Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Drug-food Interactions in the Era of Molecular Big Data, Machine Intelligence, and Personalized Health

Author(s): Romy Roy, Shamsudheen Marakkar, Munawar Peringadi Vayalil, Alisha Shahanaz, Athira Panicker Anil, Shameer Kunnathpeedikayil, Ishaan Rawal, Kavya Shetty, Zahrah Shameer, Saraswathi Sathees, Adarsh Pooradan Prasannakumar, Oommen Kaleeckal Mathew, Lakshminarayanan Subramanian, Khader Shameer* and Kamlesh K. Yadav*

Volume 13, Issue 1, 2022

Published on: 19 September, 2022

Page: [27 - 50] Pages: 24

DOI: 10.2174/2212798412666220620104809

Price: $65

Abstract

The drug-food interaction brings forth changes in the clinical effects of drugs. While favourable interactions bring positive clinical outcomes, unfavourable interactions may lead to toxicity. This article reviews the impact of food intake on drug-food interactions, the clinical effects of drugs, and the effect of drug-food in correlation with diet and precision medicine. Emerging areas in drug-food interactions are the food-genome interface (nutrigenomics) and nutrigenetics. Understanding the molecular basis of food ingredients, including genomic sequencing and pharmacological implications of food molecules, helps to reduce the impact of drug-food interactions. Various strategies are being leveraged to alleviate drug-food interactions; measures including patient engagement, digital health, approaches involving machine intelligence, and big data are a few of them. Furthermore, delineating the molecular communications across dietmicrobiome- drug-food-drug interactions in a pharmacomicrobiome framework may also play a vital role in personalized nutrition. Determining nutrient-gene interactions aids in making nutrition deeply personalized and helps mitigate unwanted drug-food interactions, chronic diseases, and adverse events from their onset. Translational bioinformatics approaches could play an essential role in the next generation of drug-food interaction research. In this landscape review, we discuss important tools, databases, and approaches along with key challenges and opportunities in drug-food interaction and its immediate impact on precision medicine.

Keywords: Drug-food Interactions, Nutrigenomics, Precision Medicine, Machine intelligence, Big Data, Pharmacomicrobiome

Graphical Abstract

[1]
Saito, Y. Current status of health foods including their interactions with drugs and adverse events. Yakugaku Zasshi, 2018, 138(12), 1511-1516. [Available from https://www.jstage.jst.go.jp/article/yakushi/ 138/12/138_18-00155-1/_article/-char/ja/
[http://dx.doi.org/10.1248/yakushi.18-00155-1] [PMID: 30504666]
[2]
Piscitelli, S.C.; Rodvold, K.A. Drug interactions in infectious diseases 3rd Edition.Br. J. Clin. Pharmacol; , 2013, 75, p. (3)871. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575955/
[3]
Manasse, H.R.; Reilly, C. Section 1 magnitude/significance of drug-induced diseases impact on the health care system drug safety and drug-induced disease: The regulatory , legal , and practice environments. In. James, E.T.; Douglas, A.M. (Eds.), Drug- Induced Diseases. American society of Health Pharmacists; , 2010.
[4]
Barrington, W.E.; White, E. Mortality outcomes associated with intake of fast-food items and sugar-sweetened drinks among older adults in the Vitamins and Lifestyle (VITAL) study. Public Health Nutr., 2016, 19(18), 3319-3326.
[http://dx.doi.org/10.1017/S1368980016001518] [PMID: 27338763]
[5]
Phansalkar, S.; Desai, A.A.; Bell, D.; Yoshida, E.; Doole, J.; Czochanski, M.; Middleton, B.; Bates, D.W. High-priority drug-drug interactions for use in electronic health records. J. Am. Med. Inform. Assoc., 2012, 19(5), 735-743.
[http://dx.doi.org/10.1136/amiajnl-2011-000612] [PMID: 22539083]
[6]
Neuhofel, A.L.; Wilton, J.H.; Victory, J.M.; Hejmanowsk, L.G.; Amsden, G.W. Lack of bioequivalence of ciprofloxacin when administered with calcium-fortified orange juice: A new twist on an old interaction. J. Clin. Pharmacol., 2002, 42(4), 461-466.
[http://dx.doi.org/10.1177/00912700222011391] [PMID: 11936572]
[7]
Pápai, K.; Budai, M.; Ludányi, K.; Antal, I.; Klebovich, I. In vitro food-drug interaction study: Which milk component has a decreasing effect on the bioavailability of ciprofloxacin? J. Pharm. Biomed. Anal., 2010, 52(1), 37-42.
[http://dx.doi.org/10.1016/j.jpba.2009.12.003] [PMID: 20053516]
[8]
Bidlack, W.R. Interrelationships of food, nutrition, diet and health: The national association of state universities and land grant colleges white paper. J. Am. Coll. Nutr., 1996, 15(5), 422-433.
[9]
Goswami, H.K.; Ram, H.K. Ancient food habits dictate that food can be medicine but medicine cannot be “Food”!! Medicines (Basel), 2017, 4(4), 82.
[http://dx.doi.org/10.3390/medicines4040082] [PMID: 29137206]
[10]
Lean, M.E.J. Principles of human nutrition. Medicine (Abingdon), 2015, 43(2), 61-65. [Internet] http://dx.doi.org/10.1016/j.mpmed.2014.11.009
[11]
Thaipisuttikul, P.; Galvin, J.E. Use of medical foods and nutritional approaches in the treatment of Alzheimer’s disease. Clin. Pract. (Lond.), 2012, 9(2), 199-209.
[http://dx.doi.org/10.2217/cpr.12.3] [PMID: 23362453]
[12]
Cena, H.; Calder, P.C. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients, 2020, 12(2), 334.
[13]
Gur, J.; Mawuntu, M.; Martirosyan, D. FFC’s advancement of functional food definition. Funct. Food Health Dis., 2018, 8(7), 385.
[http://dx.doi.org/10.31989/ffhd.v8i7.531]
[14]
Adelman, J.; Haushofer, L. Introduction: Food as medicine, medicine as food. J. Hist. Med. Allied Sci., 2018, 73(2), 127-134.
[http://dx.doi.org/10.1093/jhmas/jry010] [PMID: 29579212]
[15]
Alissa, E.M.; Ferns, G.A. Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. J. Nutr. Metab., 2012, 2012, 569486.
[16]
Gaziano, J.M.; Hennekens, C.H. The role of beta-carotene in the prevention of cardiovascular disease. Ann. N. Y. Acad. Sci., 1993, 691(1), 148-155.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb26166.x] [PMID: 8129284]
[17]
Mathur, P.; Ding, Z.; Saldeen, T.; Mehta, J.L. Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin. Cardiol., 2015, 38(9), 570-576.
[http://dx.doi.org/10.1002/clc.22422] [PMID: 26272221]
[18]
Wallert, M.; Schmölz, L.; Galli, F.; Birringer, M.; Lorkowski, S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol., 2014, 2(1), 495.
[http://dx.doi.org/10.1016/j.redox.2014.02.002]
[19]
Garg, S.; Lule, K.; Kumar, R.; Sudhir, M.; Tomar, K.; Malik, R.K. Soy bioactive components in functional perspective: A review. Int. J. Food Prop., 2016, 19(11), 2550-2574.
[http://dx.doi.org/10.1080/10942912.2015.1136936]
[20]
Kabaran, S. Olive oil: Antioxidant compounds and their potential effects over health. In. Vasiliki, L., (Ed), Functional Foods. London: IntechOpen; 2019. Available from: https://www.intechopen.com/chapters/63575
[21]
Martín-Calvo, N.; Martínez-González, M.Á. Vitamin C intake is inversely associated with cardiovascular mortality in a cohort of Spanish graduates: The SUN Project. Nutrients, 2017, 9(9), 954.
[22]
Pascual-Teresa, S. de; Moreno, D.A.; García-Viguera, C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci., 2010, 11(4), 1679-1703.
[23]
Mohamed, S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci. Technol., 2014, 35(2), 114-128.
[http://dx.doi.org/10.1016/j.tifs.2013.11.001]
[24]
Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot., 2014, 3(1), 1.
[http://dx.doi.org/10.4103/2277-9531.127541] [PMID: 24741641]
[25]
Mao, T.; Van De Water, J.; Keen, C.L.; Schmitz, H.H.; Gershwin, M.E. Cocoa procyanidins and human cytokine transcription and secretion. J. Nutr., 2000, 130(8S)(Suppl.), 2093S-2099S.
[http://dx.doi.org/10.1093/jn/130.8.2093S] [PMID: 10917928]
[26]
Matsui, T.; Ogunwande, I.A.; Abesundara, K.J.; Matsumoto, K. Anti-hyperglycemic potential of natural products. Mini Rev. Med. Chem., 2006, 6(3), 349-356.
[http://dx.doi.org/10.2174/138955706776073484] [PMID: 16515474]
[27]
Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr., 2003, 78(4), 728-733.
[http://dx.doi.org/10.1093/ajcn/78.4.728] [PMID: 14522730]
[28]
Rodríguez-Ramiro, I.; Ramos, S.; Bravo, L.; Goya, L.; Martín, M.Á. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J. Nutr. Biochem., 2011, 22(12), 1186-1194.
[http://dx.doi.org/10.1016/j.jnutbio.2010.10.005] [PMID: 21334869]
[29]
Alkhatib, A.; Atcheson, R. Yerba Maté (Ilex paraguariensis) metabolic, satiety, and mood state effects at rest and during prolonged exercise. Nutrients, 2017, 9(8), E882.
[http://dx.doi.org/10.3390/nu9080882] [PMID: 28809814]
[30]
Chen, Z.; Chen, J.; Collins, R.; Guo, Y.; Peto, R.; Wu, F.; Li, L. China kadoorie biobank of 0.5 million people: Survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol., 2011, 40(6), 1652-1666.
[http://dx.doi.org/10.1093/ije/dyr120] [PMID: 22158673]
[31]
Kuno, T.; Tsukamoto, T.; Hara, A.; Tanaka, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 03(02), 156-173.
[http://dx.doi.org/10.4236/jbpc.2012.32018]
[32]
Shin, J.A.; Kim, J.S.; Hong, I.S.; Cho, S.D. bak is a key molecule in apoptosis induced by methanol extracts of Codonopsis lanceolata and Tricholoma matsutake in HSC-2 human oral cancer cells. Oncol. Lett., 2012, 4(6), 1379-1383.
[http://dx.doi.org/10.3892/ol.2012.898] [PMID: 23205139]
[33]
Wu, Q.J.; Yang, Y.; Vogtmann, E.; Wang, J.; Han, L.H.; Li, H.L.; Xiang, Y.B. Cruciferous vegetables intake and the risk of colorectal cancer: A meta-analysis of observational studies. Ann. Oncol., 2013, 24(4), 1079-1087.
[http://dx.doi.org/10.1093/annonc/mds601] [PMID: 23211939]
[34]
Sporn, M.B.; Suh, N. Chemoprevention: An essential approach to controlling cancer. Nat. Rev. Cancer, 2002, 2(7), 537-543.
[http://dx.doi.org/10.1038/nrc844] [PMID: 12094240]
[35]
Lee, B.M.; Park, K.K. Beneficial and adverse effects of chemopreventive agents. Mutat. Res., 2003, 523-524, 265-278.
[http://dx.doi.org/10.1016/S0027-5107(02)00342-1] [PMID: 12628524]
[36]
de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol., 2012, 13(6), 607-615.
[http://dx.doi.org/10.1016/S1470-2045(12)70137-7] [PMID: 22575588]
[37]
Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? Int. J. Mol. Sci., 2017, 18(7), E1381.
[http://dx.doi.org/10.3390/ijms18071381] [PMID: 28657580]
[38]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), E457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[39]
Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients, 2018, 11(1), E46.
[http://dx.doi.org/10.3390/nu11010046] [PMID: 30591639]
[40]
Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Compr. Rev. Food Sci. Food Saf., 2019, 18(5), 1514-1532. https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/1541-4337.12489
[http://dx.doi.org/10.1111/1541-4337.12489] [PMID: 33336908]
[41]
Mitsiogianni, M.; Koutsidis, G.; Mavroudis, N.; Trafalis, D.T.; Botaitis, S.; Franco, R.; Zoumpourlis, V.; Amery, T.; Galanis, A.; Pappa, A.; Panayiotidis, M.I. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants, 2019, 8(4), E106. https://www.mdpi.com/2076-3921/8/4/106
[http://dx.doi.org/10.3390/antiox8040106] [PMID: 31003534]
[42]
McCall, B.; McPartland, C.K.; Moore, R.; Frank-Kamenetskii, A.; Booth, B.W. Effects of astaxanthin on the proliferation and migration of breast cancer cells in vitro. Antioxidants (Basel, Switzerland), 2018, 7(10), 135.
[43]
Kumar, S.R.; Hosokawa, M.; Miyashita, K. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs, 2013, 11(12), 5130-5147.
[http://dx.doi.org/10.3390/md11125130] [PMID: 24351910]
[44]
Gong, X.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-Mediated mechanisms. Molecules, 2018, 23(4), 905.
[http://dx.doi.org/10.3390/molecules23040905] [PMID: 29662002]
[45]
Heaney, R.P. Factors influencing the measurement of bioavailability, taking calcium as a model. J. Nutr., 2001, 131(4)(Suppl.), 1344S-1348S.
[http://dx.doi.org/10.1093/jn/131.4.1344S] [PMID: 11285351]
[46]
Shayeghi, M.; Latunde-Dada, G.O.; Oakhill, J.S.; Laftah, A.H.; Takeuchi, K.; Halliday, N.; Khan, Y.; Warley, A.; McCann, F.E.; Hider, R.C.; Frazer, D.M.; Anderson, G.J.; Vulpe, C.D.; Simpson, R.J.; McKie, A.T. Identification of an intestinal heme transporter. Cell, 2005, 122(5), 789-801.
[http://dx.doi.org/10.1016/j.cell.2005.06.025] [PMID: 16143108]
[47]
Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr., 2010, 91(5), 1461S-1467S.
[http://dx.doi.org/10.3945/ajcn.2010.28674F] [PMID: 20200263]
[48]
Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res., 2009, 29(11), 751-760.
[http://dx.doi.org/10.1016/j.nutres.2009.09.016] [PMID: 19932863]
[49]
van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G.A.J. Dietary factors that affect the bioavailability of carotenoids. J. Nutr., 2000, 130(3), 503-506.
[http://dx.doi.org/10.1093/jn/130.3.503] [PMID: 10702576]
[50]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S.S.R. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[51]
Golub, A.L.; Ph, D.; Frost, R.W.; Pharm, D. Physiologic considerations in drug absorption from the gastrointestinal tract. J. Allergy Clin. Immunol., 1986, 78(4 Pt 2), 689-694.
[52]
Koziolek, M.; Alcaro, S.; Augustijns, P.; Basit, A.W.; Grimm, M.; Hens, B.; Hoad, C.L.; Jedamzik, P.; Madla, C.M.; Maliepaard, M.; Marciani, L.; Maruca, A.; Parrott, N.; Pávek, P.; Porter, C.J.H.; Reppas, C.; van Riet-Nales, D.; Rubbens, J.; Statelova, M.; Trevaskis, N.L.; Valentová, K.; Vertzoni, M.; Čepo, D.V.; Corsetti, M. The mechanisms of pharmacokinetic food-drug interactions-A perspective from the UNGAP group. Eur. J. Pharm. Sci., 2019, 134, 31-59. https://www.sciencedirect.com/science/article/pii/S0928098719301411
[http://dx.doi.org/10.1016/j.ejps.2019.04.003] [PMID: 30974173]
[53]
Tandon, V.R.; Khajuria, V.; Mahajan, V.; Sharma, A.; Gillani, Z.; Mahajan, A. Drug-induced diseases (DIDs): An experience of a tertiary care teaching hospital from India. Indian J. Med. Res., 2015, 142(1), 33-39.
[54]
Boullata, J.I.; Hudson, L.M. Drug-nutrient interactions: A broad view with implications for practice. J. Acad. Nutr. Diet., 2012, 112(4), 506-517.
[http://dx.doi.org/10.1016/j.jada.2011.09.002] [PMID: 22717215]
[55]
Ötles, S.; Senturk, A. Food and drug interactions: A general review. Acta Sci. Pol. Technol. Aliment., 2014, 13(1), 89-102.
[http://dx.doi.org/10.17306/J.AFS.2014.1.8] [PMID: 24583386]
[56]
Chan, L.N. Drug-nutrient interactions. JPEN J. Parenter. Enteral Nutr., 2013, 37(4), 450-459.
[http://dx.doi.org/10.1177/0148607113488799] [PMID: 23674575]
[57]
Genser, D. Food and drug interaction: Consequences for the nutrition/health status. Ann. Nutr. Metab., 2008, 52(Suppl. 1), 29-32.
[http://dx.doi.org/10.1159/000115345] [PMID: 18382075]
[58]
Disposition, P.D.; Interplay, T.; Role, T.H.E.; Food, O.F.; Drug, O.N. NIH Public Access., 2009, 60(6), 717-733.
[59]
Bushra, R.; Aslam, N.; Khan, A.Y. Food-drug interactions. Oman Med. J., 2011, 26(2), 77-83.
[http://dx.doi.org/10.5001/omj.2011.21] [PMID: 22043389]
[60]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv. Drug Deliv. Rev., 2003, 55(1), 3-29.
[http://dx.doi.org/10.1016/S0169-409X(02)00169-2] [PMID: 12535572]
[61]
Rodriguez-Fragoso, L.; Reyes-Esparz, J. Fruit/Vegetable-Drug Interactions: Effects on Drug Metabolizing Enzymes and Drug Transporters; Drug Discov, 2013, pp. 1-34. Available from: 10.5772/48283
[62]
Dresser, G.K.; Bailey, D.G.; Leake, B.F.; Schwarz, U.I.; Dawson, P.A.; Freeman, D.J.; Kim, R.B. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther., 2002, 71(1), 11-20.
[http://dx.doi.org/10.1067/mcp.2002.121152] [PMID: 11823753]
[63]
Seden, K.; Dickinson, L.; Khoo, S.; Back, D. Grapefruit-drug interactions. Drugs, 2010, 70(18), 2373-2407.
[http://dx.doi.org/10.2165/11585250-000000000-00000] [PMID: 21142260]
[64]
Rodeiro, I.; Donato, M.T.; Lahoz, A.; Garrido, G.; Delgado, R.; Gómez-Lechón, M.J. Interactions of polyphenols with the P450 system: Possible implications on human therapeutics. Mini Rev. Med. Chem., 2008, 8(2), 97-106.
[http://dx.doi.org/10.2174/138955708783498131] [PMID: 18289092]
[65]
Srinivas, N.R. Is pomegranate juice a potential perpetrator of clinical drug-drug interactions? Review of the in vitro, preclinical and clinical evidence. Eur. J. Drug Metab. Pharmacokinet., 2013, 38(4), 223-229.
[http://dx.doi.org/10.1007/s13318-013-0137-x] [PMID: 23673492]
[66]
Malhotra, S.; Bailey, D.G.; Paine, M.F.; Watkins, P.B. Seville orange juice-felodipine interaction: Comparison with dilute grapefruit juice and involvement of furocoumarins. Clin. Pharmacol. Ther., 2001, 69(1), 14-23.
[http://dx.doi.org/10.1067/mcp.2001.113185] [PMID: 11180034]
[67]
Bailey, D.G.; Spence, J.D.; Munoz, C.; Arnold, J.M. Interaction of citrus juices with felodipine and nifedipine. Lancet, 1991, 337(8736), 268-269.
[http://dx.doi.org/10.1016/0140-6736(91)90872-M] [PMID: 1671113]
[68]
Platt, K.L.; Edenharder, R.; Aderhold, S.; Muckel, E.; Glatt, H. Fruits and vegetables protect against the genotoxicity of heterocyclic aromatic amines activated by human xenobiotic-metabolizing enzymes expressed in immortal mammalian cells. Mutat. Res., 2010, 703(2), 90-98.
[http://dx.doi.org/10.1016/j.mrgentox.2010.08.007] [PMID: 20713174]
[69]
Wang, H.; Leung, L.K. The carotenoid lycopene differentially regulates phase I and II enzymes in dimethylbenz[a]anthracene-induced MCF-7 cells. Nutrition, 2010, 26(11-12), 1181-1187.
[http://dx.doi.org/10.1016/j.nut.2009.11.013] [PMID: 20400267]
[70]
Telang, U.; Ji, Y.; Morris, M.E. ABC transporters and isothiocyanates: Potential for pharmacokinetic diet-drug interactions. Biopharm. Drug Dispos., 2009, 30(7), 335-344.
[http://dx.doi.org/10.1002/bdd.668] [PMID: 19623673]
[71]
Jensen, K.; Ni, Y.; Panagiotou, G.; Kouskoumvekaki, I. Developing a molecular roadmap of drug-food interactions. PLOS Comput. Biol., 2015, 11(2), e1004048.
[http://dx.doi.org/10.1371/journal.pcbi.1004048] [PMID: 25668218]
[72]
Jensen, K.; Panagiotou, G.; Kouskoumvekaki, I. NutriChem: A systems chemical biology resource to explore the medicinal value of plant-based foods. Nucleic Acids Res., 2015, 43(Database issue), D940-D945.
[http://dx.doi.org/10.1093/nar/gku724] [PMID: 25106869]
[73]
Jensen, K.; Panagiotou, G.; Kouskoumvekaki, I. Integrated text mining and chemoinformatics analysis associates diet to health benefit at molecular level. PLOS Comput. Biol., 2014, 10(1), e1003432.
[http://dx.doi.org/10.1371/journal.pcbi.1003432] [PMID: 24453957]
[74]
Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Kru, F.A. The ChEMBL bioactivity database : An update. Nucleic Acids Res., 2014, 42, 1083-1090.
[75]
Yaheya, M.; Ismail, M. Drug-food interactions and role of pharmacist. Asian J. Pharm. Clin. Res., 2009, 2(4), 1-10.
[76]
Williams, L.; Hill, D.P.J., Jr; Davis, J.A.; Lowenthal, D.T. The influence of food on the absorption and metabolism of drugs: An update. Eur. J. Drug Metab. Pharmacokinet., 1996, 21(3), 201-211.
[http://dx.doi.org/10.1007/BF03189714] [PMID: 8980916]
[77]
ASHP guidelines on pharmacist-conducted patient education and counseling. Am. J. Health Syst. Pharm., 1997, 54(4), 431-434.
[http://dx.doi.org/10.1093/ajhp/54.4.431] [PMID: 9043568]
[78]
Sean, C.S. Martindale-The-complete-drug-reference, 36th Edition; London, Chicago: Pharmaceutical Press, Chicago, 2009.
[79]
Dart, R.C. The use and effect of analgesics in patients who regularly drink alcohol. Am. J. Manag. Care, 2001, 7(19)(Suppl.), S597-S601.
[PMID: 11776482]
[80]
Wells, P.S.; Holbrook, A.M.; Crowther, N.R.; Hirsh, J. Interactions of warfarin with drugs and food. Ann. Intern. Med., 1994, 121(9), 676-683.
[http://dx.doi.org/10.7326/0003-4819-121-9-199411010-00009] [PMID: 7944078]
[81]
Wu, Y.; Wan, J.; Choe, U.; Pham, Q.; Schoene, N.W.; He, Q.; Li, B.; Yu, L.; Wang, T.T.Y. Interactions between food and gut microbiota: Impact on human health. Annu. Rev. Food Sci. Technol., 2019, 10(1), 389-408.
[http://dx.doi.org/10.1146/annurev-food-032818-121303] [PMID: 30908952]
[82]
Savage, N. The complex relationship between drugs and the microbiome. Nature, 2020, 577(7792), S10-S11.
[http://dx.doi.org/10.1038/d41586-020-00196-0] [PMID: 31996826]
[83]
Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; Dijkstra, G.; Franke, L.; Xavier, R.J.; Jonkers, D.; Wijmenga, C.; Weersma, R.K.; Zhernakova, A. Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65(5), 740-748. https://gut.bmj.com/content/65/5/740
[http://dx.doi.org/10.1136/gutjnl-2015-310376] [PMID: 26657899]
[84]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A. DrugBank 3. 0: A comprehensive resource for ‘ Omics ’ research on drugs. Nucleic Acids Res., 2011, 39, 1035-1041.
[85]
Ronquillo, Y.; Meyers, A.; Korvek, S.J. Digital health. In: StatPearls. Treasure Island (FL): StatPearls Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470260/
[86]
The role of telehealth in an evolving health care environment: workshop summary. In: The evolution of telehealth: where have we been and where are we going?; National Academic Press, 2012. https://www.ncbi.nlm.nih.gov/books/NBK207141/
[87]
Early Punched Card Equipment, 1880-1951. https://ethw.org/Early_Punched_Card_Equipment,_1880_-_1951
[88]
The History of Computer Communication 1947. Available from: https://historyofcomputercommunications.info/section/2.18/the-transistor-1947/
[89]
DeForge, W.F. Cardiac pacemakers: A basic review of the history and current technology. J. Vet. Cardiol., 2019, 22, 40-50.
[http://dx.doi.org/10.1016/j.jvc.2019.01.001] [PMID: 30792165]
[90]
Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics, 2016, 107(1), 1-8. https://pubmed.ncbi.nlm.nih.gov/26554401/
[http://dx.doi.org/10.1016/j.ygeno.2015.11.003] [PMID: 26554401]
[91]
Gillum, R.F. From papyrus to the electronic tablet: A brief history of the clinical medical record with lessons for the digital age. Am. J. Med., 2013, 126(10), 853-857.
[http://dx.doi.org/10.1016/j.amjmed.2013.03.024] [PMID: 24054954]
[92]
Johnson, K.B.; Neuss, M.J.; Detmer, D.E. Electronic health records and clinician burnout: A story of three eras. J. Am. Med. Inform. Assoc., 2021, 28(5), 967-973.
[http://dx.doi.org/10.1093/jamia/ocaa274] [PMID: 33367815]
[93]
Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism, 2017, 69S, S36-S40. https://pubmed.ncbi.nlm.nih.gov/28126242/
[http://dx.doi.org/10.1016/j.metabol.2017.01.011] [PMID: 28126242]
[94]
Wang, Y.; Yu, L.; Kong, X.; Sun, L. Application of nanodiagnostics in point-of-care tests for infectious diseases. Int. J. Nanomedicine, 2017, 12, 4789-4803. https://pubmed.ncbi.nlm.nih.gov/28740385/
[http://dx.doi.org/10.2147/IJN.S137338] [PMID: 28740385]
[95]
Hu, J.; Albadawi, H.; Chong, B.W.; Deipolyi, A.R.; Sheth, R.A.; Khademhosseini, A.; Oklu, R. Advances in biomaterials and technologies for vascular embolization. Adv. Mater., 2019, 31(33), e1901071.
[http://dx.doi.org/10.1002/adma.201901071] [PMID: 31168915]
[96]
Hootsuite 2020. Available from: https://www.hootsuite.com/resources/digital-2020
[97]
Drugs.com. Available from: https://www.drugs.com/
[98]
Latest Medical News. https://www.medscape.com/
[99]
WebMD - Better information. https://www.webmd.com/
[100]
Newell, S.; Jordan, Z. The patient experience of patient-centered communication with nurses in the hospital setting: A qualitative systematic review protocol. JBI Database Syst. Rev. Implement. Reports, 2015, 13(1), 76-87.
[http://dx.doi.org/10.11124/jbisrir-2015-1072] [PMID: 26447009]
[101]
Epstein, R.M.; Street, R.L., Jr The values and value of patient-centered care. Ann. Fam. Med., 2011, 9(2), 100.
[http://dx.doi.org/10.1370/afm.1239]
[102]
Matheny, M.; Israni, S.T.; Ahmed, M.; Whicher, D.; Edu, N. Artificial intelligence in health care: The hope, the hype, the promise, the peril. Available from: https://nam.edu/artificial-intelligence-special-publication/
[103]
Navdeep, S.G. Artificial neural networks applications and algorithms. 2022. Available from:https://www.xenonstack.com/blog/artificial-neural-network-applications
[104]
Janacek, G. Time series analysis forecasting and control. J. Time Ser. Anal., 2009.
[http://dx.doi.org/10.1111/j.1467-9892.2009.00643.x]
[105]
Shen, Z.; Bao, W.; Huang, D-S. Recurrent neural network for predicting transcription factor binding sites. Sci. Rep., 2018, 8, 15270. [Available from:
[http://dx.doi.org/10.1038/s41598-018-33321-1]
[106]
Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: management, analysis and future prospects. J. Big Data, 2019, 6, 54. [Available from:] https://journalofbigdata.springeropen.com/articles/10.1186/s40537 -019-0217-0
[107]
Bates, D.W.; Saria, S.; Ohno-Machado, L.; Shah, A.; Escobar, G. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Aff. (Millwood), 2014, 33(7), 1123-1131.
[http://dx.doi.org/10.1377/hlthaff.2014.0041] [PMID: 25006137]
[108]
Fukushima, K. Biological cybernetics neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern., 1980, 36(4), 202.
[http://dx.doi.org/10.1007/BF00344251]
[109]
Puttatida, M. From human vision to computer vision-convolutional neural network. 2019. Available from:https://becominghuman.ai/from-human-vision-to-computer-vision-convolutional-neural-network-part3-4-24b55ffa7045
[110]
Siddique, N.; Sidike, P.; Elkin, C.; Devabhaktuni, V. U-Net and its variants for medical image segmentation: Theory and applications. IEEE Access, 2021, 9, 82031-82057.
[http://dx.doi.org/10.1109/ACCESS.2021.3086020]
[111]
Zheng, R.; Zheng, Y.; Dong-Ye, C. Improved 3D U-Net for COVID-19 chest ct image segmentation. Sci. Program., 2021, 1-9.
[112]
Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of machine learning predictive models in the chronic disease diagnosis. J. Pers. Med., 2020, 10(2), E21.
[http://dx.doi.org/10.3390/jpm10020021] [PMID: 32244292]
[113]
Nandakumar, R.; Dinu, V. Developing a machine learning model to identify protein-protein interaction hotspots to facilitate drug discovery. PeerJ, 2020, 8, e10381. https://pubmed.ncbi.nlm.nih.gov/33354416/
[http://dx.doi.org/10.7717/peerj.10381] [PMID: 33354416]
[114]
Feng, Y-H.; Zhang, S-W.; Shi, J-Y. DPDDI: A deep predictor for drug-drug interactions. BMC Bioinformatics, 2020, 21, 419. Available from:
[http://dx.doi.org/10.1186/s12859-020-03724-x]
[115]
Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. USA, 2018, 115(18), E4304-E4311. https://pubmed.ncbi.nlm.nih.gov/29666228/
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[116]
Nelson, W.; Zitnik, M.; Wang, B.; Leskovec, J.; Goldenberg, A.; Sharan, R. To Embed or Not: Network embedding as a paradigm in computational biology. Front. Genet., 2019, 10(MAY), 381.
[http://dx.doi.org/10.3389/fgene.2019.00381] [PMID: 31118945]
[117]
Jasmine, S. Augmented reality in healthcare. Available from: https://www.plugandplaytechcenter.com/resources/augmented-reality-healthcare/
[118]
Fenech, M.; El-Sohemy, A.; Cahill, L.; Ferguson, L.R.; French, T.A.C.; Tai, E.S.; Milner, J.; Koh, W.P.; Xie, L.; Zucker, M.; Buckley, M.; Cosgrove, L.; Lockett, T.; Fung, K.Y.; Head, R. Nutrigenetics and nutrigenomics: Viewpoints on the current status and applications in nutrition research and practice. J. Nutrigenet. Nutrigenomics, 2011, 4(2), 69-89.
[http://dx.doi.org/10.1159/000327772] [PMID: 21625170]
[119]
Siddique, R.A.; Tandon, M.; Ambwani, T.; Rai, S.N.; Atreja, S.K. Nutrigenomics: Nutrient-Gene interactions. Food Rev. Int., 2009, 25(4), 326-345.
[http://dx.doi.org/10.1080/87559120903155883]
[120]
Mead, M.N. Nutrigenomics: The genome-food interface. Environ. Health Perspect., 2007, 115(12), A582-A589.
[http://dx.doi.org/10.1289/ehp.115-a582] [PMID: 18087577]
[121]
Agius, L. Hormonal and metabolite regulation of hepatic glucokinase. Annu. Rev. Nutr., 2016, 36(1), 389-415.
[http://dx.doi.org/10.1146/annurev-nutr-071715-051145] [PMID: 27146014]
[122]
Kim, K.S.; Park, S.W.; Kim, Y.S. Regulation of ATP-citrate lyase at transcriptional and post-transcriptional levels in rat liver. Biochem. Biophys. Res. Commun., 1992, 189(1), 264-271.
[http://dx.doi.org/10.1016/0006-291X(92)91553-3] [PMID: 1449481]
[123]
Katsurada, A.; Iritani, N.; Fukuda, H.; Matsumura, Y.; Nishimoto, N.; Noguchi, T.; Tanaka, T. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur. J. Biochem., 1990, 190(2), 435-441.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15593.x] [PMID: 1973097]
[124]
Haro, D.; Marrero, P.F.; Relat, J. Nutritional regulation of gene expression: Carbohydrate-, fat- and amino acid-dependent modulation of transcriptional activity. Int. J. Mol. Sci., 2019, 20(6), 1386.
[125]
Sul, H.S.; Wang, D. Nutritional and hormonal regulation of enzymes in fat synthesis: Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr., 1998, 18(1), 331-351. https://pubmed.ncbi.nlm.nih.gov/9706228/
[http://dx.doi.org/10.1146/annurev.nutr.18.1.331] [PMID: 9706228]
[126]
Salati, L.M.; Amir-Ahmady, B. Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu. Rev. Nutr., 2001, 21(1), 121-140. https://pubmed.ncbi.nlm.nih.gov/11375432/
[http://dx.doi.org/10.1146/annurev.nutr.21.1.121] [PMID: 11375432]
[127]
Benhamed, F.; Filhoulaud, G.; Caron, S.; Lefebvre, P.; Staels, B.; Postic, C. O-Glcnacylation links ChREBP and FXR to glucose-sensing. Front. Endocrinol. (Lausanne), 2015, 5(DEC), 230.
[http://dx.doi.org/10.3389/fendo.2014.00230] [PMID: 25628602]
[128]
Yang, A.Q.; Li, D.; Chi, L.; Ye, X.S. Validation, identification, and biological consequences of the site-specific O-Glcnacylation dynamics of carbohydrate-responsive element-binding protein (ChREBP). Mol. Cell. Proteomics, 2017, 16(7), 1233-1243.
[http://dx.doi.org/10.1074/mcp.M116.061416] [PMID: 28450420]
[129]
Fan, Q.; Nørgaard, R.C.; Bindesbøll, C.; Lucas, C.; Dalen, K.T.; Babaie, E.; Itkonen, H.M.; Matthews, J.; Nebb, H.I.; Grønning-Wang, L.M. LXRα regulates hepatic ChREBPα Activity and lipogenesis upon glucose, but not fructose feeding in mice. Nutrients, 2017, 9(7), E678.
[http://dx.doi.org/10.3390/nu9070678] [PMID: 28661453]
[130]
Kersten, S. Effects of fatty acids on gene expression: Role of peroxisome proliferator-activated receptor alpha, liver X receptor alpha and sterol regulatory element-binding protein-1c. Proc. Nutr. Soc., 2002, 61(3), 371-374. https://pubmed.ncbi.nlm.nih.gov/12230796/
[http://dx.doi.org/10.1079/PNS2002169] [PMID: 12230796]
[131]
Sessler, A.M.; Ntambi, J.M. Polyunsaturated fatty acid regulation of gene expression. J. Nutr., 1998, 128(6), 923-926.
[http://dx.doi.org/10.1093/jn/128.6.923] [PMID: 9614148]
[132]
Nohturfft, A.; Brown, M.S.; Goldstein, J.L. Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc. Natl. Acad. Sci. USA, 1998, 95(22), 12848-12853.
[http://dx.doi.org/10.1073/pnas.95.22.12848] [PMID: 9789003]
[133]
Endo, Y.; Fu, Z.; Abe, K.; Arai, S.; Kato, H. Dietary protein quantity and quality affect rat hepatic gene expression. J. Nutr., 2002, 132(12), 3632-3637.
[http://dx.doi.org/10.1093/jn/132.12.3632] [PMID: 12468599]
[134]
Fafournoux, P.; Remesy, C.; Demigne, C. Fluxes and membrane transport of amino acids in rat liver under different protein diets. Endocrinol. Metab., 1990, 259(5), 22-25.
[http://dx.doi.org/10.1152/ajpendo.1990.259.5.E614]
[135]
Luo, S.M.; Tan, W.M.; Liang, L.J. Amino acid regulation of gene expression. Chinese J. Clin. Nutr., 2006, 14(3), 188-193.
[136]
Vallee, B.L.; Auld, D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry, 1990, 29(24), 5647-5659.
[http://dx.doi.org/10.1021/bi00476a001] [PMID: 2200508]
[137]
Han, O.; Fleet, J.C.; Wood, R.J. Reciprocal regulation of HFE and NNamp2 gene expression by iron in human intestinal cells. J. Nutr., 1999, 129(1), 98-104.
[http://dx.doi.org/10.1093/jn/129.1.98] [PMID: 9915882]
[138]
Fenech, M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res., 2001, 475(1-2), 57-67.
[http://dx.doi.org/10.1016/S0027-5107(01)00079-3] [PMID: 11295154]
[139]
Azzi, A.; Aratri, E.; Boscoboinik, D.; Clément, S.; O¨zer, N.; Ricciarelli, R.; Spycher, S.; Stocker, A. Vitamins and regulation of gene expression. Bibl. Nutr. Dieta, 2001, 55(55), 177-188.https://www.karger.com/Article/FullText/59476
[PMID: 11125575]
[140]
Fenech, M. The Genome Health Clinic and Genome Health Nutrigenomics concepts: Diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis, 2005, 20(4), 255-269. https://academic.oup.com/mutage/article/20/4/255/1069240
[http://dx.doi.org/10.1093/mutage/gei040] [PMID: 15956042]
[141]
Brandt, K.; Barrangou, R. Applications of CRISPR technologies across the food supply chain. Annu. Rev. Food Sci. Technol., 2019, 10(1), 133-150.
[http://dx.doi.org/10.1146/annurev-food-032818-121204] [PMID: 30908954]
[142]
Selle, K.; Barrangou, R. CRISPR-based technologies and the future of food science. J. Food Sci., 2015, 80(11), R2367-R2372.
[http://dx.doi.org/10.1111/1750-3841.13094] [PMID: 26444151]
[143]
Donohoue, P.D.; Barrangou, R.; May, A.P. Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol., 2018, 36(2), 134-146.
[http://dx.doi.org/10.1016/j.tibtech.2017.07.007] [PMID: 28778606]
[144]
Briner, A.; Barrangou, R. Lactobacillus buchneri genotyping using CRISPR diversity. Appl. Environ. Microbiol., 2013, 80(3), 994-1001.
[PMID: 24271175]
[145]
Kovac, J.; Bakker, H. den; Carroll, L.M.; Wiedmann, M. Precision food safety: A systems approach to food safety facilitated by genomics tools. TrAC-. Trends Analyt. Chem., 2017, 96, 52-61.
[http://dx.doi.org/10.1016/j.trac.2017.06.001]
[146]
den Bakker, H.C.; Allard, M.W.; Bopp, D.; Brown, E.W.; Fontana, J.; Iqbal, Z.; Kinney, A.; Limberger, R.; Musser, K.A.; Shudt, M.; Strain, E.; Wiedmann, M.; Wolfgang, W.J. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg. Infect. Dis., 2014, 20(8), 1306-1314.
[http://dx.doi.org/10.3201/eid2008.131399] [PMID: 25062035]
[147]
Lienau, E.K.; Strain, E.; Wang, C.; Zheng, J.; Ottesen, A.R.; Keys, C.E.; Hammack, T.S.; Musser, S.M.; Brown, E.W.; Allard, M.W.; Cao, G.; Meng, J.; Stones, R. Identification of a salmonellosis outbreak by means of molecular sequencing. N. Engl. J. Med., 2011, 364(10), 981-982.
[http://dx.doi.org/10.1056/NEJMc1100443] [PMID: 21345093]
[148]
Gilmour, M.W.; Graham, M.; Van Domselaar, G.; Tyler, S.; Kent, H.; Trout-Yakel, K.M.; Larios, O.; Allen, V.; Lee, B.; Nadon, C. High-throughput genome sequencing of two listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics, 2010, 11(1), 120.
[http://dx.doi.org/10.1186/1471-2164-11-120] [PMID: 20167121]
[149]
Allard, M.W.; Strain, E.; Melka, D.; Bunning, K.; Musser, S.M.; Brown, E.W.; Timme, R. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J. Clin. Microbiol., 2016, 54(8), 1975-1983.
[http://dx.doi.org/10.1128/JCM.00081-16] [PMID: 27008877]
[150]
Grande, L.; Michelacci, V.; Bondì, R.; Gigliucci, F.; Franz, E.; Badouei, M.A.; Schlager, S.; Minelli, F.; Tozzoli, R.; Caprioli, A.; Morabito, S. Whole-genome characterization and strain comparison of VT2f-producing Escherichia coli causing hemolytic uremic syndrome. Emerg. Infect. Dis., 2016, 22(12), 2078-2086.
[http://dx.doi.org/10.3201/eid2212.160017] [PMID: 27584691]
[151]
Kovac, J.; Miller, R.A.; Carroll, L.M.; Kent, D.J.; Jian, J.; Beno, S.M.; Wiedmann, M. Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. BMC Genomics, 2016, 17(1), 581.
[http://dx.doi.org/10.1186/s12864-016-2883-z] [PMID: 27507015]
[152]
Nature Portfolio. Metagenomics. Available from: https://www.nature.com/subjects/metagenomics
[153]
Zheng, G.X.Y.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.; Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M.; Mudivarti, P.A.; Wyatt, P.W.; Bharadwaj, R.; Makarewicz, A.J.; Li, Y.; Belgrader, P.; Price, A.D.; Lowe, A.J.; Marks, P.; Vurens, G.M.; Hardenbol, P.; Montesclaros, L.; Luo, M.; Greenfield, L.; Wong, A.; Birch, D.E.; Short, S.W.; Bjornson, K.P.; Patel, P.; Hopmans, E.S.; Wood, C.; Kaur, S.; Lockwood, G.K.; Stafford, D.; Delaney, J.P.; Wu, I.; Ordonez, H.S.; Grimes, S.M.; Greer, S.; Lee, J.Y.; Belhocine, K.; Giorda, K.M.; Heaton, W.H.; McDermott, G.P.; Bent, Z.W.; Meschi, F.; Kondov, N.O.; Wilson, R.; Bernate, J.A.; Gauby, S.; Kindwall, A.; Bermejo, C.; Fehr, A.N.; Chan, A.; Saxonov, S.; Ness, K.D.; Hindson, B.J.; Ji, H.P. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol., 2016, 34(3), 303-311.
[http://dx.doi.org/10.1038/nbt.3432] [PMID: 26829319]
[154]
Deschamps, S.; Zhang, Y.; Llaca, V.; Ye, L.; Sanyal, A.; King, M.; May, G.; Lin, H. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun., 2018, 9(1), 4844.
[http://dx.doi.org/10.1038/s41467-018-07271-1] [PMID: 30451840]
[155]
van Berkum, N.L.; Lieberman-Aiden, E.; Williams, L.; Imakaev, M.; Gnirke, A.; Mirny, L.A.; Dekker, J.; Lander, E.S. Hi-C: A method to study the three-dimensional architecture of genomes. J. Vis. Exp., 2010, (39), 1-7.
[http://dx.doi.org/10.3791/1869] [PMID: 20461051]
[156]
Oluwadare, O.; Highsmith, M.; Cheng, J. An overview of methods for reconstructing 3-D chromosome and genome structures from Hi-C data. Biol. Proced. Online, 2019, 21(1), 7.
[http://dx.doi.org/10.1186/s12575-019-0094-0] [PMID: 31049033]
[157]
Reisner, W.; Larsen, N.B.; Silahtaroglu, A.; Kristensen, A.; Tommerup, N.; Tegenfeldt, J.O.; Flyvbjerg, H. Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13294-13299.
[http://dx.doi.org/10.1073/pnas.1007081107] [PMID: 20616076]
[158]
Baker, M. De novo genome assembly: What every biologist should know. Nat. Methods, 2012, 9(4), 333-337.
[http://dx.doi.org/10.1038/nmeth.1935]
[159]
Shapiro, J.A.; von Sternberg, R. Why repetitive DNA is essential to genome function. Biol. Rev. Camb. Philos. Soc., 2005, 80(2), 227-250.
[http://dx.doi.org/10.1017/S1464793104006657] [PMID: 15921050]
[160]
Makałowski, W. Genomic scrap yard: How genomes utilize all that junk. Gene, 2000, 259(1-2), 61-67.
[http://dx.doi.org/10.1016/S0378-1119(00)00436-4] [PMID: 11163962]
[161]
Smit, AFA; Hubley, R & G. RepeatMasker. RepeatMasker Open- 40. Available from: http://www.repeatmasker.org/
[162]
Boeva, V.; Regnier, M.; Papatsenko, D.; Makeev, V. Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics, 2006, 22(6), 676-684.
[http://dx.doi.org/10.1093/bioinformatics/btk032] [PMID: 16403795]
[163]
Bzymek, M.; Lovett, S.T. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8319-8325.
[http://dx.doi.org/10.1073/pnas.111008398] [PMID: 11459970]
[164]
RefSeq non-redundant proteins. Available from: https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
[165]
Uniprot. Available from: https://www.uniprot.org/
[166]
Pertsemlidis, A.; Fondon, J.W. III Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol., 2001, 2(10) z/9.3%3A_BLAST_algorithms_are_used_to_search_data base
[167]
BLAST Basic Local Alignment Search Tool., Available from:https://blast.ncbi.nlm.nih.gov./
[169]
Simopoulos, A.P.; Ordovas, J.M. Nutrigenetics and Nutrigenomics. In: World Rev. Nutri. Diete; , 2004; 93, pp. 99-133. Available from:https://www.karger.com/Book/Toc/230243
[170]
Sharma, P.; Dwivedi, S. Nutrigenomics and Nutrigenetics: New insight in disease prevention and cure. Indian J. Clin. Biochem., 2017, 32(4), 371-373.
[http://dx.doi.org/10.1007/s12291-017-0699-5] [PMID: 29062169]
[171]
Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients, 2017, 9(12), 1-18.
[http://dx.doi.org/10.3390/nu9121310] [PMID: 29194424]
[172]
Ronteltap, A.; van Trijp, H.; Berezowska, A.; Goossens, J. Nutrigenomics-based personalised nutritional advice: In search of a business model? Genes Nutr., 2013, 8(2), 153-163.
[http://dx.doi.org/10.1007/s12263-012-0308-4] [PMID: 22903899]
[173]
Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy