 2010, 45(11), 5056-5063.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.014] [PMID: 20805011]
[89]
Rana, S.; Maddila, S.; Yalagala, K.; Maddila, S.; Jonnalagadda, S.B. Covalent modification of organo-functionalized graphene oxide and its scope as catalyst for one-pot pyrazolo-pyranopyrimidine derivatives. ChemistryOpen, 2015, 4(6), 703-707.
[http://dx.doi.org/10.1002/open.201500121] [PMID: 27308195]
[90]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med. Chem. Res., 2016, 25, 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[91]
Sharma, R.K.; Sharma, A.; Sharma, S.; Dutta, S.; Yadav, S.; Arora, B. Design and exploration of catalytic activity of two-dimensional surface-engineered graphene oxide nanosheets in the transannulation of N-heterocyclic aldehydes or ketones with alkylamines. ACS Omega, 2019, 4(2), 3146-3158.
[http://dx.doi.org/10.1021/acsomega.8b02902] [PMID: 31459532]
[92]
Senapak, W.; Saeeng, R.; Jaratjaroonphong, J.; Kasemsuk, T.; Sirion, U. Green synthesis of dipyrromethanes in aqueous media catalyzed by SO3H-functionalized ionic liquid. Org. Biomol. Chem., 2016, 14(4), 1302-1310.
[http://dx.doi.org/10.1039/C5OB01953B] [PMID: 26658884]
[93]
Nascimento, B.F.O.; Lopes, S.M.M.; Pineiro, M.; Pinho, E. Melo, T.M.V.D. Current advances in the synthesis of valuable dipyrromethane scaffolds: classic and new methods. Mol., 2019, 24(23), 4348.
[http://dx.doi.org/10.3390/molecules24234348] [PMID: 31795117]
[94]
Singh Chauhan, S.M.; Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Mol., 2011, 16(9), 7256-7266.
[http://dx.doi.org/10.3390/molecules16097256] [PMID: 21869753]
[95]
Marta, B.; Potara, M.; Iliut, M.; Jakab, E.; Radu, T. Designing chitosan-silver nanoparticles-graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids Surf. A Physicochem. Eng. Asp., 2015, 487, 113-120.
[http://dx.doi.org/10.1016/j.colsurfa.2015.09.046]
[96]
Huang, Y.; Wang, T.; Zhao, X.; Wang, X.; Zhou, L. Poly (lactic acid)/graphene oxide-ZnO nanocomposite films with good mechanical, dynamic mechanical, anti-UV and antibacterial properties. J. Chem. Technol. Biotechnol., 2015, 90(9), 1677-1684.
[http://dx.doi.org/10.1002/jctb.4476]
[97]
Wang, Y.; Li, Z.; Hu, D.; Lin, C.T.; Li, J.; Lin, Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc., 2010, 132(27), 9274-9276.
[http://dx.doi.org/10.1021/ja103169v] [PMID: 20565095]
[98]
Wan, Y.; Wang, Y.; Wu, J.; Zhang, D. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal. Chem., 2011, 83(3), 648-653.
[http://dx.doi.org/10.1021/ac103047c] [PMID: 21175166]
[99]
Han, X.; Fang, X.; Shi, A.; Wang, J.; Zhang, Y. An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal. Biochem., 2013, 443(2), 117-123.
[http://dx.doi.org/10.1016/j.ab.2013.08.027] [PMID: 24012578]
[100]
Zhou, L.; Shen, Q.; Zhao, P.; Xiang, B.; Nie, Z.; Huang, Y.; Yao, S. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide. Methods, 2013, 64(3), 299-304.
[http://dx.doi.org/10.1016/j.ymeth.2013.09.001] [PMID: 24051334]
[101]
Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; Wang, J. A graphene-supported single-atom FeN5 catalytic site for efficient electro-chemical CO2 Reduction. Angew. Chem. Int. Ed. Engl., 2019, 58(42), 14871-14876.
[http://dx.doi.org/10.1002/anie.201906079] [PMID: 31368619]
[102]
Tang, Y.; Chen, W.; Shen, Z.; Chang, S.; Zhao, M.; Dai, X. Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon, 2017, 111, 448-458.
[http://dx.doi.org/10.1016/j.carbon.2016.10.028]
[103]
Li, X-F.; Li, Q-K.; Cheng, J.; Liu, L.; Yan, Q.; Wu, Y.; Zhang, X-H.; Wang, Z-Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc., 2016, 138(28), 8706-8709.
[http://dx.doi.org/10.1021/jacs.6b04778] [PMID: 27383680]
[104]
Zhou, M.; Zhang, A.; Dai, Z.; Feng, Y.P.; Zhang, C. Strain-enhanced stabilization and catalytic activity of metal nanoclusters on graphene. J. Phys. Chem. C, 2010, 114, 16541-16546.
[http://dx.doi.org/10.1021/jp105368j]
[105]
Yin, H.; Tang, H.; Wang, D.; Gao, Y.; Tang, Z. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano, 2012, 6(9), 8288-8297.
[http://dx.doi.org/10.1021/nn302984x] [PMID: 22931045]
[106]
Yao, Y.; Fu, Q.; Zhang, Y-Y.; Weng, X.; Li, H.; Chen, M.; Jin, L.; Dong, A.; Mu, R.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S.B.; Bao, X. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. USA, 2014, 111(48), 17023-17028.
[http://dx.doi.org/10.1073/pnas.1416368111] [PMID: 25404332]
[107]
Sutter, P.; Sadowski, J.T.; Sutter, E.A. Chemistry under cover: tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc., 2010, 132(23), 8175-8179.
[http://dx.doi.org/10.1021/ja102398n] [PMID: 20527937]
[108]
Sutter, P.W.; Flege, J.I.; Sutter, E.A. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5), 406-411.
[http://dx.doi.org/10.1038/nmat2166] [PMID: 18391956]
[109]
Stradi, D.; Barja, S.; Diaz, C.; Garnica, M.; Borca, B.; Hinarejos, J.J.; Sánchez-Portal, D.; Alcami, M.; Arnau, A.; De Parga, A.L.V. Lattice-matched versus lattice-mismatched models to describe epitaxial monolayer graphene on Ru(0001). Phys. Rev. B Condens. Matter Mater. Phys., 2013, 88, 245401.
[http://dx.doi.org/10.1103/PhysRevB.88.245401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy