Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Treatment with Biostimulants Extracted from Salix babylonica L. Induces Drought Stress Tolerance in Zoysia tenuifolia

Author(s): Kum Chol Ri*, Jin Ui Ri and Yang Gao

Volume 11, Issue 2, 2022

Published on: 12 September, 2022

Page: [148 - 157] Pages: 10

DOI: 10.2174/2211550111666220617125823

Price: $65

Abstract

Background: Drought stress limits the growth of plants and even impairs their physiological functions. Under water stress, Zoysia tenuifolia has limited biomass, plant height, and leaf length, as well as decreased protective enzyme activity, while it induces the accumulation of large amounts of osmotic regulators. If a plant is in a severely water-deprived environment, its growth is clearly inhibited, and it may even die.

Objective: The purpose of this study was to evaluate the effect of a biostimulant, a willow extract isolated from the bark of S.babylonica, on the drought stress of Z. tenuifolia.

Methods: First, the change in the content of salicylic acid was evaluated through the oxidation process by potassium permanganate after acid hydrolysis of the willow extract. Second, through leaf spraying with Z. tenuifolia, the improvement effect on drought stress according to a reasonable concentration of willow extract was observed.

Results: In this paper, it was found that oxidation of potassium permanganate after acid hydrolysis of willow extract significantly increased the content of salicylic acid, a plant growth regulator, and that leaf spray remarkably improved the physiological index of Z. tenuifolia under drought stress conditions.

Conclusion: This study provides important information on the identification and utilization of willow resources as a safe plant protector and growth regulator, and is the first study to report on the use of these willow extracts as a source of liquid extracts acting as biostimulants in Z. tenuifolia cultivation.

Keywords: Salicylic acid, Drought stress, Biostimulant, Growth regulator, Hydrolysis

Graphical Abstract

[1]
Xu C, Li X, Zhang L. The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. PLoS One 2013; 8(7): e68214.
[http://dx.doi.org/10.1371/journal.pone.0068214] [PMID: 23844172]
[2]
Li MR, Li HQ, Hu XY, Pan XP, Wu GJ. An agrobacterium tumefaciens-mediated transformation system using callus of Zoysia tenuifolia willd. extrin. Plant Cell Tissue Organ Cult 2010; 102(3): 321-7.
[http://dx.doi.org/10.1007/s11240-010-9736-2]
[3]
Zhang W, Nan ZB, Liu GD, Hu MJ, Gao ZY, Li M. First re-port of leaf and sheath spot caused by Waitea circinata var. zeae on Paspalum vaginatum and Zoysia tenuifolia in China. Plant Dis 2014; 98(10): 1436.
[http://dx.doi.org/10.1094/PDIS-04-14-0404-PDN] [PMID: 30703946]
[4]
Wang W, Wang X, Huang M, et al. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front Plant Sci 2018; 9: 1137.
[http://dx.doi.org/10.3389/fpls.2018.01137] [PMID: 30123235]
[5]
Pasternak T, Groot EP, Kazantsev FV, et al. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol 2019; 180(3): 1725-39.
[http://dx.doi.org/10.1104/pp.19.00130] [PMID: 31036755]
[6]
Manzoor K, Ilyas N, Batool N, Ahmad B, Arshad M. Effect of salicylic acid on the growth and physiological characteristics of maize under stress conditions. J Chem Soc Pak 2015; 37: 588-93.
[7]
Kovácik J, Klejdus B, Hedbavny J, Bačkor M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matri-caria chamomilla plants. Ecotoxicology 2009; 18(5): 544-54.
[http://dx.doi.org/10.1007/s10646-009-0312-7] [PMID: 19381803]
[8]
Krauze-Baranowska M, Pobłocka-Olech L, Głód D, Wiwart M, Zieliński J, Migas P. HPLC of flavanones and chalcones in different species and clones of Salix. Acta Pol Pharm 2013; 70(1): 27-34.
[PMID: 23610956]
[9]
Jendoubi W, Harbaoui K, Hamada W. Salicylic acid induced resistance against Fusarium oxysporum f.s. pradicis lycoper-cisi in hydroponic grown tomato plants. J New Sci. Agric Biotechnol 2017; 21: 985-95.
[10]
Janda T, Szalai G, Tari I, Paaldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 1999; 208(2): 175-80.
[http://dx.doi.org/10.1007/s004250050547]
[11]
Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ek-chaweng K, Churngchow N. Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. Int J Mol Sci 2018; 19(7): 1883.
[http://dx.doi.org/10.3390/ijms19071883] [PMID: 29949940]
[12]
Le TT, Thumanu K, Wongkaew S, et al. Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. J Plant Interact 2017; 12(1): 108-20.
[http://dx.doi.org/10.1080/17429145.2017.1291859]
[13]
Koo YM, Heo AY, Choi HW. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J 2020; 36(1): 1-10.
[http://dx.doi.org/10.5423/PPJ.RW.12.2019.0295] [PMID: 32089657]
[14]
Mutlu-Durak H, Yildiz Kutman B. Seed treatment with bi-ostimulants extracted from weeping willow (Salix babylonica) enhances early maize growth. Plants 2021; 10(7): 1449.
[http://dx.doi.org/10.3390/plants10071449] [PMID: 34371652]
[15]
Wise K, Gill H, Jamie SP. Willow bark extract and the bi-ostimulant complex Root Nectar® increase propagation effi-ciency in chrysanthemum and lavender cuttings. Sci Hortic (Amsterdam) 2020; 263: 109108.
[http://dx.doi.org/10.1016/j.scienta.2019.109108]
[16]
Paoulomi C, Bodhisattwa C, Subhangkar N. Aloe vera plant: Review with significant pharmacological activities. Mintage J Pharma Med Sci 2013; 2(3): 21-4.
[17]
Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mecha-nisms in plants. Front Plant Sci 2015; 6: 462.
[http://dx.doi.org/10.3389/fpls.2015.00462] [PMID: 26175738]
[18]
Sulima P, Przyborowski JA, Wiwart M. Willow bark-herbal raw material harvested from plants cultivated on arable lands. Herba Pol 2006; 52: 18-25.
[19]
Ri KC, Ri JY. Hydrolysis of willow (Salix babylonica L.) extract alleviates drought stress in Houttuynia cordata Thunb. Theor Exp Plant Physiol 2022; 34(1): 71-81.
[http://dx.doi.org/10.1007/s40626-021-00230-0]
[20]
Sulima P, Krauze-Baranowska M, Przyborowski JA. Varia-tions in the chemical composition and content of salicylic gly-cosides in the bark of Salix purpurea from natural locations and their significance for breeding. Fitoterapia 2017; 118: 118-25.
[http://dx.doi.org/10.1016/j.fitote.2017.03.005] [PMID: 28315389]
[21]
Pobłocka-Olech L, van Nederkassel AM, Vander Heyden Y, Krauze-Baranowska M, Glód D, Baczek T. Chromatographic analysis of salicylic compounds in different species of the genus Salix. J Sep Sci 2007; 30(17): 2958-66.
[http://dx.doi.org/10.1002/jssc.200700137] [PMID: 17880029]
[22]
Hassanein AM. Factors influencing plant propagation effi-ciency via stem cuttings. J Hortic Sci Ornam Plants 2013; 5: 171-6.
[23]
Kammerer B, Kahlich R, Biegert C, Gleiter CH, Heide L. HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem Anal 2005; 16(6): 470-8.
[http://dx.doi.org/10.1002/pca.873] [PMID: 16315493]
[24]
Chen JH, Sun H, Wen J, Yang YP. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon 2010; 59(1): 29-37.
[http://dx.doi.org/10.1002/tax.591004]
[25]
Biegert C, Wagner I, Lüdtke R, et al. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: Results of 2 randomized double-blind controlled trials. J Rheumatol 2004; 31(11): 2121-30.
[PMID: 15517622]
[26]
Durak A, Gawlik-Dziki U. The study of interactions between active compounds of coffee and willow (Salix sp.) bark water extract. BioMed Res Int 2014; 2014: 386953.
[http://dx.doi.org/10.1155/2014/386953] [PMID: 25013777]
[27]
Yousif DYM. Effects sprayed solution of salicylic acid to prevent of wilt disease caused by Fussarium oxysporium. J Phys Conf Ser 2018; 1003(1): 012001.
[http://dx.doi.org/10.1088/1742-6596/1003/1/012001]
[28]
Förster N, Ulrichs C, Zander M, Kätzel R, Mewis I. Factors influencing the variability of antioxidative phenolic glycosides in Salix species. J Agric Food Chem 2010; 58(14): 8205-10.
[http://dx.doi.org/10.1021/jf100887v] [PMID: 20593762]
[29]
Hah DS, Kim CH, Ryu JD, Kim EK, Kim JS. Evaluation of protective effects of Houttuynia cordata on H2O2-induced ox-idative DNA damage using an alkaline comet assay in human HepG2 cells. Toxicol Res 2007; 23(1): 25-31.
[http://dx.doi.org/10.5487/TR.2007.23.1.025]
[30]
Zhang Y, Li X. Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol 2019; 50: 29-36.
[http://dx.doi.org/10.1016/j.pbi.2019.02.004] [PMID: 30901692]
[31]
Li L, Zou Y. Induction of disease resistance by salicylic acid and calcium ion against Botrytis cinerea in tomato (Lycopersi-con esculentum). Emir J Food Agric 2017; 29(1): 78-82.
[http://dx.doi.org/10.9755/ejfa.2016-10-1515]
[32]
Joon SC, Geun MY. Low temperature and salt tolerances of native zoysiagrass (Zoysia spp.) collected in south korea. Weed Turfgrass Sci 2011; 25(2): 138-46.
[33]
Kim CS, Subedi L, Park KJ, et al. Salicin derivatives from Salix glandulosa and their biological activities. Fitoterapia 2015; 106: 147-52.
[http://dx.doi.org/10.1016/j.fitote.2015.08.013] [PMID: 26344424]
[34]
Petrek J, Havel L, Petrlov J, et al. Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ J Plant Physiol 2007; 54(4): 553-8.
[http://dx.doi.org/10.1134/S1021443707040188]
[35]
Al-Amad I, Qrunfleh M. Effect of babylon weeping willow (Salix babylonica L.) extracts on rooting of stem cuttings of olive (Olea europaea L.)’ Nabali’. Acta Hortic 2016; (1130): 391-6.
[http://dx.doi.org/10.17660/ActaHortic.2016.1130.58]
[36]
Ali S, Ganai BA, Kamili AN, et al. Pathogenesis-related pro-teins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 2018; 212-213: 29-37.
[http://dx.doi.org/10.1016/j.micres.2018.04.008] [PMID: 29853166]
[37]
Choi HW, Wang L, Powell AF, et al. A genome-wide screen for human salicylic acid (SA)-binding proteins reveals targets through which SA may influence development of various dis-eases. Sci Rep 2019; 9(1): 13084.
[http://dx.doi.org/10.1038/s41598-019-49234-6] [PMID: 31511554]
[38]
Velikovi DV, Dimitrijevi AS, Bihelovi FJ, Jankov RM, Mi-losavi N. Study of the kinetic parameters for synthesis and hydrolysis of pharmacologically active salicin isomer cata-lyzed by baker’s yeast maltase. Russ J Phys Chem A Focus Chem 2011; 85(13): 2317-21.
[http://dx.doi.org/10.1134/S0036024411130346]
[39]
Wagner I, Greim C, Laufer S, Heide L, Gleiter CH. Influence of willow bark extract on cyclooxygenase activity and on tu-mor necrosis factor alpha or interleukin 1 beta release in vitro and ex vivo. Clin Pharmacol Ther 2003; 73(3): 272-4.
[http://dx.doi.org/10.1067/mcp.2003.32] [PMID: 12621392]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy