Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Synthesis of β-Amino Carbonyl 6-(Aminomethyl)- and 6-(Hydroxymethyl)pyrazolopyrimidines for DPP-4 Inhibition Study

Author(s): Cheng-Yen Chung, Ching-Chun Tseng, Sin-Min Li, Wei-Zheng Zeng, Yu-Ching Lin, Yu-Pei Hu, Wen-Ping Jiang, Guan-Jhong Huang, Henry J. Tsai and Fung Fuh Wong*

Volume 31, Issue 22, 2024

Published on: 08 April, 2024

Page: [3380 - 3396] Pages: 17

DOI: 10.2174/0929867329666220614094305

Price: $65

Abstract

Background: Type-2 diabetes is a chronic progressive metabolic disease resulting in severe vascular complications and mortality risk. Recently, DPP-4 inhibitors had been conceived as a favorable class of agents for the treatment of type 2 diabetes due to the minimal side effects.

Methods: Sitagliptin is the first medicine approved for the DPP-4 inhibitor. Its structure involved three fragments: 2,4,5-triflorophenyl fragment pharmacophore, enantiomerically β-amino carbonyl linker, and tetrahydrotriazolopyridine. Herein, we are drawn to the possibility of substituting tetrahydrotriazolopyridine motif present in Sitagliptin with a series of new fused pyrazolopyrimidine bicyclic fragment to investigate potency and safety.

Results: Two series of fused 6-(aminomethyl)pyrazolopyrimidine and 6-(hydroxymethyl) pyrazolopyrimidine derivatives containing β-amino ester or amide as linkers were successfully designed for the new DPP-4 inhibitors. Most fused 6-methylpyrazolopyrimidines were evaluated against DPP-4 inhibition and selectivity capacity. Based on research study, β-amino carbonyl fused 6-(hydroxymethyl)pyrazolopyrimidine possesses the significant DPP-4 inhibition (IC50 ≤ 59.8 nM) and presents similar with Sitagliptin (IC50 = 28 nM). Particularly, they had satisfactory selectivity over DPP-8 and DPP-9, except for QPP.

Conclusion: β-Amino esters and amides fused 6-(hydroxymethyl)pyrazolopyrimidine were developed as the new DPP-4 inhibitors. Those compounds with a methyl group or hydrogen in N-1 position and methyl substituted group in C-3 of pyrazolopyrimidine moiety showed better potent DPP-4 inhibition (IC50 = 21.4-59.8 nM). Furthermore, they had satisfactory selectivity over DPP-8 and DPP-9 Finally, the docking results revealed that compound 9n was stabilized at DPP-4 active site and would be a potential lead drug.

Keywords: 6-(Aminomethyl)pyrazolopyrimidine, 6-(Hydroxymethyl)pyrazolopyrimidine, Pyrazolopyrimidine, DPP-4 Inhibitors, β-Amino ester, β-Amino amide, Sitagliptin

[1]
International Diabetes Federation (IDF); Diabetes Atlas. 2006. Available from: http://www.iotf.org/diabetes.asp
[2]
Andrews, M. US News World Rep., 2009, 9.
[3]
Flatt, P.R.; Bailey, C.J.; Green, B.D. Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes. Front. Biosci., 2008, 13(13), 3648-3660.
[http://dx.doi.org/10.2741/2956] [PMID: 18508462]
[4]
Almagthali, A.G.; Alkhaldi, E.H.; Alzahrani, A.S.; Alghamdi, A.K.; Alghamdi, W.Y.; Kabel, A.M. Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer. Diabetes Metab. Syndr., 2019, 13(1), 36-39.
[http://dx.doi.org/10.1016/j.dsx.2018.08.012] [PMID: 30641726]
[5]
Mendieta, L.; Tarrago, T.; Giralt, E. Recent patents of dipeptidyl peptidase IV inhibitors. Expert Opin. Ther. Pat., 2011, 21(11), 1693-1741.
[http://dx.doi.org/10.1517/13543776.2011.627325] [PMID: 22017411]
[6]
Liu, Y.; Hu, Y.; Liu, T. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: Medicinal chemistry and preclinical aspects. Curr. Med. Chem., 2012, 19(23), 3982-3999.
[http://dx.doi.org/10.2174/092986712802002491] [PMID: 22709010]
[7]
Liu, Y.; Si, M.; Tang, L.; Shangguan, S.; Wu, H.; Li, J.; Wu, P.; Ma, X.; Liu, T.; Hu, Y. Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors. Bioorg. Med. Chem., 2013, 21(18), 5679-5687.
[http://dx.doi.org/10.1016/j.bmc.2013.07.034] [PMID: 23938053]
[8]
Nauck, M.; Stöckmann, F.; Ebert, R.; Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia, 1986, 29(1), 46-52.
[http://dx.doi.org/10.1007/BF02427280] [PMID: 3514343]
[9]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[10]
Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.J.; Fisher, M.H.; He, H.; Hickey, G.J.; Kowalchick, J.E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M.E.; Patel, R.A.; Petrov, A.; Scapin, G.; Patel, S.B.; Roy, R.S.; Wu, J.K.; Wyvratt, M.J.; Zhang, B.B.; Zhu, L.; Thornberry, N.A.; Weber, A.E. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2005, 48(1), 141-151.
[http://dx.doi.org/10.1021/jm0493156] [PMID: 15634008]
[11]
Zhu, L.; Li, Y.; Qiu, L.; Su, M.; Wang, X.; Xia, C.; Qu, Y.; Li, J.; Li, J.; Xiong, B.; Shen, J. Design and synthesis of 4-(2,4,5-trifluorophenyl)butane-1,3-diamines as dipeptidyl peptidase IV inhibitors. ChemMedChem, 2013, 8(7), 1104-1116.
[http://dx.doi.org/10.1002/cmdc.201300104] [PMID: 23671024]
[12]
Ørskov, C. Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia, 1992, 35(8), 701-711.
[http://dx.doi.org/10.1007/BF00429088] [PMID: 1324859]
[13]
Havale, S.H.; Pal, M. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg. Med. Chem., 2009, 17(5), 1783-1802.
[http://dx.doi.org/10.1016/j.bmc.2009.01.061] [PMID: 19217790]
[14]
Mohler, M.L.; He, Y.; Wu, Z.; Hwang, D.J.; Miller, D.D. Recent and emerging anti-diabetes targets. Med. Res. Rev., 2009, 29(1), 125-195.
[http://dx.doi.org/10.1002/med.20142] [PMID: 18855890]
[15]
Chia, C.W.; Egan, J.M. Incretin-based therapies in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab., 2008, 93(10), 3703-3716.
[http://dx.doi.org/10.1210/jc.2007-2109] [PMID: 18628530]
[16]
Drucker, D.J. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: Preclinical biology and mechanisms of action. Diabetes Care, 2007, 30(6), 1335-1343.
[http://dx.doi.org/10.2337/dc07-0228] [PMID: 17337495]
[17]
Geelhoed-Duijvestijn, P.H. Incretins: A new treatment option for type 2 diabetes? Neth. J. Med., 2007, 65(2), 60-64.
[PMID: 17379930]
[18]
Soni, R.; Soman, S.S. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents. Bioorg. Chem., 2018, 79, 277-284.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.008] [PMID: 29783098]
[19]
Abd El-Karim, S.S.; Anwar, M.M.; Syam, Y.M.; Nael, M.A.; Ali, H.F.; Motaleb, M.A. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio-distribution studies. Bioorg. Chem., 2018, 81, 481-493.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.021] [PMID: 30243239]
[20]
Xie, M.J.; Zhu, M.R.; Lu, C-M.; Jin, Y.; Gao, L-H.; Li, L.; Zhou, J.; Li, F.F.; Zhao, Q.H.; Liu, H-K.; Sadler, P.J.; Sanchez-Cano, C. Synthesis and characterization of oxidovanadium complexes as enzyme inhibitors targeting dipeptidyl peptidase IV. J. Inorg. Biochem., 2017, 175, 29-35.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.014] [PMID: 28692886]
[21]
Deng, X.; Shen, J.; Zhu, H.; Xiao, J.; Sun, R.; Xie, F.; Lam, C.; Wang, J.; Qiao, Y.; Tavallaie, M.S.; Hu, Y.; Du, Y.; Li, J.; Fu, L.; Jiang, F. Surrogating and redirection of pyrazolo[1,5-a]pyrimidin-7(4H)-one core, a novel class of potent and selective DPP-4 inhibitors. Bioorg. Med. Chem., 2018, 26(4), 903-912.
[http://dx.doi.org/10.1016/j.bmc.2018.01.006] [PMID: 29373269]
[22]
Zhu, M.R.; Zhou, J.; Jin, Y.; Gao, L-H.; Li, L.; Yang, J-R.; Lu, C-M.; Zhao, Q.H.; Xie, M.J. A manganese-salen complex as dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Int. J. Biol. Macromol., 2018, 120(Pt A), 1232-1239.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.089] [PMID: 30171949]
[23]
Gutierrez, O.; Metil, D.; Dwivedi, N.; Gudimalla, N.; Chandrashekar, E.R.; Dahanukar, V.H.; Bhattacharya, A.; Bandichhor, R.; Kozlowski, M.C. Practical, asymmetric route to sitagliptin and derivatives: Development and origin of diastereoselectivity. Org. Lett., 2015, 17(7), 1742-1745.
[http://dx.doi.org/10.1021/acs.orglett.5b00520] [PMID: 25799267]
[24]
Deng, X.; Wang, N.; Meng, L.; Zhou, S.; Huang, J.; Xing, J.; He, L.; Jiang, W.; Li, Q. Optimization of the benzamide fragment targeting the S2' site leads to potent dipeptidyl peptidase-IV inhibitors. Bioorg. Chem., 2020, 94, 103366.
[http://dx.doi.org/10.1016/j.bioorg.2019.103366] [PMID: 31640932]
[25]
Schnapp, G.; Klein, T.; Hoevels, Y.; Bakker, R.A.; Nar, H. Comparative analysis of binding kinetics and thermodynamics of dipeptidyl peptidase-4 inhibitors and their relationship to structure. J. Med. Chem., 2016, 59(16), 7466-7477.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00475] [PMID: 27438064]
[26]
Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun., 2013, 434(2), 191-196.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.010] [PMID: 23501107]
[27]
Kieffer, T.J.; Habener, J.F. The glucagon-like peptides. Endocr. Rev., 1999, 20(6), 876-913.
[http://dx.doi.org/10.1210/edrv.20.6.0385] [PMID: 10605628]
[28]
Sanna, M.; Sicilia, G.; Alazzo, A.; Singh, N.; Musumeci, F.; Schenone, S.; Spriggs, K.A.; Burley, J.C.; Garnett, M.C.; Taresco, V.; Alexander, C. Water solubility enhancement of pyrazolo[3,4-d]pyrimidine derivatives via miniaturized polymer–drug microarrays. ACS Med. Chem. Lett., 2018, 9(3), 193-197.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00456] [PMID: 29541359]
[29]
Bouton, J.; Ferreira de Almeida Fiuza, L.; Cardoso Santos, C.; Mazzarella, M.A.; Soeiro, M.N.C.; Maes, L.; Karalic, I.; Caljon, G.; Van Calenbergh, S. Revisiting pyrazolo[3,4-d]pyrimidine nucleosides as anti-Trypanosoma cruzi and antileishmanial agents. J. Med. Chem., 2021, 64(7), 4206-4238.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00135] [PMID: 33784107]
[30]
Schenone, S.; Radi, M.; Musumeci, F.; Brullo, C.; Botta, M. Biologically driven synthesis of pyrazolo[3,4-d]pyrimidines as protein kinase inhibitors: An old scaffold as a new tool for medicinal chemistry and chemical biology studies. Chem. Rev., 2014, 114(14), 7189-7238.
[http://dx.doi.org/10.1021/cr400270z] [PMID: 24873489]
[31]
Ghozlan, S.A.; Abdelrazek, F.M.; Mohamed, M.H.; Azmy, K.E. Synthesis of some new pyrazole and pyrazolopyrimidine derivatives. ChemInform, 2011, 42(14)
[http://dx.doi.org/10.1002/chin.201114182]
[32]
Todorovic, N.; Awuah, E.; Shakya, T.; Wright, G.D.; Capretta, A. Microwave-assisted synthesis of N1-and C3-substituted pyrazolo[3,4-d]pyrimidine libraries. Tetrahedron Lett., 2011, 52(44), 5761-5763.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.103]
[33]
Liu, J.; Wang, X. Microwave-assisted, divergent solution-phase synthesis of 1,3,6-trisubstituted pyrazolo[3,4-d]pyrimidines. ACS Comb. Sci., 2011, 13(4), 414-420.
[http://dx.doi.org/10.1021/co200039k] [PMID: 21528879]
[34]
Slavish, P.J.; Price, J.E.; Hanumesh, P.; Webb, T.R. Efficient synthesis of pyrazolopyrimidine libraries. J. Comb. Chem., 2010, 12(6), 807-809.
[http://dx.doi.org/10.1021/cc1001204] [PMID: 20804211]
[35]
Huang, Y-Y.; Wang, L-Y.; Chang, C-H.; Kuo, Y-H.; Kaneko, K.; Takayama, H.; Kimura, M.; Juang, S-H.; Wong, F.F. One-pot synthesis and antiproliferative evaluation of pyrazolo[3,4-d]pyrimidine derivatives. Tetrahedron, 2012, 68(47), 9658-9664.
[http://dx.doi.org/10.1016/j.tet.2012.09.054]
[36]
Chang, C-H.; Tsai, H.J.; Huang, Y-Y.; Lin, H-Y.; Wang, L-Y.; Wu, T-S.; Wong, F.F. Selective synthesis of pyrazolo[3,4-d]pyrimidine, N-(1H-pyrazol-5-yl) formamide, or N-(1H-pyrazol-5-yl) formamidine derivatives from N-1-substituted-5-aminopyrazoles with new Vilsmeier-type reagents. Tetrahedron, 2013, 69(4), 1378-1386.
[http://dx.doi.org/10.1016/j.tet.2012.11.002]
[37]
Yen, W-P.; Tsai, S-E.; Uramaru, N.; Takayama, H.; Wong, F.F. One-flask synthesis of pyrazolo[3,4-d]pyrimidines from 5-aminopyrazoles and mechanistic study. Molecules, 2017, 22(5), 820.
[http://dx.doi.org/10.3390/molecules22050820] [PMID: 28509884]
[38]
Tsai, S-E.; Yen, W-P.; Tseng, C-C.; Xie, J-J.; Liou, M.Y.; Li, Y-T.; Uramaru, N.; Wong, F.F. Efficient acid catalytic synthesis of pyrazolopyrimidines from 1H-pyrazol-5-yl-N, N-dimethylformamidines with cyanamide. Tetrahedron, 2018, 74(22), 2787-2791.
[http://dx.doi.org/10.1016/j.tet.2018.04.048]
[39]
Tseng, C-C.; Tsai, S-E.; Li, S-M.; Wong, F.F. One-pot acid-promoted synthesis of 6-aminopyrazolopyrimidines from 1H-pyrazol-5-yl-N,N-dimethylformamidines or 5-amino-1H-pyrazole-4-carbaldehydes with cyanamide. J. Org. Chem., 2019, 84(24), 16157-16170.
[http://dx.doi.org/10.1021/acs.joc.9b02653] [PMID: 31736306]
[40]
Lu, S-H.; Liu, P-L.; Wong, F.F. Vilsmeier reagent-mediated synthesis of 6-[(formyloxy)methyl]-pyrazolopyrimidines via a one-pot multiple tandem reaction. RSC Advances, 2015, 5(58), 47098-47107.
[http://dx.doi.org/10.1039/C5RA07707A]
[41]
Li, S-M.; Tsai, S-E.; Chiang, C-Y.; Chung, C-Y.; Chuang, T-J.; Tseng, C-C.; Jiang, W-P.; Huang, G-J.; Lin, C-Y.; Yang, Y-C.; Fuh, M.T.; Wong, F.F. New methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates as selective COX-2 inhibitors and anti-inflammatory agents: Design, synthesis, biological evaluation, and docking study. Bioorg. Chem., 2020, 104, 104333.
[http://dx.doi.org/10.1016/j.bioorg.2020.104333] [PMID: 33142408]
[42]
Pauli, G.F.; Chen, S-N.; Simmler, C.; Lankin, D.C.; Gödecke, T.; Jaki, B.U.; Friesen, J.B.; McAlpine, J.B.; Napolitano, J.G. Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay: Miniperspective. J. Med. Chem., 2014, 57(22), 9220-9231.
[http://dx.doi.org/10.1021/jm500734a] [PMID: 25295852]
[43]
Tsai, H.J.; Chou, S.Y.; Chuang, S.H.; Chen, C.C.; Hsu, F.L. D‐420720, A novel orally active sulfonamide compound dipeptidyl peptidase IV inhibitor: Structure and activity relationship of arylsulfonamide to dipeptidyl peptidase IV inhibition. Drug Dev. Res., 2008, 69(8), 514-519.
[http://dx.doi.org/10.1002/ddr.20278]
[44]
Lu, S-H.; Yen, W-P.; Tsai, H.J.; Chen, C-S.; Wong, F.F. Vilsmeier reagent initialed sequential one-pot multicomponent synthesis of N, O-disubstituted glycolamides as dipeptidyl peptidase 4 inhibitors. Tetrahedron, 2015, 71(38), 6749-6758.
[http://dx.doi.org/10.1016/j.tet.2015.07.041]
[45]
Ran, Y.; Pei, H.; Xie, C.; Ma, L.; Wu, Y.; Lei, K.; Shao, M.; Tang, M.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Scaffold-based design of xanthine as highly potent inhibitors of DPP-IV for improving glucose homeostasis in DIO mice. Mol. Divers., 2015, 19(2), 333-346.
[http://dx.doi.org/10.1007/s11030-015-9570-x] [PMID: 25672287]
[46]
Burkey, B.F.; Hoffmann, P.K.; Hassiepen, U.; Trappe, J.; Juedes, M.; Foley, J.E. Adverse effects of dipeptidyl peptidases 8 and 9 inhibition in rodents revisited. Diabetes Obes. Metab., 2008, 10(11), 1057-1061.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00860.x] [PMID: 18422675]
[47]
Lankas, G.R.; Leiting, B.; Roy, R.S.; Eiermann, G.J.; Beconi, M.G.; Biftu, T.; Chan, C-C.; Edmondson, S.; Feeney, W.P.; He, H.; Ippolito, D.E.; Kim, D.; Lyons, K.A.; Ok, H.O.; Patel, R.A.; Petrov, A.N.; Pryor, K.A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J.K.; Zaller, D.; Zhang, X.; Zhu, L.; Weber, A.E.; Thornberry, N.A. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes, 2005, 54(10), 2988-2994.
[http://dx.doi.org/10.2337/diabetes.54.10.2988] [PMID: 16186403]
[48]
Yang, J.M.; Chen, C.C. GEMDOCK: a generic evolutionary method for molecular docking. Proteins, 2004, 55(2), 288-304.
[http://dx.doi.org/10.1002/prot.20035] [PMID: 15048822]
[49]
Jones, R.; Ainsworth, C. 1, 2, 4-Triazole-3-alanine. J. Am. Chem. Soc., 1955, 77(6), 1538-1540.
[http://dx.doi.org/10.1021/ja01611a040]
[50]
Liu, H.; Yin, H.; Feng, Y. A CO2-switchable amidine monomer: Synthesis and characterization. Des. Monomers Polym., 2016, 20(1), 363-367.
[http://dx.doi.org/10.1080/15685551.2016.1270027] [PMID: 29491807]
[51]
Anderson, M.B.; Willardsen, J.A.; Weiner, W.S.; Yungai, A.; Halter, R.J.; Klimova, Y.; Suzuki, K.; Reeder, M. Compounds and therapecutical use. US 2010/0069383 Al, 2010.
[52]
Wang, T.; Bing, G.; Zhang, X.; Qin, Z.; Yu, H.; Qin, X.; Dai, H.; Miao, W.; Wu, S.; Fang, J. Synthesis and herbicidal activities of 2-cyano-3-benzylaminoacrylates containing thiazole moiety. Bioorg. Med. Chem. Lett., 2010, 20(11), 3348-3351.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.027] [PMID: 20452764]
[53]
Treu, M.; Fröhlich, J.; Jordis, U. Preparation of shortened norbelladine analogs. Molecules, 2002, 7(10), 743-750.
[http://dx.doi.org/10.3390/71000743]
[54]
Fuh, M-T.; Tseng, C-C.; Li, S-M.; Tsai, S-E.; Chuang, T-J.; Lu, C-H.; Yang, Y-C.; Tsai, H.J.; Wong, F.F. Design, synthesis and biological evaluation of glycolamide, glycinamide, and β-amino carbonyl 1,2,4-triazole derivatives as DPP-4 inhibitors. Bioorg. Chem., 2021, 114, 105049.
[http://dx.doi.org/10.1016/j.bioorg.2021.105049] [PMID: 34147879]
[55]
Diago-Meseguer, J.; Palomo-Coll, A.; Fernandez-Lizarbe, J.; Zugaza-Bilbao, A. A new reagent for activating carboxyl groups; preparation and reactions of N, N-bis[2-oxo-3-ox-azolidinyl]phosphorodiamidic chloride. Synthesis, 1980, 1980(07), 547-551.
[http://dx.doi.org/10.1055/s-1980-29116]
[56]
Gunic, E.; Chow, S.; Rong, F.; Ramasamy, K.; Raney, A.; Li, D.Y.; Huang, J.; Hamatake, R.K.; Hong, Z.; Girardet, J-L. 6-Hydrazinopurine 2′-methyl ribonucleosides and their 5′-monophosphate prodrugs as potent hepatitis C virus inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(9), 2456-2458.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.029] [PMID: 17331718]
[57]
Cabré-Castellví, J.; Palomo-Coll, A.L. New activation of carboxylic acids by reaction with N, N-bis-(2-oxo-3-oxazolidinyl)phosphorodiamidic chloride (ClsPO). Tetrahedron Lett., 1980, 21(43), 4179-4182.
[http://dx.doi.org/10.1016/S0040-4039(00)93682-7]
[58]
Rajagopal, B.; Chen, Y-Y.; Chen, C-C.; Liu, X-Y.; Wang, H-R.; Lin, P-C. Cu(I)-catalyzed synthesis of dihydropyrimidin-4-ones toward the preparation of β- and β3-amino acid analogues. J. Org. Chem., 2014, 79(3), 1254-1264.
[http://dx.doi.org/10.1021/jo402670d] [PMID: 24417351]
[59]
Kowalchick, J.E.; Leiting, B.; Pryor, K.D.; Marsilio, F.; Wu, J.K.; He, H.; Lyons, K.A.; Eiermann, G.J.; Petrov, A.; Scapin, G.; Patel, R.A.; Thornberry, N.A.; Weber, A.E.; Kim, D. Design, synthesis, and biological evaluation of triazolopiperazine-based β-amino amides as potent, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(21), 5934-5939.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.100] [PMID: 17827003]
[60]
Venkatesan, G.; Paira, P.; Cheong, S.L.; Vamsikrishna, K.; Federico, S.; Klotz, K-N.; Spalluto, G.; Pastorin, G. Discovery of simplified N²-substituted pyrazolo[3,4-d]pyrimidine derivatives as novel adenosine receptor antagonists: efficient synthetic approaches, biological evaluations and molecular docking studies. Bioorg. Med. Chem., 2014, 22(5), 1751-1765.
[http://dx.doi.org/10.1016/j.bmc.2014.01.018] [PMID: 24518296]
[61]
Abdelazeem, A.H.; Abdelatef, S.A.; El-Saadi, M.T.; Omar, H.A.; Khan, S.I.; McCurdy, C.R.; El-Moghazy, S.M. Novel pyrazolopyrimidine derivatives targeting COXs and iNOS enzymes; design, synthesis and biological evaluation as potential anti-inflammatory agents. Eur. J. Pharm. Sci., 2014, 62, 197-211.
[http://dx.doi.org/10.1016/j.ejps.2014.05.025] [PMID: 24907682]
[62]
Bonn, P.; Brink, D.M.; Fägerhag, J.; Jurva, U.; Robb, G.R.; Schnecke, V.; Svensson Henriksson, A.; Waring, M.J.; Westerlund, C. The discovery of a novel series of glucokinase activators based on a pyrazolopyrimidine scaffold. Bioorg. Med. Chem. Lett., 2012, 22(24), 7302-7305.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.090] [PMID: 23149230]
[63]
Wong, F.F.; Chang, P-W.; Lin, H-C.; You, B-J.; Huang, J-J.; Lin, S-K. An efficient and convenient transformation of α-haloketones to α-hydroxyketones using cesium formate. J. Organomet. Chem., 2009, 694(21), 3452-3455.
[http://dx.doi.org/10.1016/j.jorganchem.2009.06.031]
[64]
Li, N.; Wang, L-J.; Jiang, B.; Guo, S-J.; Li, X-Q.; Chen, X-C.; Luo, J.; Li, C.; Wang, Y.; Shi, D-Y. Design, synthesis and biological evaluation of novel pyrimidinedione derivatives as DPP-4 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(12), 2131-2135.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.022] [PMID: 29773502]
[65]
Wagner, L.; Klemann, C.; Stephan, M.; von Hörsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin. Exp. Immunol., 2016, 184(3), 265-283.
[http://dx.doi.org/10.1111/cei.12757] [PMID: 26671446]
[66]
Underwood, R.; Chiravuri, M.; Lee, H.; Schmitz, T.; Kabcenell, A.K.; Yardley, K.; Huber, B.T. Sequence, purification, and cloning of an intracellular serine protease, quiescent cell proline dipeptidase. J. Biol. Chem., 1999, 274(48), 34053-34058.
[http://dx.doi.org/10.1074/jbc.274.48.34053] [PMID: 10567372]
[67]
Abbott, C.A.; Yu, D.M.; Woollatt, E.; Sutherland, G.R.; McCaughan, G.W.; Gorrell, M.D. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur. J. Biochem., 2000, 267(20), 6140-6150.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01617.x] [PMID: 11012666]
[68]
Olsen, C.; Wagtmann, N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene, 2002, 299(1-2), 185-193.
[http://dx.doi.org/10.1016/S0378-1119(02)01059-4] [PMID: 12459266]
[69]
Scanlan, M.J.; Raj, B.K.; Calvo, B.; Garin-Chesa, P.; Sanz-Moncasi, M.P.; Healey, J.H.; Old, L.J.; Rettig, W.J. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl. Acad. Sci. USA, 1994, 91(12), 5657-5661.
[http://dx.doi.org/10.1073/pnas.91.12.5657] [PMID: 7911242]
[70]
Brockunier, L.L.; He, J.; Colwell, L.F., Jr; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K.A.; Marsilio, F.; Patel, R.A.; Teffera, Y.; Wu, J.K.; Thornberry, N.A.; Weber, A.E.; Parmee, E.R. Substituted piperazines as novel dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(18), 4763-4766.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.065] [PMID: 15324904]
[71]
Velázquez-Libera, J.L.; Durán-Verdugo, F.; Valdés-Jiménez, A.; Núñez-Vivanco, G.; Caballero, J. LigRMSD: A web server for automatic structure matching and RMSD calculations among identical and similar compounds in protein-ligand docking. Bioinformatics, 2020, 36(9), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btaa018] [PMID: 31926012]
[72]
Rummey, C.; Metz, G. Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site. Proteins, 2007, 66(1), 160-171.
[http://dx.doi.org/10.1002/prot.21138] [PMID: 17068815]
[73]
Yoshida, T.; Akahoshi, F.; Sakashita, H.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Nabeno, M.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Fused bicyclic heteroarylpiperazine-substituted L-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorg. Med. Chem., 2012, 20(16), 5033-5041.
[http://dx.doi.org/10.1016/j.bmc.2012.06.033] [PMID: 22824762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy