Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

The Potential of Microbubbles as a Cancer Eradication Theranostic Agent

Author(s): Atul Chaudhary, Aseem Setia, Dilpreet Singh* and Sankha Bhattacharya*

Volume 10, Issue 3, 2022

Published on: 26 August, 2022

Page: [194 - 209] Pages: 16

DOI: 10.2174/2211738510666220615154841

Price: $65

Abstract

Microbubbles are a new kind of delivery system that may be used to treat a variety of illnesses, including cancer. Microbubble is a non-invasive technology that uses microscopic gasfilled colloidal particle bubbles with a size range of less than 100 micrometres. This unique carrier has been used in a variety of applications in the last decade, ranging from basic targeting to ultrasound- mediated drug delivery. The oxygen in the microbubble lasts longer in the water. The drug release mechanism is highly regulated, since it releases the medication only in the appropriate areas, increasing the local impact while reducing drug toxicity. This carrier is exceptional in cancer medication delivery because of its sustained stability, encapsulation efficiency, and drug targeting. In this paper, we provide a comprehensive analysis of microbubble technology, including its manufacturing techniques and use in cancer medication delivery.

Keywords: Cancer, microbubbles, drug targeting, coaxial electrohydrodynamic atomisation, novel delivery, magnetic resonance imaging

Graphical Abstract

[1]
Wang Z, Huang H, Chen Y, Zheng Y. Current strategies for microbubble-based thrombus targeting: Activation-specific epitopes and small molecular ligands. Front Bioeng Biotechnol 2021; 9: 699450.
[http://dx.doi.org/10.3389/fbioe.2021.699450] [PMID: 34336810]
[2]
Frigenti G, Cavigli L, Ratto F, et al. Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles. Opt Express 2021; 29(20): 31130-6.
[http://dx.doi.org/10.1364/OE.434868] [PMID: 34615212]
[3]
Lee YN, Wu YJ, Lee HI, et al. Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells. Sci Rep 2021; 11(1): 13449.
[http://dx.doi.org/10.1038/s41598-021-92754-3] [PMID: 34188086]
[4]
Omata D, Munakata L, Maruyama K, Suzuki R. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrason 2022.
[http://dx.doi.org/10.1007/s10396-022-01201-x]
[5]
Peng C, Wu Y, Yang Y, et al. Using ultrasound-targeted microbubble destruction to enhance radiotherapy of glioblastoma. J Cancer Res Clin Oncol 2021; 147(5): 1355-63.
[http://dx.doi.org/10.1007/s00432-021-03542-5] [PMID: 33547949]
[6]
Diakova GB, Wang M, Unnikrishnan S, Klibanov AL. Preparation and characterization of targeted microbubbles. J Vis Exp 2021; 4(175): e62370.
[http://dx.doi.org/10.3791/62370] [PMID: 34542531]
[7]
Carugo D, Browning RJ, Iranmanesh I, Messaoudi W, Rademeyer P, Stride E. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. J Acoust Soc Am 2021; 150(2): 1577-89.
[http://dx.doi.org/10.1121/10.0005911] [PMID: 34470259]
[8]
Cesur S, Cam ME. Sayın FS, et al. Metformin-loaded polymer-based microbubbles/nanoparticles generated for the treatment of type 2 diabetes mellitus. Langmuir 2022; 38: 5040-51.
[PMID: 34096296]
[9]
Sharun K, Dhama K, Tiwari R, et al. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet Q 2021; 41(1): 107-36.
[http://dx.doi.org/10.1080/01652176.2021.1882713] [PMID: 33509059]
[10]
Arana-Chavez VE, Castro-Filice LS. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) for the examination of dental hard tissues. Methods Mol Biol 2019; 1922: 325-32.
[http://dx.doi.org/10.1007/978-1-4939-9012-2_29] [PMID: 30838587]
[11]
Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am 2011; 130(5): 3059-67.
[http://dx.doi.org/10.1121/1.3646905] [PMID: 22087933]
[12]
Chen H, Konofagou EE. The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab 2014; 34(7): 1197-204.
[http://dx.doi.org/10.1038/jcbfm.2014.71] [PMID: 24780905]
[13]
Wolska J, Jalilnejad Falizi N. Membrane emulsification process as a method for obtaining molecularly imprinted polymers. Polymers (Basel) 2021; 13(16): 2830.
[http://dx.doi.org/10.3390/polym13162830] [PMID: 34451368]
[14]
Mao M, Liang H, He J, et al. Coaxial electrohydrodynamic bioprinting of pre-vascularized cell-laden constructs for tissue engineering. Int J Bioprint 2021; 7(3): 362.
[http://dx.doi.org/10.18063/ijb.v7i3.362] [PMID: 34286149]
[15]
Becker H, Locascio LE. Polymer microfluidic devices. Talanta 2002; 56(2): 267-87.
[http://dx.doi.org/10.1016/S0039-9140(01)00594-X] [PMID: 18968500]
[16]
Silva MLS. Microfluidic devices for glycobiomarker detection in cancer. Clin Chim Acta 2021; 521: 229-43.
[17]
Agustini D, Caetano FR, Quero RF, et al. Microfluidic devices based on textile threads for analytical applications: State of the art and prospects. Anal Methods 2021.
[18]
Yang D, Sun H, Chang Q, Sun Y, He L. Study on the effect of nanoparticle used in nano-fluid flooding on droplet-interface electro-coalescence. Nanomaterials 2021; 11(7): 1764.
[19]
Yue S, Shen Y, Deng Z, Yuan W, Xi W. Coalescence and shape oscillation of Au nanoparticles in CO 2 hydrogenation to methanol. Nanoscale 2021; 13(43): 18218-25.
[http://dx.doi.org/10.1039/D1NR01272J] [PMID: 34709260]
[20]
Ton N, Goncin U, Panahifar A, Chapman D, Wiebe S, Machtaler S. Developing a microbubble-based contrast agent for synchrotron in-line phase contrast imaging. IEEE Trans Biomed Eng 2021; 68(5): 1527-35.
[http://dx.doi.org/10.1109/TBME.2020.3040079] [PMID: 33232220]
[21]
Tsirkin S, Goldbart R, Traitel T, Kost J. Tailor-made single-core PLGA microbubbles as acoustic cavitation enhancers for therapeutic applications. ACS Appl Mater Interfaces 2021; 13(22): 25748-58.
[http://dx.doi.org/10.1021/acsami.1c04770] [PMID: 34048218]
[22]
Gümmer J, Schenke S, Denner F. Modelling lipid-coated microbubbles in focused ultrasound applications at subresonance frequencies. Ultrasound Med Biol 2021; 47(10): 2958-79.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2021.06.012] [PMID: 34344560]
[23]
Furtado RG, Rassi DDC, Melato LH, et al. Safety of SF6(SonoVue®) contrast agent on pharmacological stress echocardiogram. Arq Bras Cardiol 2021; 117(6): 1170-8.
[PMID: 34644784]
[24]
Girnius A, Meng ML. Cardio-obstetrics: A review for the cardiac anesthesiologist. J Cardiothorac Vasc Anesth 2021; 35(12): 3483-8.
[http://dx.doi.org/10.1053/j.jvca.2021.06.012] [PMID: 34253444]
[25]
Khan AH, Surwase S, Jiang X, et al. Enhancing in vitro stability of albumin microbubbles produced using microfluidic T-junction device. Langmuir 2022; 38(17): 5052-62.
[http://dx.doi.org/10.1021/acs.langmuir.1c01516.Epub2021Jul15] [PMID: 34264681]
[26]
Herbst EB, Klibanov AL, Hossack JA, Mauldin FW Jr. Dynamic filtering of adherent and non-adherent microbubble signals using singular value thresholding and normalized singular spectrum area techniques. Ultrasound Med Biol 2021; 47(11): 3240-52.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2021.06.019] [PMID: 34376299]
[27]
Maksimova EA, Barmin RA, Rudakovskaya PG, et al. Air-filled microbubbles based on albumin functionalized with gold nanocages and zinc phthalocyanine for multimodal imaging. Micromachines (Basel) 2021; 12(10): 1161.
[http://dx.doi.org/10.3390/mi12101161] [PMID: 34683212]
[28]
Boned-López J, Alcázar JL, Errasti T, et al. Severe pain during hysterosalpingo-contrast sonography (HyCoSy): A systematic review and meta-analysis. Arch Gynecol Obstet 2021; 304(6): 1389-98.
[http://dx.doi.org/10.1007/s00404-021-06188-3] [PMID: 34417840]
[29]
Wang J, Zhao R, Cheng J. Diagnostic accuracy of contrast-enhanced ultrasound to differentiate benign and malignant breast lesions: A systematic review and meta-analysis. Eur J Radiol 2022; 149: 110219.
[http://dx.doi.org/10.1016/j.ejrad.2022.110219] [PMID: 35228171]
[30]
Tang KHD, Kristanti RA. Bioremediation of perfluorochemicals: Current state and the way forward. Bioprocess Biosyst Eng 2022.
[http://dx.doi.org/10.1007/s00449-022-02694-z] [PMID: 35098376]
[31]
Mu Z, Yang Y, Xia Y, et al. Probiotic yeast BR14 ameliorates DSS-induced colitis by restoring the gut barrier and adjusting the intestinal microbiota. Food Funct 2021; 12(18): 8386-98.
[http://dx.doi.org/10.1039/D1FO01314A] [PMID: 34355721]
[32]
Vlaskou D, Mykhaylyk O, Giunta R, et al. Magnetic microbubbles: New carriers for localized gene and drug delivery. Mol Ther 2006; 13: S290.
[http://dx.doi.org/10.1016/j.ymthe.2006.08.834]
[33]
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63(1-2): 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[34]
Roy JS, Braën C, Leblond J, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: A systematic review and meta-analysis. Br J Sports Med 2015; 49(20): 1316-28.
[http://dx.doi.org/10.1136/bjsports-2014-094148] [PMID: 25677796]
[35]
Chen X, Lee H, Chong V. Is sleep duration associated with childhood obesity? A Systematic review and meta-analysis. Obesity (Silver Spring) 2008; 16(2): 265-74.
[http://dx.doi.org/10.1038/oby.2007.63] [PMID: 18239632]
[36]
Carson AR, McTiernan CF, Lavery L, et al. Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res 2012; 72(23): 6191-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4079] [PMID: 23010078]
[37]
Nofiele JIT, Karshafian R, Furukawa M, et al. Ultrasound-activated microbubble cancer therapy: Ceramide production leading to enhanced radiation effect in vitro. Technol Cancer Res Treat 2013; 12(1): 53-60.
[http://dx.doi.org/10.7785/tcrt.2012.500253] [PMID: 22905807]
[38]
Sharma D, Cartar H, Law N, et al. Optimization of microbubble enhancement of hyperthermia for cancer therapy in an in vivo breast tumour model. PLoS One 2020; 15(8): e0237372.
[http://dx.doi.org/10.1371/journal.pone.0237372] [PMID: 32797049]
[39]
Liu Y, Yang F, Yuan C, et al. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano 2017; 11(2): 1509-19.
[http://dx.doi.org/10.1021/acsnano.6b06815] [PMID: 28045496]
[40]
Tran WT, Iradji S, Sofroni E, Giles A, Eddy D, Czarnota GJ. Microbubble and ultrasound radioenhancement of bladder cancer. Br J Cancer 2012; 107(3): 469-76.
[http://dx.doi.org/10.1038/bjc.2012.279] [PMID: 22790798]
[41]
Ji Y, Han Z, Shao L, Zhao Y. Evaluation of in vivo antitumor effects of low‐frequency ultrasound‐mediated miRNA‐133a microbubble delivery in breast cancer. Cancer Med 2016; 5(9): 2534-43.
[http://dx.doi.org/10.1002/cam4.840] [PMID: 27465833]
[42]
Tian F, Zhong X, Zhao J, et al. Hybrid theranostic microbubbles for ultrasound/photoacoustic imaging guided starvation/low-temperature photothermal/hypoxia-activated synergistic cancer therapy. J Mater Chem B Mater Biol Med 2021; 9(45): 9358-69.
[http://dx.doi.org/10.1039/D1TB01735G] [PMID: 34726226]
[43]
Delaney LJ, Eisenbrey JR, Brown D, et al. Gemcitabine-loaded microbubble system for ultrasound imaging and therapy. Acta Biomater 2021; 130: 385-94.
[http://dx.doi.org/10.1016/j.actbio.2021.05.046] [PMID: 34082100]
[44]
Zhu J, Wang Y, Yang P, et al. GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells. Colloids Surf B Biointerfaces 2021; 197: 111358.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111358] [PMID: 33068823]
[45]
Tian P, Wang Y, Du W. Ultrasound targeted microbubble destruction enhances the anti tumor action of miR 4284 inhibitor in non small cell lung cancer cells. Exp Ther Med 2021; 21(6): 551.
[http://dx.doi.org/10.3892/etm.2021.9983] [PMID: 33850523]
[46]
Sepehrizadeh T, Jong I, DeVeer M, Malhotra A. PET/MRI in paediatric disease. Eur J Radiol 2021; 144: 109987.
[http://dx.doi.org/10.1016/j.ejrad.2021.109987] [PMID: 34649143]
[47]
Mykhailovska NS, Grytsay AV. The basis of prevention in the practice of general practitioners Zaporizhzhia State Medical University 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy