Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Advanced Plasmonic Nanosensors for Monitoring of Environmental Pollutants

Author(s): Duygu Çimen, Nilay Bereli and Adil Denizli*

Volume 19, Issue 1, 2023

Published on: 25 October, 2022

Page: [2 - 17] Pages: 16

DOI: 10.2174/1573411018666220618155324

Price: $65

Abstract

Background: Water is polluted daily with biological and chemical toxins that can seriously threaten human health, animals and ecosystems. The regular identification and monitoring of biological and chemical toxins in water resources are the first steps of the preventive method. The devices used in traditional detection methods such as adsorption and chromatography combined with mass spectrometry are not easy to transport for analysis and involve laborious preliminary sample preparation steps. However, the developments in nanosensors prepared with nanomaterials provide solutions to these challenges. Nanomaterials such as gold nanoparticles, graphene and quantum dots are often preferred for the surface preparation of plasmonic nanosensors for the selective, sensitive and label-free detection of very low concentrations of pollutants in water.

Methods: There are different plasmonic nanosensors such as electrochemical, colorimetric and optical sensors prepared using different nanomaterials for the determination of environmental pollutants. These serious nanosensors have many advantages and disadvantages. In this review, the use of different nanomaterials in different types of plasmonic nanosensors for the determination of environmental pollutants, their modifications and their effects on performance in terms of signal enhancement will also be discussed.

Results: When the studies in the literature are examined, although many articles have been published on the detection of pollutants in water, the number of publications specific to nanomaterial based plasmonic nanosensors for detection is quite limited. In this review, we focused on using different nanomaterials to prepare nanosensor surfaces for the detection of environmental pollutants and the preparation, optimization, experimental analysis and application areas of different plasmonic nanosensors made in the literature for detection methods.

Conclusion: Recently, nanomaterials such as gold nanoparticles, graphene and quantum dots have been preferred for the preparation of surfaces in plasmonic nanosensors. Nanomaterials have important plasmonic properties and are preferred for the selective, sensitive and label-free detection of trace pollutants in water. In studies conducted in the literature, it has been observed that environmental pollutants such as toxins, bacteria, heavy metal ions, and pesticides, especially in water, are determined and analyzed. In this review, it was observed that the low detection limit and sensitive and selective analyses were performed with nanomaterial-based nanosensors. The current review includes the preparation and application studies of nanomaterial based plasmonic nanosensors, especially for the detection and quantification of various trace pollutants in water.

Keywords: Plasmonic nanosensor, environmental pollutants, pollution control, ecosystem, review.

Graphical Abstract

[1]
Hoffman, J.B.; Hennig, B. Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann. N. Y. Acad. Sci., 2017, 1398(1), 99-107.
[http://dx.doi.org/10.1111/nyas.13365] [PMID: 28574588]
[2]
Heyer, D.B.; Meredith, R.M. Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. Neurotoxicology, 2017, 58, 23-41.
[http://dx.doi.org/10.1016/j.neuro.2016.10.017] [PMID: 27825840]
[3]
Pandey, S. Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci. Adv. Mater. Devices, 2016, 1(4), 431-453.
[http://dx.doi.org/10.1016/j.jsamd.2016.10.005]
[4]
Pandey, S.; Ramontja, J. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor. Int. J. Biol. Macromol., 2016, 89, 89-98.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.055] [PMID: 27118045]
[5]
Pandey, S.; Goswami, G.K.; Okoro, H.K.; Fosso-Kankeu, E.E. Carbon Nanotubes in the 21st Century: An Advancement in Real TimeMonitoring and Control of Environmental Water, Nano and Bio-Based Technologies for Wastewater Treatment: Prediction and Control Tools for the Dispersion of Pollutants in the Environment;; Fosso-Kankeu, E, Ed.; , 2019, pp. 265-301.
[6]
Li, P.H.; Hur, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit. Rev. Environ. Sci. Technol., 2017, 47(3), 131-154.
[http://dx.doi.org/10.1080/10643389.2017.1309186]
[7]
Dago, A.; Arino, C.; Diaz-Cruz, J.M.; Esteban, M. Analysis of phytochelatins and Hg-phytochelatin complexes in Hordeum vulgare plants stressed with Hg and Cd: HPLC study with amperometric detection. Int. J. Environ. Anal. Chem., 2014, 94(7), 668-678.
[http://dx.doi.org/10.1080/03067319.2013.864649]
[8]
Plassmann, M.M.; Schmidt, M.; Brack, W.; Krauss, M. Detecting a wide range of environmental contaminants in human blood samples-combining QuEChERS with LC-MS and GC-MS methods. Anal. Bioanal. Chem., 2015, 407(23), 7047-7054.
[http://dx.doi.org/10.1007/s00216-015-8857-1] [PMID: 26206704]
[9]
Pourreza, N.; Rastegarzadeh, S.; Larki, A. Simultaneous preconcentration of Cd(II), Cu(II) and Pb(II) on Nano-TiO2 modified with 2-mercaptobenzothiazole prior to flame atomic absorption spectrometric determination. J. Ind. Eng. Chem., 2014, 20(5), 2680-2686.
[http://dx.doi.org/10.1016/j.jiec.2013.10.055]
[10]
Hashemi, B.; Zohrabi, P.; Kim, K.H.; Shamsipur, M.; Deep, A.; Hong, J. Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. TrAC. Trends Analyt. Chem., 2017, 97, 83-95.
[http://dx.doi.org/10.1016/j.trac.2017.08.014]
[11]
Camilleri, J.; Baudot, R.; Wiest, L.; Vulliet, E.; Cren-Olive, C.; Daniele, G. Multiresidue fully automated online SPE- HPLC-MS/MS method for the quantification of endocrine- disrupting and pharmaceutical compounds at trace level in surface water. Int. J. Environ. Anal. Chem., 2015, 95(1), 67-81.
[http://dx.doi.org/10.1080/03067319.2014.983494]
[12]
Long, F.; Zhu, A.; Shi, H. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel), 2013, 13(10), 13928-13948.
[http://dx.doi.org/10.3390/s131013928] [PMID: 24132229]
[13]
Daniyal, W.M.E.M.M.; Fen, Y.W.; Fauzi, N.I.M.; Hashim, H.S.; Ramdzan, N.S.M.; Omar, N.A.S. Recent advances in surface plasmon resonance optical sensors for potential application in environmental monitoring. Sens. Mater., 2020, 32(12), 4191-4200.
[http://dx.doi.org/10.18494/SAM.2020.3204]
[14]
Banerji, S.; Peng, W.; Kim, Y.C.; Menegazzo, N.; Booksh, K.S. Evaluation of polymer coatings for ammonia vapor sensing with surface plasmon resonance spectroscopy. Sens. Actuators B Chem., 2010, 147(1), 255-262.
[http://dx.doi.org/10.1016/j.snb.2010.02.015]
[15]
Rajan, J.; Chand, S.; Gupta, B.D. Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sens. Actuators B Chem., 2007, 123(2), 661-666.
[http://dx.doi.org/10.1016/j.snb.2006.10.001]
[16]
Pandey, S.; Goswami, G.K.; Nanda, K.K. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int. J. Biol. Macromol., 2012, 51(4), 583-589.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.033] [PMID: 22750580]
[17]
Pandey, S.; Goswami, G.K.; Nanda, K.K. Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor. Carbohydr. Polym., 2013, 94(1), 229-234.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.009] [PMID: 23544533]
[18]
Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A Necessity in the field of sensing-A review. Fiber Integr. Opt., 2021, 40(1), 14-47.
[http://dx.doi.org/10.1080/01468030.2021.1902590]
[19]
Jalilzadeh, M.; Çimen, D.; Özgür, E.; Esen, C.; Denizli, A. Design and preparation of imprinted surface plasmon resonance (SPR) nanosensor for detection of Zn(II) ions. J Macromol Sci. A, 2019, 9, 877-886.
[20]
Wood, W.R. XLII, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond., 1902, 18(1), 269-271.
[http://dx.doi.org/10.1088/1478-7814/18/1/325]
[21]
Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216(4), 398-410.
[http://dx.doi.org/10.1007/BF01391532]
[22]
Kretschmann, E.; Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Naturforsch, 1968, A23(12), 2135-2136.
[http://dx.doi.org/10.1515/zna-1968-1247]
[23]
Liedberg, B.; Nylander, C.; Lundsrom, I. Surface-plasmon resonance for gas detection and biosensing. Sens. Actuators, 1983, 4, 229-304.
[http://dx.doi.org/10.1016/0250-6874(83)85036-7]
[24]
Stewart, M.E.; Anderton, C.R.; Thompson, L.B.; Maria, J.; Gray, S.K.; Rogers, J.A.; Nuzzo, R.G. Nanostructured plasmonic sensors. Chem. Rev., 2008, 108(2), 494-521.
[http://dx.doi.org/10.1021/cr068126n] [PMID: 18229956]
[25]
Masson, J.F. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst (Lond.), 2020, 145(11), 3776-3800.
[http://dx.doi.org/10.1039/D0AN00316F] [PMID: 32374303]
[26]
Zhan, C.; Liu, B.W.; Tian, Z.Q.; Ren, B. Determining the interfacial refractive index via ultrasensitive plasmonic sensors. J. Am. Chem. Soc., 2020, 142(25), 10905-10909.
[http://dx.doi.org/10.1021/jacs.0c01907] [PMID: 32510211]
[27]
Valsecchi, C.; Brolo, A.G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir, 2013, 29(19), 5638-5649.
[http://dx.doi.org/10.1021/la400085r] [PMID: 23488664]
[28]
Shankaran, D.R.; Gobi, K.V.; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem., 2007, 121(1), 158-177.
[http://dx.doi.org/10.1016/j.snb.2006.09.014]
[29]
Goode, J.A.; Rushworth, J.V.H.; Millner, P.A. Biosensor regeneration: A review of common techniques and outcomes. Langmuir, 2015, 31(23), 6267-6276.
[http://dx.doi.org/10.1021/la503533g] [PMID: 25402969]
[30]
Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron., 2002, 17(6-7), 441-456.
[http://dx.doi.org/10.1016/S0956-5663(01)00313-X] [PMID: 11959464]
[31]
Prabowo, B.A.; Purwidyantri, A.; Liu, K.C. Surface plasmon resonance optical sensor: A review on light source technology. Biosensors (Basel), 2018, 8(3), 80.
[http://dx.doi.org/10.3390/bios8030080] [PMID: 30149679]
[32]
Soler, M.; Lechuga, L.M. Principles, technologies, and applications of plasmonic biosensors. J. Appl. Phys., 2021, 129(11), 111102.
[http://dx.doi.org/10.1063/5.0042811]
[33]
Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem., 2012, 84(2), 685-707.
[http://dx.doi.org/10.1021/ac202878q] [PMID: 22044045]
[34]
Rovina, K.; Siddiquee, S. Electrochemical sensor based rapid determination of melamine using ionic liquid/zinc oxide nanoparticles/chitosan/gold electrode. Food Control, 2016, 59, 801-808.
[http://dx.doi.org/10.1016/j.foodcont.2015.07.009]
[35]
Shen, L.L.; Zhang, G.R.; Li, W.; Biesalski, M.; Etzold, B.J.M. Modifier-free microfluidic electrochemical sensor for heavy-metal detection. ACS Omega, 2017, 2(8), 4593-4603.
[http://dx.doi.org/10.1021/acsomega.7b00611] [PMID: 28884162]
[36]
Rudnitskaya, A.; Legin, A.; Seleznev, B.; Kirsanov, D.; Vlasov, Y. Detection of ultra-low activities of heavy metal ions by an array of potentiometric chemical sensors. Mikrochim. Acta, 2008, 163(1-2), 71-80.
[http://dx.doi.org/10.1007/s00604-007-0900-2]
[37]
Şener, G.; Uzun, L.; Denizli, A. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl. Mater. Interfaces, 2014, 6(21), 18395-18400.
[http://dx.doi.org/10.1021/am5071283] [PMID: 25330256]
[38]
Kumar, V.V.; Anthony, S.P. Silver nanoparticles based selective colorimetric sensor for Cd(II), Hg(II) and Pb(II) ions: Tuning sensitivity and selectivity using co-stabilizing agents. Sens. Actuators B Chem., 2014, 191, 31-36.
[http://dx.doi.org/10.1016/j.snb.2013.09.089]
[39]
Dodson, S.L.; Cao, C.; Zaribafzadeh, H.; Li, S.; Xiong, Q. Nanoplasmonic biosensors: Current perspectives. Biosens. Bioelectron., 2015, 63, 472.
[http://dx.doi.org/10.1016/j.bios.2014.07.083] [PMID: 25129509]
[40]
Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[41]
Bera, D.; Qian, L.; Tseng, T.K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials (Basel), 2010, 3(4), 2260-2345.
[http://dx.doi.org/10.3390/ma3042260]
[42]
Frigerio, C.; Ribeiro, D.S.; Rodrigues, S.S.M.; Abreu, V.L.; Barbosa, J.A.; Prior, J.A.; Marques, K.L.; Santos, J.L. Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal. Chim. Acta, 2012, 735, 9-22. [http://dx.doi.org/10.1016/j.aca.2012.04.042]
[PMID: 22713912]
[43]
Riu, J.; Maroto, A.; Rius, F.X. Nanosensors in environmental analysis. Talanta, 2006, 69(2), 288-301.
[http://dx.doi.org/10.1016/j.talanta.2005.09.045] [PMID: 18970568]
[44]
Duan, J.; Jiang, X.; Ni, S.; Yang, M.; Zhan, J. Facile synthesis of N-acetyl-L-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Talanta, 2011, 85(4), 1738-1743.
[http://dx.doi.org/10.1016/j.talanta.2011.06.071] [PMID: 21872012]
[45]
Shirani, M.P.; Rezaei, B.; Ensafi, A.A.; Ramezani, M. Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chem., 2021, 339, 127920.
[http://dx.doi.org/10.1016/j.foodchem.2020.127920] [PMID: 32877812]
[46]
Sadani, K.; Nag, P.; Mukherji, S. LSPR based optical fiber sensor with chitosan capped gold nanoparticles on BSA for trace detection of Hg (II) in water, soil and food samples. Biosens. Bioelectron., 2019, 134, 90-96.
[http://dx.doi.org/10.1016/j.bios.2019.03.046] [PMID: 30959393]
[47]
Kong, R.M.; Zhang, X.B.; Zhang, L.L.; Jin, X.Y.; Huan, S.Y.; Shen, G.L.; Yu, R.Q. An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier. Chem. Commun. (Camb.), 2009, 37(37), 5633-5635.
[http://dx.doi.org/10.1039/b911163h] [PMID: 19753381]
[48]
Qian, S.; Lin, M.; Ji, W.; Yuan, H.; Zhang, Y.; Jing, Z.; Zhao, J.; Masson, J-F.; Peng, W. Boronic acid functionalized au nanoparticles for selective microrna signal amplification in fiber-optic surface plasmon resonance sensing system. ACS Sens., 2018, 3(5), 929-935.
[http://dx.doi.org/10.1021/acssensors.7b00871] [PMID: 29741084]
[49]
Yuan, H.; Ji, W.; Chu, S.; Liu, Q.; Guang, J.; Sun, G.; Zhang, Y.; Han, X.; Masson, J-F.; Peng, W. Au nanoparticles as label-free competitive reporters for sensitivity enhanced fiber-optic SPR heparin sensor. Biosens. Bioelectron., 2020, 154, 112039.
[http://dx.doi.org/10.1016/j.bios.2020.112039] [PMID: 32056956]
[50]
Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L. Nanotechnology and biosensors. Biotechnol. Adv., 2004, 22(7), 505-518.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[51]
Sagadevan, S.; Periasamy, M. Recent trends in nanobiosensors and their applications a review. Rev. Adv. Mater. Sci., 2014, 36, 62-69.
[52]
Wan, H.; Sun, Q.; Li, H.; Sun, F.; Hu, N.; Wang, P. Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens. Actuators B Chem., 2015, 209, 336-342.
[http://dx.doi.org/10.1016/j.snb.2014.11.127]
[53]
Anwar, A.; Minhaz, A.; Khan, N.A.; Kalantari, K.; Afifi, A.B.M.; Shah, M.R. Synthesis of gold nanoparticles stabilized by a pyrazinium thioacetate ligand: A new colorimetric nanosensor for detection of heavy metal Pd(II). Sens. Actuators B Chem., 2018, 257, 875-881.
[http://dx.doi.org/10.1016/j.snb.2017.11.040]
[54]
Yuan, H.; Sun, G.; Peng, W.; Ji, W.; Chu, S.; Liu, Q.; Liang, Y. Thymine-functionalized gold nanoparticles (AuNPs) for a highly sensitive fiber-optic surface plasmon resonance mercury ion nanosensor. Nanomaterials (Basel), 2021, 11(2), 397.
[http://dx.doi.org/10.3390/nano11020397] [PMID: 33557300]
[55]
Xiang, Y.; Tong, A.; Lu, Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J. Am. Chem. Soc., 2009, 131(42), 15352-15357.
[http://dx.doi.org/10.1021/ja905854a] [PMID: 19807110]
[56]
Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 2008, 100(1), 016602.
[http://dx.doi.org/10.1103/PhysRevLett.100.016602] [PMID: 18232798]
[57]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[58]
Cai, W.; Zhu, Y.; Li, X.; Piner, R.D.; Ruoff, R.S. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett., 2009, 95(12), 123115.
[http://dx.doi.org/10.1063/1.3220807]
[59]
Wei, Y.; Gao, C.; Meng, F.L.; Li, H.H.; Wang, L.; Liu, J.H.; Huang, X.J. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference. J. Phys. Chem. C, 2012, 116(1), 1034-1041.
[http://dx.doi.org/10.1021/jp209805c]
[60]
Raril, C.; Manjunatha, J.G. Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J. Anal. Sci. Technol., 2020, 11(1), 3.
[http://dx.doi.org/10.1186/s40543-019-0194-0]
[61]
Okoro, H.K.; Ige, J.O.; Iyiola, O.A.; Pandey, S.; Lawal, I.A.; Zvinowanda, C.; Ngila, C.J. Comprehensıve revıews on adverse health effects of human exposure to endocrıne-dısruptıng chemıcals. fresenius environ. bull. Adv. Food Sci., 2017, 26, 4623-4636.
[62]
Pandey, S.; Mishra, S.B. Chemical Nanosensors for Monitoring Environmental Pollution. Application of Nanotechnology in Water Research; Mishra, A.K., Ed.; Wiley, 2014, pp. 309-332.
[63]
Yan, K.; Kannan, P.K.; Doonyapisut, D.; Wu, K.; Chung, C.H.; Zhang, J. Advanced functional electroactive and photoactive materials for monitoring the environmental pollutants. Adv. Funct. Mater., 2021, 31(12), 2008227.
[http://dx.doi.org/10.1002/adfm.202008227]
[64]
Zhang, P.; Chen, Y.P.; Wang, W.; Shen, Y.; Guo, J.S. Surface plasmon resonance for water pollutant detection and water process analysis. Trends Analyt. Chem., 2016, 85, 153-165.
[http://dx.doi.org/10.1016/j.trac.2016.09.003]
[65]
Sohrabi, H.; Hemmati, A.; Majidi, M.R.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; Guardia, M. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. Trends Analyt. Chem., 2021, 143, 116344.
[http://dx.doi.org/10.1016/j.trac.2021.116344]
[66]
Mahmoudpour, M.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Homayouni-Rad, A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens. Bioelectron., 2019, 127, 72-84.
[http://dx.doi.org/10.1016/j.bios.2018.12.023] [PMID: 30594077]
[67]
Chocarro-Ruiz, B.; Fernández-Gavela, A.; Herranz, S.; Lechuga, L.M. Nanophotonic label-free biosensors for environmental monitoring. Curr. Opin. Biotechnol., 2017, 45, 175-183.
[http://dx.doi.org/10.1016/j.copbio.2017.03.016] [PMID: 28458110]
[68]
Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut., 2017, 222, 1-9.
[http://dx.doi.org/10.1016/j.envpol.2016.11.045] [PMID: 28086130]
[69]
Kuswandi, B. Nanobiosensor approaches for pollutant monitoring. Environ. Chem. Lett., 2019, 17(2), 975-990.
[http://dx.doi.org/10.1007/s10311-018-00853-x]
[70]
Brahmkhatri, V.; Parimal Pandit, P.; Rananaware, P.; D’Souza, A.; Kurkuri, M.D. Recent progress in detection of chemical and biological toxins in water using plasmonic nanosensors. Trends Environ. Anal. Chem, 2021, 30, e00117.
[http://dx.doi.org/10.1016/j.teac.2021.e00117]
[71]
Yang, S.Z.; Liu, Q.A.; Liu, Y.L.; Weng, G.J.; Zhu, J.; Li, J.J. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim. Acta, 2021, 188(8), 258.
[http://dx.doi.org/10.1007/s00604-021-04885-z] [PMID: 34268648]
[72]
Idil, N.; Hedström, M.; Denizli, A.; Mattiasson, B. Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens. Bioelectron., 2017, 87, 807-815.
[http://dx.doi.org/10.1016/j.bios.2016.08.096] [PMID: 27657842]
[73]
Prakash, O.; Sil, S.; Verma, T.; Umapathy, S. Direct detection of bacteria using positively charged ag/au bimetallic nanoparticles: A label-free surface-enhanced raman scattering study coupled with multivariate analysis. J. Phys. Chem. C, 2020, 124(1), 861-869.
[http://dx.doi.org/10.1021/acs.jpcc.9b09311]
[74]
Arya, S.K.; Singh, A.; Naidoo, R.; Wu, P.; McDermott, M.T.; Evoy, S. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst (Lond.), 2011, 136(3), 486-492.
[http://dx.doi.org/10.1039/C0AN00697A] [PMID: 21079850]
[75]
Wang, Y.; Ye, Z.; Si, C.; Ying, Y. Subtractive inhibition assay for the detection of E. coli O157:H7 using surface plasmon resonance. Sensors (Basel), 2011, 11(3), 2728-2739.
[http://dx.doi.org/10.3390/s110302728] [PMID: 22163763]
[76]
Du, J.; Yu, Z.; Hu, Z.; Chen, J.; Zhao, J.; Bai, Y. A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles. J. Microbiol. Methods, 2021, 180, 106110.
[http://dx.doi.org/10.1016/j.mimet.2020.106110] [PMID: 33271208]
[77]
Cernat, A.; Tertis, M.; Gandouzi, I.; Bakhrouf, A.; Suciu, M.; Cristea, C. Electrochemical sensor for the rapid detection of Pseudomonas aeruginosa siderophore based on a nanocomposite platform. Electrochem. Commun., 2018, 88, 5-9.
[http://dx.doi.org/10.1016/j.elecom.2018.01.009]
[78]
Pilevar, M.; Kim, K.T.; Lee, W.H. Recent advances in biosensors for detecting viruses in water and wastewater. J. Hazard. Mater., 2021, 410, 124656.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124656] [PMID: 33308919]
[79]
Mauriz, E. Recent progress in plasmonic biosensing schemes for virus detection. Sensors (Basel), 2020, 20(17), 4745.
[http://dx.doi.org/10.3390/s20174745] [PMID: 32842601]
[80]
Vaculovicova, M.; Michalek, P.; Krizkova, S.; Macka, M.; Adam, V. Nanotechnology-based analytical approaches for detection of viruses. Anal. Methods, 2017, 9(16), 2375-2391.
[http://dx.doi.org/10.1039/C7AY00048K]
[81]
Kim, J.; Oh, S.Y.; Shukla, S.; Hong, S.B.; Heo, N.S.; Bajpai, V.K.; Chun, H.S.; Jo, C.H.; Choi, B.G.; Huh, Y.S.; Han, Y.K. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg). Biosens. Bioelectron., 2018, 107, 118-122.
[http://dx.doi.org/10.1016/j.bios.2018.02.019] [PMID: 29454301]
[82]
Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Sadrolhosseini, A.R.; Mustapha Kamil, Y.; Fauzi, N.M.; Hashim, H.S.; Mahdi, M.A. Quantitative and selective surface plasmon resonance response based on a reduced graphene oxide-polyamidoamine nanocomposite for detection of dengue virus e-proteins. Nanomaterials (Basel), 2020, 10(3), 569.
[http://dx.doi.org/10.3390/nano10030569] [PMID: 32245185]
[83]
Lee, J.; Takemura, K.; Park, E.Y. Plasmonic/magnetic graphene-based magnetofluoro-immunosensing platform for virus detection. Sens. Actuators B Chem., 2018, 276, 254-261.
[http://dx.doi.org/10.1016/j.snb.2018.08.124]
[84]
Abadian, P.N.; Yildirim, N.; Gu, A.Z.; Goluch, E.D. SPRi-based adenovirus detection using a surrogate antibody method. Biosens. Bioelectron., 2015, 74, 808-814.
[http://dx.doi.org/10.1016/j.bios.2015.07.047] [PMID: 26232675]
[85]
Wankar, S.; Turner, N.W.; Krupadam, R.J. Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking water. Biosens. Bioelectron., 2016, 82, 20-25.
[http://dx.doi.org/10.1016/j.bios.2016.03.020] [PMID: 27031187]
[86]
Barton, J.; García, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Mikrochim. Acta, 2016, 183(2), 503-517.
[http://dx.doi.org/10.1007/s00604-015-1651-0]
[87]
Bertani, P.; Lu, W. Cyanobacterial toxin biosensors for environmental monitoring and protection. Med. Novel Technol. Devices, 2021, 10, 100059.
[http://dx.doi.org/10.1016/j.medntd.2021.100059]
[88]
Lee, J.; Lee, S.; Jiang, X. Cyanobacterial toxins in freshwater and food: Important sources of exposure to humans. Annu. Rev. Food Sci. Technol., 2017, 8(1), 281-304.
[http://dx.doi.org/10.1146/annurev-food-030216-030116] [PMID: 28245155]
[89]
Çimen, D.; Bereli, N.; Denizli, A. Patulin imprinted nanoparticles decorated surface plasmon resonance chips for patulin detection. Photonic Sens., 2022, 12(2), 117-129.
[http://dx.doi.org/10.1007/s13320-021-0638-1]
[90]
Herranz, S.; Bocková, M.; Marazuela, M.D.; Homola, J.; Moreno-Bondi, M.C. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal. Chem., 2010, 398(6), 2625-2634.
[http://dx.doi.org/10.1007/s00216-010-3856-8] [PMID: 20532874]
[91]
Dong, J.; Gao, N.; Peng, Y.; Guo, C.; Lv, Z.; Wang, Y.; Zhou, C.; Ning, B.; Liu, M.; Gao, Z. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Control, 2012, 25(2), 543-549.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.015]
[92]
Verdian, A. Apta-nanosensors for detection and quantitative determination of acetamiprid - A pesticide residue in food and environment. Talanta, 2018, 176, 456-464.
[http://dx.doi.org/10.1016/j.talanta.2017.08.070] [PMID: 28917776]
[93]
Dolan, T.; Howsam, P.; Parsons, D.J.; Whelan, M.J. Is the EU drinking water directive standard for pesticides in drinking water consistent with the precautionary principle? Environ. Sci. Technol., 2013, 47(10), 4999-5006.
[http://dx.doi.org/10.1021/es304955g] [PMID: 23590121]
[94]
Mahmoudpour, M.; Torbati, M.; Mousavi, M.M.; Guardia, M.; Dolatabadi, J.E.N. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. Trends Analyt. Chem., 2020, 129, 115943.
[http://dx.doi.org/10.1016/j.trac.2020.115943]
[95]
Yadav, I.C.; Devi, N.L.; Syed, J.H.; Cheng, Z.; Li, J.; Zhang, G.; Jones, K.C. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Sci. Total Environ., 2015, 511, 123-137.
[http://dx.doi.org/10.1016/j.scitotenv.2014.12.041] [PMID: 25540847]
[96]
Yılmaz, F.; Saylan, Y.; Akgönüllü, S.; Çimen, D.; Derazshamshir, A.; Bereli, N.; Denizli, A. Surface plasmon resonance based nanosensors for detection of triazinic pesticides in agricultural foods Nanotechnology in the agri-food industry Grumezescu, A.M., Ed.; Elsevier (Academic Press): Cambridge, USA 2017;, X: New pesticides and soil sensors, pp. 679-718.
[97]
Yılmaz, F.; Bereli, N.; Derazshamshir, A.; Çimen, D.; Akgönüllü, S.; Saylan, Y.; Topçu, A.A.; Denizli, A. Molecularly imprinted sensors for detecting controlled release of pesticides. In: Controlled Release of Pesticides for Sustainable Agriculture, Rakhimol K. R.,Sabu Thomas; Tatiana Volova Jayachandran, K., Ed.; Springer: London, Berlin, Zürich, 2019; pp. 207-235.
[98]
Talari, F.F.; Bozorg, A.; Faridbod, F.; Vossough, M. A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. J. Environ. Chem. Eng., 2021, 9(1), 104878.
[http://dx.doi.org/10.1016/j.jece.2020.104878]
[99]
Sahoo, D.; Mandal, A.; Mitra, T.; Chakraborty, K.; Bardhan, M.; Dasgupta, A.K. Nanosensing of pesticides by zinc oxide quantum dot: An optical and electrochemical approach for the detection of pesticides in water. J. Agric. Food Chem., 2018, 66(2), 414-423.
[http://dx.doi.org/10.1021/acs.jafc.7b04188] [PMID: 29239610]
[100]
Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Facure, M.H.M.; Correa, D.S. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Mater. Res. Express, 2020, 7(1), 015601.
[http://dx.doi.org/10.1088/2053-1591/ab5744]
[101]
Kim, H.J.; Yeji Kim, Y.; Park, S.J.; Kwon, C.; Noh, H. Development of colorimetric paper sensor for pesticide detection using competitive-inhibiting reaction. Biochip J., 2018, 12(4), 326-331.
[http://dx.doi.org/10.1007/s13206-018-2404-z]
[102]
Saylan, Y.; Akgönüllü, S.; Çimen, D.; Derazshamshir, A.; Bereli, N. Yılmaz, F.; Denizli, A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sens. Actuators B Chem., 2017, 241, 446-454.
[http://dx.doi.org/10.1016/j.snb.2016.10.017]
[103]
Amirjani, A.; Haghshenas, D.F. Ag nanostructures as the surface plasmon resonance (SPR)˗based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B Chem., 2018, 273, 1768-1779.
[http://dx.doi.org/10.1016/j.snb.2018.07.089]
[104]
Balasurya, S.; Syed, A.; Swedha, M.; Harini, G.; Elgorban, A.M.; Zaghloul, N.S.S.; Das, A.; Khan, S.S. A novel SPR based Fe@Ag core-shell nanosphere entrapped on starch matrix an optical probe for sensing of mercury(II) ion: A nanomolar detection, wide pH range and real water sample application. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 263, 120204.
[http://dx.doi.org/10.1016/j.saa.2021.120204] [PMID: 34333401]
[105]
Al-Rekabi, S.H.; Kamil, Y.M.; Bakar, M.H.A.; Fen, Y.W.; Lim, H.N.; Kanagesan, S.; Mahdi, M.A. Hydrous ferric oxide-magnetite-reduced graphene oxide nanocomposite for optical detection of arsenic using surface plasmon resonance. Opt. Laser Technol., 2019, 111, 417-423.
[http://dx.doi.org/10.1016/j.optlastec.2018.10.018]
[106]
Kim, E.J.; Chung, B.H.; Lee, H.J. Parts per trillion detection of Ni(II) ions by nanoparticle-enhanced surface plasmon resonance. Anal. Chem., 2012, 84(22), 10091-10096.
[http://dx.doi.org/10.1021/ac302584d] [PMID: 23066873]
[107]
Ma, Y.; Zheng, W.; Zhang, Y.; Li, X.; Zhao, Y. Optical fiber spr sensor with surface ion imprinting for highly sensitive and highly selective ni2+ detection. IEEE Trans. Instrum. Meas., 2021, 70, 7006006.
[http://dx.doi.org/10.1109/TIM.2021.3107052]
[108]
Bereli, N.; Çimen, D.; Yavuz, H.; Denizli, A. Sensors for the Detection of Heavy Metal Contaminants in Water and Environment.Nanosensors for Environment, Food and Agriculture. Environmental Chemistry for a Sustainable World 60;; Kumar, V.; Guleria, P; Ranjan, S; Dasgupta, N; Eric, Lichtfouse, Eds.; Springer Nature: Switzerland, 2021, 1, pp. 1-21.
[109]
Yuan, H.; Ji, W.; Chu, S.; Liu, Q.; Qian, S.; Guang, J.; Wang, J.; Han, X.; Masson, J.F.; Peng, W. Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing. ACS Sens., 2019, 4(3), 704-710.
[http://dx.doi.org/10.1021/acssensors.8b01558] [PMID: 30785267]
[110]
Hüseynli, S.; Çimen, D.; Bereli, N.; Denizli, A. Molecular imprinted based quartz crystal microbalance nanosensors for mercury detection. Glob. Chall., 2018, 3(3), 1800071.
[http://dx.doi.org/10.1002/gch2.201800071] [PMID: 31565367]
[111]
Bakhshpour, M.; Denizli, A. Highly sensitive detection of Cd(II) ions using ion-imprinted surface plasmon resonance sensors. Microchem. J., 2020, 159, 105572.
[http://dx.doi.org/10.1016/j.microc.2020.105572]
[112]
Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Eo, S.H.; Kim, S.J.; Lee, K.H. A nano sensor for sensitive and selective detection of Cu2+ based on fluorescein: Cell imaging and drinking water analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 216, 105-116.
[http://dx.doi.org/10.1016/j.saa.2019.03.021] [PMID: 30884349]
[113]
Ye, W.; Yu, M.; Wang, F.; Li, Y.; Wang, C. Multiplexed detection of heavy metal ions by single plasmonic nanosensors. Biosens. Bioelectron., 2022, 196, 113688.
[http://dx.doi.org/10.1016/j.bios.2021.113688] [PMID: 34700264]
[114]
Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Blanco-Gámez, E.A.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. A novel enzyme-based SPR strategy for detection of the antimicrobial agent chlorophene. Biosensors (Basel), 2021, 11(2), 43.
[http://dx.doi.org/10.3390/bios11020043] [PMID: 33572259]
[115]
Erdem, Ö.; Saylan, Y.; Cihangir, N.; Denizli, A. Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection. Biosens. Bioelectron., 2019, 126, 608-614.
[http://dx.doi.org/10.1016/j.bios.2018.11.030] [PMID: 30502683]
[116]
Mudgal, N.; Yupapin, P.; Ali, J.; Singh, G. BaTiO3-graphene-affinity layer-based surface plasmon resonance (SPR) biosensor for pseudomonas bacterial detection. Plasmonics, 2020, 15(5), 1221-1229.
[http://dx.doi.org/10.1007/s11468-020-01146-2]
[117]
Yılmaz, E.; Majidi, D.; Özgür, E.; Denizli, A. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sens. Actuators B Chem., 2015, 209, 714-721.
[http://dx.doi.org/10.1016/j.snb.2014.12.032]
[118]
Saylan, Y.; Erdem, Ö.; Cihangir, N.; Denizli, A. Detecting fingerprints of waterborne bacteria on a sensor. Chemosensors (Basel), 2019, 7(3), 33.
[http://dx.doi.org/10.3390/chemosensors7030033]
[119]
Xue, C.S.; Erika, G. Jiří, H. Surface plasmon resonance biosensor for the ultrasensitive detection of bisphenol A. Anal. Bioanal. Chem., 2019, 411(22), 5655-5658.
[http://dx.doi.org/10.1007/s00216-019-01996-8] [PMID: 31254055]
[120]
Hegnerová, K. Piliarik, M.; Šteinbachová, M.; Flegelová, Z.; Černohorská, H.; Homola, J. Detection of bisphenol A using a novel surface plasmon resonance biosensor. Anal. Bioanal. Chem., 2010, 398(5), 1963-1966.
[http://dx.doi.org/10.1007/s00216-010-4067-z] [PMID: 20714891]
[121]
Shaikh, H.; Sener, G.; Memon, N.; Bhanger, M.I.; Nizamani, S.M.; Üzek, R.; Denizli, A. Molecularly imprinted surface plasmon resonance (SPR) based sensing of bisphenol A for its selective detection in aqueous systems. Anal. Methods, 2015, 7(11), 4661-4670.
[http://dx.doi.org/10.1039/C5AY00541H]
[122]
Üzek, R. Sari, E.; Şenel, S.; Denizli, A.; Merkoçi, A. A nitrocellulose paper strip for fluorometric determination of bisphenol A using molecularly imprinted nanoparticles. Mikrochim. Acta, 2019, 186(4), 218.
[http://dx.doi.org/10.1007/s00604-019-3323-y] [PMID: 30847578]
[123]
Zhang, Q.; Wang, Y.; Mateescu, A.; Sergelen, K.; Kibrom, A.; Jonas, U.; Wei, T.; Dostalek, J. Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol. Talanta, 2013, 104, 149-154.
[http://dx.doi.org/10.1016/j.talanta.2012.11.017] [PMID: 23597902]
[124]
Zhang, M.; Zhu, G.; Li, T.; Lou, X.; Zhu, L. A dual-channel optical fiber sensor based on surface plasmon resonace for heavy metal ions detection in contamined water. Opt. Commun., 2020, 462, 124750.
[http://dx.doi.org/10.1016/j.optcom.2019.124750]
[125]
Pesavento, M.; Profumo, A.; Merli, D.; Cucca, L.; Zeni, L.; Cennamo, N. An optical fiber chemical sensor for the detection of copper(ii) in drinking water. Sensors (basel), 2019, 19(23), 5246.
[http://dx.doi.org/10.3390/s19235246] [PMID: 31795303]
[126]
Yılmaz, E.; Özgür, E.; Bereli, N.; Türkmen, D.; Denizli, A. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater. Sci. Eng. C, 2017, 73, 603-610.
[http://dx.doi.org/10.1016/j.msec.2016.12.090] [PMID: 28183651]
[127]
Kant, R. Surface plasmon resonance based fiber-optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Mikrochim. Acta, 2019, 187(1), 8.
[http://dx.doi.org/10.1007/s00604-019-4002-8] [PMID: 31797057]
[128]
Noori, J.S.; Mortensen, J.; Geto, A. Rapid and sensitive quantification of the pesticide lindane by polymer modified electrochemical sensor. Sensors (Basel), 2021, 21(2), 393.
[http://dx.doi.org/10.3390/s21020393] [PMID: 33429929]
[129]
Cho, H.H.; Heo, J.H.; Jung, D.H.; Kim, S.H.; Suh, S.J.; Han, K.H.; Lee, J.H. Portable au nanoparticle‐based colorimetric sensor strip for rapid on‐site detection of Cd2+ ions in potable water. Biochip J., 2021, 15(3), 276-286.
[http://dx.doi.org/10.1007/s13206-021-00029-w]
[130]
Zou, W.; Tang, Y.; Zeng, H.; Wang, C.; Wu, Y. Porous Co3O4 nanodisks as robust peroxidase mimetics in an ultrasensitive colorimetric sensor for the rapid detection of multiple heavy metal residues in environmental water samples. J. Hazard. Mater., 2021, 417, 125994.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125994] [PMID: 33992021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy